Serveur d'exploration sur les chartes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of CVD diamond r.f. windows for ECRH

Identifieur interne : 001E18 ( Istex/Checkpoint ); précédent : 001E17; suivant : 001E19

Development of CVD diamond r.f. windows for ECRH

Auteurs : RBID : ISTEX:C31B3FA69D1222B0A871E56350F9F2D78034B1E9

English descriptors

Abstract

The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of <1×10−5 at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10−5 at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10−5 at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m−1K−1 at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance.

Url:
DOI: 10.1016/S0920-3796(00)00533-0

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:C31B3FA69D1222B0A871E56350F9F2D78034B1E9

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of CVD diamond r.f. windows for ECRH</title>
<author>
<name sortKey="Brandon, J R" uniqKey="Brandon J">J.R Brandon</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author</mods:affiliation>
<wicri:noCountry code="no comma">Corresponding author</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Coe, S E" uniqKey="Coe S">S.E Coe</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sussmann, R S" uniqKey="Sussmann R">R.S Sussmann</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakamoto, K" uniqKey="Sakamoto K">K Sakamoto</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken, Japan</mods:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken</wicri:regionArea>
<wicri:noRegion>311-0193 Ibaraki-ken</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sp Rl, R" uniqKey="Sp Rl R">R Spörl</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<mods:affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Heidinger, R" uniqKey="Heidinger R">R Heidinger</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<mods:affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Karlsruhe</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hanks, S" uniqKey="Hanks S">S Hanks</name>
<affiliation wicri:level="1">
<mods:affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</mods:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX</wicri:regionArea>
<wicri:noRegion>Berkshire SL5 9PX</wicri:noRegion>
</affiliation>
<affiliation>
<mods:affiliation>Special Techniques Group, UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB. UK</mods:affiliation>
<wicri:noCountry code="subField">Oxon OX14 3DB. UK</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="RBID">ISTEX:C31B3FA69D1222B0A871E56350F9F2D78034B1E9</idno>
<date when="2001">2001</date>
<idno type="doi">10.1016/S0920-3796(00)00533-0</idno>
<idno type="url">https://api.istex.fr/document/C31B3FA69D1222B0A871E56350F9F2D78034B1E9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000954</idno>
<idno type="wicri:Area/Istex/Curation">000954</idno>
<idno type="wicri:Area/Istex/Checkpoint">001E18</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0920-3796</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CVD diamond</term>
<term>ECRH</term>
<term>Gyrotron</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="eng">The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of <1×10−5 at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10−5 at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10−5 at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m−1K−1 at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance. </div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<copyrightdate>2001</copyrightdate>
<author>
<json:item>
<name>J.R Brandon</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>Corresponding author</json:string>
</affiliations>
</json:item>
<json:item>
<name>S.E Coe</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>R.S Sussmann</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>K Sakamoto</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>R Spörl</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>R Heidinger</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>S Hanks</name>
<affiliations>
<json:string>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</json:string>
<json:string>Special Techniques Group, UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB. UK</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>eng</lang>
<value>Gyrotron</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>CVD diamond</value>
</json:item>
<json:item>
<lang>eng</lang>
<value>ECRH</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of >1×10−5 at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10−5 at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10−5 at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m−1K−1 at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance.</abstract>
<title>Development of CVD diamond r.f. windows for ECRH</title>
<pii>
<json:string>S0920-3796(00)00533-0</json:string>
</pii>
<genre></genre>
<host>
<pii>
<json:string>S0920-3796(00)X0041-5</json:string>
</pii>
<issn>
<json:string>0920-3796</json:string>
</issn>
<genre></genre>
<language></language>
<title>Fusion Engineering and Design</title>
<pubdate>200101</pubdate>
</host>
<pubdate>2001</pubdate>
<doi>
<json:string>10.1016/S0920-3796(00)00533-0</json:string>
</doi>
<id>C31B3FA69D1222B0A871E56350F9F2D78034B1E9</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C31B3FA69D1222B0A871E56350F9F2D78034B1E9/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C31B3FA69D1222B0A871E56350F9F2D78034B1E9/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C31B3FA69D1222B0A871E56350F9F2D78034B1E9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C31B3FA69D1222B0A871E56350F9F2D78034B1E9/fulltext/tei">
<teiHeader type="text">
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Development of CVD diamond r.f. windows for ECRH</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>Elsevier Science B.V., ©2001</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Spatially resolved dielectric loss measured at 145 GHz of a CVD diamond window 100 mm in diameter and 1.6 mm thick [8].</note>
<note type="content">Fig. 2: Schematic illustration of a graded seal mounting of CVD diamond to inconel cuff via a low expansion ceramic ring and metal ferrule.</note>
<note type="content">Fig. 3: Spatially resolved dielectric loss data measured at 145 GHz for window 27DB1. Accompanying line plot shows loss tangent data measured at y=0.</note>
<note type="content">Fig. 4: Simulated peak steady state temperature excursion for CVD diamond window 27DB1 cut to a diameter of 106 mm, and subjected to heating from a 35 mm FWHM beam at a frequency of 110 GHz at varying power level. Simulation assumes uniform dielectric loss tangent of 2.5×10−5 at 90 GHz at 300 K increasing by 0, 50 and 100% up to a temperature of 700 K. Thermal conductivity assumed to be 2000 W m−1K−1 at 300 K falling with a 1/T relationship. Water cooling from radius 45.5 to 53 mm on both sides of the window with an input temperature of 302 K and a heat transfer coefficient of 12 000 W m−2 K−1 assumed.</note>
<note type="content">Fig. 5: Simulated peak tensile stress component corresponding to the conditions modelled in Fig. 4.</note>
<note type="content">Fig. 6: Photograph of a 75 mm diameter CVD diamond window mounted to metal cuffs using a low thermal expansion intermediate ceramic ring.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Development of CVD diamond r.f. windows for ECRH</title>
<author>
<persName>
<forename type="first">J.R</forename>
<surname>Brandon</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<note type="correspondence">
<p>Corresponding author</p>
</note>
</author>
<author>
<persName>
<forename type="first">S.E</forename>
<surname>Coe</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
</author>
<author>
<persName>
<forename type="first">R.S</forename>
<surname>Sussmann</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
</author>
<author>
<persName>
<forename type="first">K</forename>
<surname>Sakamoto</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken, Japan</affiliation>
</author>
<author>
<persName>
<forename type="first">R</forename>
<surname>Spörl</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">R</forename>
<surname>Heidinger</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">S</forename>
<surname>Hanks</surname>
</persName>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Special Techniques Group, UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB. UK</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Fusion Engineering and Design</title>
<title level="j" type="abbrev">FUSION</title>
<idno type="pISSN">0920-3796</idno>
<idno type="PII">S0920-3796(00)X0041-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="vol">53</biblScope>
<biblScope unit="issue">1–4</biblScope>
<biblScope unit="page" from="553">553</biblScope>
<biblScope unit="page" to="559">559</biblScope>
</imprint>
</monogr>
<idno type="istex">C31B3FA69D1222B0A871E56350F9F2D78034B1E9</idno>
<idno type="DOI">10.1016/S0920-3796(00)00533-0</idno>
<idno type="PII">S0920-3796(00)00533-0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of <1×10−5 at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10−5 at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10−5 at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m−1K−1 at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Gyrotron</term>
</item>
<item>
<term>CVD diamond</term>
</item>
<item>
<term>ECRH</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier converted-article found">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>FUSION</jid>
<aid>1772</aid>
<ce:pii>S0920-3796(00)00533-0</ce:pii>
<ce:doi>10.1016/S0920-3796(00)00533-0</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Development of CVD diamond r.f. windows for ECRH</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>J.R</ce:given-name>
<ce:surname>Brandon</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>S.E</ce:given-name>
<ce:surname>Coe</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R.S</ce:given-name>
<ce:surname>Sussmann</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>K</ce:given-name>
<ce:surname>Sakamoto</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R</ce:given-name>
<ce:surname>Spörl</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R</ce:given-name>
<ce:surname>Heidinger</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>S</ce:given-name>
<ce:surname>Hanks</ce:surname>
<ce:cross-ref refid="AFF4">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken, Japan</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF4">
<ce:label>d</ce:label>
<ce:textfn>Special Techniques Group, UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB. UK</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of <1×10
<ce:sup>−5</ce:sup>
at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10
<ce:sup>−5</ce:sup>
at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10
<ce:sup>−5</ce:sup>
at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m
<ce:sup>−1</ce:sup>
K
<ce:sup>−1</ce:sup>
at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Gyrotron</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>CVD diamond</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ECRH</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.5">
<titleInfo lang="eng">
<title>Development of CVD diamond r.f. windows for ECRH</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title></title>
</titleInfo>
<name type="personal">
<namePart type="given">J.R</namePart>
<namePart type="family">Brandon</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Corresponding author</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.E</namePart>
<namePart type="family">Coe</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.S</namePart>
<namePart type="family">Sussmann</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>De Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Sakamoto</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>RF Heating Laboratory, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute (JAERI), Naka-machi, 311-0193 Ibaraki-ken, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Spörl</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Heidinger</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Forschungszentrum Karlsruhe, Association FZK-Euratom, Institut für Materialforschung 1, PO Box 3460, D-76021 Karlsruhe, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Hanks</namePart>
<affiliation>aDe Beers Industrial Diamond Division (UK) Ltd., Charters, Sunninghill, Ascot, Berkshire SL5 9PX, UK</affiliation>
<affiliation>Special Techniques Group, UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB. UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="eng">The recent development of CVD diamond windows for high power gyrotrons is summarized. Highlights of this work include the manufacture of a window 100 mm in diameter and 1.6 mm thick having a uniform loss tangent of <1×10−5 at 145 GHz, and a window 120 mm in diameter and 2.25 mm thick with losses below 3×10−5 at 145 GHz. Moreover, the dielectric loss and permittivity have been found to be relatively stable over a wide temperature range from 100 to 700 K compared to other materials such as sapphire or gold doped silicon. More recently, development work has concentrated on achieving a robust and cost effective manufacturing process able to produce windows matching the requirements of 1 MW CW gyrotrons for ECRH applications. Typical dielectric properties for this new grade of material are presented using a 110 GHz gyrotron window 114 mm in diameter and 1.715 mm thick as an example. Data show a loss tangent in the region of 2×10−5 at 145 GHz across the 80 mm clear aperture region of the disc. A numerical model is used to calculate the temperature and stress profile of the window when subjected to high power beam conditions. It is shown that these dielectric properties, in conjunction with a thermal conductivity in the region of 2000 W m−1K−1 at room temperature and a fracture strength in excess of 250 MPa, make this grade of diamond suitable for use as an output window on 1 MW CW gyrotrons. A new method of mounting CVD diamond windows to metal flanges has been developed to allow vacuum bakeout to be performed at 550°C compared to the previous limit of 450°C. This increase in bakeout temperature promises dramatic reductions in the time taken to achieve optimum vacuum conditions in the gyrotron. The new mounting utilizes a novel graded seal arrangement to achieve low thermal mismatch stresses and good dimensional stability during thermal cycling. A 75 mm diameter window mounted using this method has been shown to survive five thermal cycles up to 550°C for 1 h without degradation of its sealing performance. </abstract>
<note type="content">Fig. 1: Spatially resolved dielectric loss measured at 145 GHz of a CVD diamond window 100 mm in diameter and 1.6 mm thick [8].</note>
<note type="content">Fig. 2: Schematic illustration of a graded seal mounting of CVD diamond to inconel cuff via a low expansion ceramic ring and metal ferrule.</note>
<note type="content">Fig. 3: Spatially resolved dielectric loss data measured at 145 GHz for window 27DB1. Accompanying line plot shows loss tangent data measured at y=0.</note>
<note type="content">Fig. 4: Simulated peak steady state temperature excursion for CVD diamond window 27DB1 cut to a diameter of 106 mm, and subjected to heating from a 35 mm FWHM beam at a frequency of 110 GHz at varying power level. Simulation assumes uniform dielectric loss tangent of 2.5×10−5 at 90 GHz at 300 K increasing by 0, 50 and 100% up to a temperature of 700 K. Thermal conductivity assumed to be 2000 W m−1K−1 at 300 K falling with a 1/T relationship. Water cooling from radius 45.5 to 53 mm on both sides of the window with an input temperature of 302 K and a heat transfer coefficient of 12 000 W m−2 K−1 assumed.</note>
<note type="content">Fig. 5: Simulated peak tensile stress component corresponding to the conditions modelled in Fig. 4.</note>
<note type="content">Fig. 6: Photograph of a 75 mm diameter CVD diamond window mounted to metal cuffs using a low thermal expansion intermediate ceramic ring.</note>
<subject lang="eng">
<genre>Keywords</genre>
<topic>Gyrotron</topic>
<topic>CVD diamond</topic>
<topic>ECRH</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Fusion Engineering and Design</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>FUSION</title>
</titleInfo>
<originInfo>
<dateIssued encoding="w3cdtf">200101</dateIssued>
</originInfo>
<identifier type="ISSN">0920-3796</identifier>
<identifier type="PII">S0920-3796(00)X0041-5</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>53</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>594</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="BIB1">
<titleInfo>
<title>CVD diamond: a new engineering material for thermal, dielectric and optical applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.S.</namePart>
<namePart type="family">Sussmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.R.</namePart>
<namePart type="family">Brandon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.E.</namePart>
<namePart type="family">Coe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.S.J.</namePart>
<namePart type="family">Pickles</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.G.</namePart>
<namePart type="family">Sweeney</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Wasenczuk</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.J.H.</namePart>
<namePart type="family">Wort</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.N.</namePart>
<namePart type="family">Dodge</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<relatedItem type="host">
<titleInfo>
<title>Ind. Diamond Rev.</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<number>58</number>
</detail>
<detail type="issue">
<number>578</number>
</detail>
</part>
</relatedItem>
<part>
<extent unit="pages">
<start>69</start>
<end>77</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="BIB2">
<note type="reference">M. Thumm, Development of output window for high-power long-pulse gyrotrons and EC wave applications, 22nd International Conference on IR & MM Waves, Wintergreen, VA, 1997.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB3">
<note type="reference">K. Felch, P. Borchard, S. Caufmann, R.W. Callis, P. Cahalan, T.S. Chu, D. Denison, H. Jory, M. Mizuhara, D. Remsen, G. Saraph, R.J. Temkin, Status report on a 110 GHz, 1 MW CW gyrotron with a CVD diamond window, Digest 23rd International Conference on IR & MM Waves, Colchester, UK, ISBN 0 953393903, 1998, pp. 367–368</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB4">
<note type="reference">V. Parshin, V. Ralchenko and V. Konov, Diamonds for High-Power Gyrotron Window, Digest 23rd International Conference on IR & MM Waves, Colchester, UK, ISBN 0 953393903, 1998, pp. 232–233.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB5">
<note type="reference">K. Sakamoto, A. Kasugai, M. Tsuneoka, K. Takahashi, Y. Ideka, T. Imai, T. Kariya, Y. Misunaka, Development of high power gyrotrons with diamond window, Digest 23rd International Conference on IR & MM Waves, Colchester, UK, ISBN 0 953393903, 1998, pp. 363–364.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB6">
<titleInfo>
<title>Properties of bulk polycrystalline CVD diamond</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.S.</namePart>
<namePart type="family">Sussmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.R.</namePart>
<namePart type="family">Brandon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.A.</namePart>
<namePart type="family">Scarsbrook</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.G.</namePart>
<namePart type="family">Sweeney</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.J.</namePart>
<namePart type="family">Valentine</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.J.</namePart>
<namePart type="family">Whitehead</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.J.H.</namePart>
<namePart type="family">Wort</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<relatedItem type="host">
<titleInfo>
<title>Diamond Relat. Mater.</title>
</titleInfo>
<part>
<date>1994</date>
<detail type="volume">
<number>3</number>
</detail>
</part>
</relatedItem>
<part>
<extent unit="pages">
<start>303</start>
<end>312</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="BIB7">
<note type="reference">Heidinger et al, CVD diamond for high power gyrotrons, Digest 23rd International Conference on IR & MM Waves, Colchester, UK, ISBN 0 953393903, 1998, pp. 223–225</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB8">
<note type="reference">R Spörl, R Heidinger, R Schwab, V.V. Parshin. Proceedings of the ITG Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen (D), 1998, ITG Report No. 150, pp. 369–374.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB9">
<note type="reference">R. Spörl, R. Heidinger, R. Schwab, Dielectric Characterisation of CVD Diamond Windows at Elevated Temperatures, Proceedings of the 24th Conference on IR & MM-Waves, Monterey, 5–10 September, 1999.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB10">
<titleInfo>
<title>Factors influencing the strength of chemical vapour deposited diamond</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.S.J.</namePart>
<namePart type="family">Pickles</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.R.</namePart>
<namePart type="family">Brandon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.E.</namePart>
<namePart type="family">Coe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.S.</namePart>
<namePart type="family">Sussmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<relatedItem type="host">
<titleInfo>
<title>Adv. Sci. Technol.</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<number>21</number>
</detail>
</part>
</relatedItem>
<part>
<extent unit="pages">
<start>435</start>
<end>454</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="BIB11">
<note type="reference">R. Schwab, R. Spörl, J. Burbach, R. Heidinger, F. Koniger, Proceedings of the ITG Conference on Displays and Vacuum Electronics, Garmisch-Partenkirchen (D), ITG Report No. 150, 1998, pp. 363–368.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB12">
<note type="reference">C.S.J. Pickles, T.D. Madgwick, C.J.H. Wort, R.S. Sussmann, Tenth European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Carbide, Prague, Czech Republic, 12–17 September, 1999.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB13">
<note type="reference">D. Potter, Computational Physics, Wiley, New York, 1972, pp. 27–38.</note>
</relatedItem>
<relatedItem type="references" displayLabel="BIB14">
<titleInfo>
<title>Rev. Sci. Inst.</title>
</titleInfo>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Sakamoto</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Kasugai</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Tsuneoka</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Takahashi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Imai</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Kariya</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y.</namePart>
<namePart type="family">Mitsunaka</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<part>
<date>1999</date>
<detail type="volume">
<number>70</number>
</detail>
<extent unit="pages">
<start>208</start>
<end>212</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C31B3FA69D1222B0A871E56350F9F2D78034B1E9</identifier>
<identifier type="DOI">10.1016/S0920-3796(00)00533-0</identifier>
<identifier type="PII">S0920-3796(00)00533-0</identifier>
<part>
<extent unit="pages">
<start>553</start>
<end>559</end>
</extent>
</part>
<recordInfo>
<recordOrigin>ELSEVIER</recordOrigin>
<recordContentSource>Elsevier Science B.V., ©2001</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Linguistique/explor/CharterV3/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E18 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 001E18 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Linguistique
   |area=    CharterV3
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:C31B3FA69D1222B0A871E56350F9F2D78034B1E9
   |texte=   Development of CVD diamond r.f. windows for ECRH
}}

Wicri

This area was generated with Dilib version V0.6.07.
Data generation: Mon Jun 22 09:43:01 2015. Site generation: Mon Mar 11 16:19:56 2024