Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA

Identifieur interne : 000055 ( Pmc/Curation ); précédent : 000054; suivant : 000056

Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA

Auteurs : Steven J. Deverel [États-Unis] ; Timothy Ingrum [États-Unis] ; David Leighton [États-Unis]

Source :

RBID : PMC:4944668

Abstract

Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.


Url:
DOI: 10.1007/s10040-016-1391-1
PubMed: 27471427
PubMed Central: 4944668

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4944668

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA</title>
<author>
<name sortKey="Deverel, Steven J" sort="Deverel, Steven J" uniqKey="Deverel S" first="Steven J." last="Deverel">Steven J. Deverel</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ingrum, Timothy" sort="Ingrum, Timothy" uniqKey="Ingrum T" first="Timothy" last="Ingrum">Timothy Ingrum</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leighton, David" sort="Leighton, David" uniqKey="Leighton D" first="David" last="Leighton">David Leighton</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27471427</idno>
<idno type="pmc">4944668</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944668</idno>
<idno type="RBID">PMC:4944668</idno>
<idno type="doi">10.1007/s10040-016-1391-1</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000055</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000055</idno>
<idno type="wicri:Area/Pmc/Curation">000055</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000055</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA</title>
<author>
<name sortKey="Deverel, Steven J" sort="Deverel, Steven J" uniqKey="Deverel S" first="Steven J." last="Deverel">Steven J. Deverel</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ingrum, Timothy" sort="Ingrum, Timothy" uniqKey="Ingrum T" first="Timothy" last="Ingrum">Timothy Ingrum</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leighton, David" sort="Leighton, David" uniqKey="Leighton D" first="David" last="Leighton">David Leighton</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HydroFocus, Inc., 2827 Spafford Street, Davis</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Hydrogeology Journal</title>
<idno type="ISSN">1431-2174</idno>
<idno type="eISSN">1435-0157</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO
<sub>2</sub>
emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr
<sup>–1</sup>
. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr
<sup>–1</sup>
where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr
<sup>–1</sup>
. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr
<sup>–1</sup>
. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr
<sup>–1</sup>
.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boumans, Rmj" uniqKey="Boumans R">RMJ Boumans</name>
</author>
<author>
<name sortKey="Day, Jwj" uniqKey="Day J">JWJ Day</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Browder, Ja" uniqKey="Browder J">JA Browder</name>
</author>
<author>
<name sortKey="Volk, Bg" uniqKey="Volk B">BG Volk</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carlton, Ab" uniqKey="Carlton A">AB Carlton</name>
</author>
<author>
<name sortKey="Schultz, Hb" uniqKey="Schultz H">HB Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, J" uniqKey="Cook J">J Cook</name>
</author>
<author>
<name sortKey="Coleman, D" uniqKey="Coleman D">D Coleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Couwenberg, J" uniqKey="Couwenberg J">J Couwenberg</name>
</author>
<author>
<name sortKey="Hooijer, A" uniqKey="Hooijer A">A Hooijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Ea" uniqKey="Davidson E">EA Davidson</name>
</author>
<author>
<name sortKey="Sudeep, S" uniqKey="Sudeep S">S Sudeep</name>
</author>
<author>
<name sortKey="Caramori, Ss" uniqKey="Caramori S">SS Caramori</name>
</author>
<author>
<name sortKey="Savage, K" uniqKey="Savage K">K Savage</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
<author>
<name sortKey="Rojstaczer, Sa" uniqKey="Rojstaczer S">SA Rojstaczer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B Wang</name>
</author>
<author>
<name sortKey="Rojstaczer, Sa" uniqKey="Rojstaczer S">SA Rojstaczer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drexler, Jz" uniqKey="Drexler J">JZ Drexler</name>
</author>
<author>
<name sortKey="De Fontaine, Cs" uniqKey="De Fontaine C">CS de Fontaine</name>
</author>
<author>
<name sortKey="Brown, Ta" uniqKey="Brown T">TA Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drexler, Jz" uniqKey="Drexler J">JZ Drexler</name>
</author>
<author>
<name sortKey="De Fontaine, Cs" uniqKey="De Fontaine C">CS de Fontaine</name>
</author>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ewing, Jm" uniqKey="Ewing J">JM Ewing</name>
</author>
<author>
<name sortKey="Vepraskas, Mj" uniqKey="Vepraskas M">MJ Vepraskas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleck, Ja" uniqKey="Fleck J">JA Fleck</name>
</author>
<author>
<name sortKey="Bossio, Da" uniqKey="Bossio D">DA Bossio</name>
</author>
<author>
<name sortKey="Fujii, R" uniqKey="Fujii R">R Fujii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Florsheim, Jl" uniqKey="Florsheim J">JL Florsheim</name>
</author>
<author>
<name sortKey="Dettinger, Md" uniqKey="Dettinger M">MD Dettinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gambolati, G" uniqKey="Gambolati G">G Gambolati</name>
</author>
<author>
<name sortKey="Putti, M" uniqKey="Putti M">M Putti</name>
</author>
<author>
<name sortKey="Teatini, P" uniqKey="Teatini P">P Teatini</name>
</author>
<author>
<name sortKey="Gasparetto Stori, G" uniqKey="Gasparetto Stori G">G Gasparetto Stori</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hatala, Ja" uniqKey="Hatala J">JA Hatala</name>
</author>
<author>
<name sortKey="Detto, M" uniqKey="Detto M">M Detto</name>
</author>
<author>
<name sortKey="Sonnentag, O" uniqKey="Sonnentag O">O Sonnentag</name>
</author>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
<author>
<name sortKey="Verfaillie, J" uniqKey="Verfaillie J">J Verfaillie</name>
</author>
<author>
<name sortKey="Baldocchi, Dd" uniqKey="Baldocchi D">DD Baldocchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hirano, T" uniqKey="Hirano T">T Hirano</name>
</author>
<author>
<name sortKey="Segah, H" uniqKey="Segah H">H Segah</name>
</author>
<author>
<name sortKey="Kusin, K" uniqKey="Kusin K">K Kusin</name>
</author>
<author>
<name sortKey="Limin, S" uniqKey="Limin S">S Limin</name>
</author>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H Takahashi</name>
</author>
<author>
<name sortKey="Osaki, M" uniqKey="Osaki M">M Osaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobbs, Nb" uniqKey="Hobbs N">NB Hobbs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooijer, A" uniqKey="Hooijer A">A Hooijer</name>
</author>
<author>
<name sortKey="Page, S" uniqKey="Page S">S Page</name>
</author>
<author>
<name sortKey="Jauhiainen, J" uniqKey="Jauhiainen J">J Jauhiainen</name>
</author>
<author>
<name sortKey="Lee, Wa" uniqKey="Lee W">WA Lee</name>
</author>
<author>
<name sortKey="Lu, Xx" uniqKey="Lu X">XX Lu</name>
</author>
<author>
<name sortKey="Idris, A" uniqKey="Idris A">A Idris</name>
</author>
<author>
<name sortKey="Anshari, G" uniqKey="Anshari G">G Anshari</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirk, Er" uniqKey="Kirk E">ER Kirk</name>
</author>
<author>
<name sortKey="Van Kessel, C" uniqKey="Van Kessel C">C van Kessel</name>
</author>
<author>
<name sortKey="Horwath, Wr" uniqKey="Horwath W">WR Horwath</name>
</author>
<author>
<name sortKey="Linquist, Ba" uniqKey="Linquist B">BA Linquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knox, Sh" uniqKey="Knox S">SH Knox</name>
</author>
<author>
<name sortKey="Sturtevant, C" uniqKey="Sturtevant C">C Sturtevant</name>
</author>
<author>
<name sortKey="Hatala Matthes, J" uniqKey="Hatala Matthes J">J Hatala Matthes</name>
</author>
<author>
<name sortKey="Koteen, L" uniqKey="Koteen L">L Koteen</name>
</author>
<author>
<name sortKey="Verfaillie, J" uniqKey="Verfaillie J">J Verfaillie</name>
</author>
<author>
<name sortKey="Baldocchi, D" uniqKey="Baldocchi D">D Baldocchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prokopovitch, Np" uniqKey="Prokopovitch N">NP Prokopovitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rojstaczer, Sa" uniqKey="Rojstaczer S">SA Rojstaczer</name>
</author>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rojstaczer, Sa" uniqKey="Rojstaczer S">SA Rojstaczer</name>
</author>
<author>
<name sortKey="Deverel, Sj" uniqKey="Deverel S">SJ Deverel</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schipper, La" uniqKey="Schipper L">LA Schipper</name>
</author>
<author>
<name sortKey="Mcleod, M" uniqKey="Mcleod M">M McLeod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schorthorst, Cj" uniqKey="Schorthorst C">CJ Schorthorst</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shlemon, Rj" uniqKey="Shlemon R">RJ Shlemon</name>
</author>
<author>
<name sortKey="Begg, El" uniqKey="Begg E">EL Begg</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stephens, Jc" uniqKey="Stephens J">JC Stephens</name>
</author>
<author>
<name sortKey="Allen, Lh" uniqKey="Allen L">LH Allen</name>
</author>
<author>
<name sortKey="Chen, E" uniqKey="Chen E">E Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strack, M" uniqKey="Strack M">M Strack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Syvitski, Jp" uniqKey="Syvitski J">JP Syvitski</name>
</author>
<author>
<name sortKey="Kettner, Aj" uniqKey="Kettner A">AJ Kettner</name>
</author>
<author>
<name sortKey="Overeem, I" uniqKey="Overeem I">I Overeem</name>
</author>
<author>
<name sortKey="Hutton, Ew" uniqKey="Hutton E">EW Hutton</name>
</author>
<author>
<name sortKey="Hannon, Mt" uniqKey="Hannon M">MT Hannon</name>
</author>
<author>
<name sortKey="Brakenridge, Gr" uniqKey="Brakenridge G">GR Brakenridge</name>
</author>
<author>
<name sortKey="Day, J" uniqKey="Day J">J Day</name>
</author>
<author>
<name sortKey="Vorosmarty, J" uniqKey="Vorosmarty J">J Vörösmarty</name>
</author>
<author>
<name sortKey="Saito, Y" uniqKey="Saito Y">Y Saito</name>
</author>
<author>
<name sortKey="Giosan, L" uniqKey="Giosan L">L Giosan</name>
</author>
<author>
<name sortKey="Nicholls, Rj" uniqKey="Nicholls R">RJ Nicholls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tate, Rl" uniqKey="Tate R">RL Tate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tate, Rl" uniqKey="Tate R">RL Tate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tate, Rl" uniqKey="Tate R">RL Tate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terzaghi, K" uniqKey="Terzaghi K">K Terzaghi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volk, Bg" uniqKey="Volk B">BG Volk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weir, Ww" uniqKey="Weir W">WW Weir</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Hydrogeol J</journal-id>
<journal-id journal-id-type="iso-abbrev">Hydrogeol J</journal-id>
<journal-title-group>
<journal-title>Hydrogeology Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">1431-2174</issn>
<issn pub-type="epub">1435-0157</issn>
<publisher>
<publisher-name>Springer Berlin Heidelberg</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27471427</article-id>
<article-id pub-id-type="pmc">4944668</article-id>
<article-id pub-id-type="publisher-id">1391</article-id>
<article-id pub-id-type="doi">10.1007/s10040-016-1391-1</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA</article-title>
<trans-title-group>
<trans-title xml:lang="fr">Affaissement actuel de sols organiques par oxydation et atténuation dans le Delta Sacramento-San Joaquin, Californie, Etats-Unis d’Amérique</trans-title>
</trans-title-group>
<trans-title-group>
<trans-title xml:lang="es">La subsidencia actual de los suelos orgánicos y la mitigación en el Delta de Sacramento-San Joaquin, California, EE.UU</trans-title>
</trans-title-group>
<trans-title-group>
<trans-title xml:lang="zh">美国加利佛尼亚州沙加缅度河—圣华金河三角洲有机土壤目前的氧化性下沉及减缓措施</trans-title>
</trans-title-group>
<trans-title-group>
<trans-title xml:lang="pt">Atual subsidência de solos orgânicos por oxidação e sua mitigação no Delta de Sacramento-San Joaquin, Califórnia, EUA</trans-title>
</trans-title-group>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Deverel</surname>
<given-names>Steven J.</given-names>
</name>
<address>
<email>sdeverel@hydrofocus.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ingrum</surname>
<given-names>Timothy</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Leighton</surname>
<given-names>David</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">HydroFocus, Inc., 2827 Spafford Street, Davis, CA 95618 USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>28</day>
<month>3</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>28</day>
<month>3</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<volume>24</volume>
<fpage>569</fpage>
<lpage>586</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>7</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>2</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2016</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p>Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO
<sub>2</sub>
emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr
<sup>–1</sup>
. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr
<sup>–1</sup>
where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr
<sup>–1</sup>
. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr
<sup>–1</sup>
. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr
<sup>–1</sup>
.</p>
</abstract>
<trans-abstract xml:lang="fr" id="Abs2">
<title>Résumé</title>
<p>L’affaissement des sols organiques dans le Delta de Sacramento-San Joaquin menace la durabilité du système d’approvisionnement en eau et de l’agriculture de la Californie (Etats-Unis d’Amérique). Des données d’altitude de la surface topographique ont été collectées dans le but d’estimer le taux d’affaissement actuel des sols et d’évaluer l’occupation des sols par des rizières en tant que moyen d’atténuation de l’affaissement des sols. Pour décrire les taux actuels d’affaissement des sols à l’échelle du Delta, le modèle SUBCALC développé précédemment a été affiné et calé grâce à l’utilisation des données récentes sur les émissions de CO
<sub>2</sub>
et des variations d’altitude de la surface topographique enregistrées par des extensomètres. Les données de variations d’altitude de la surface topographique ont été évaluées par rapport aux estimations indirectes de l’affaissement du sol et de son accroissement basées sur les données de flux de carbone et d’azote au niveau des rizières. Les données d’extensiométrie et de nivellement montrent que les variations saisonnières de l’altitude de la surface topographique associées aux fluctuations des niveaux piézométriques et des taux d’affaissement inélastique du sol compris entre 0.5 et 0.8 cm an
<sup>–1</sup>
. Le calage du modèle SUBCALC indique une précision de ±0.10 cm an
<sup>–1</sup>
là où la profondeur de la nappe, la teneur en matière organique du sol et la température sont connues. Les estimations régionales de l’affaissement du sol sont compris entre <0.3 à >1.8 cm an
<sup>–1</sup>
. L’incertitude principale est la distribution de la teneur en matière organique du sol qui conduit à un lissage spatial dans la cartographie des taux d’affaissement des sols. L’analyse des données de nivellement et d’extensiométrie dans les rizières conduit à un taux d’accroissement estimé entre 0.02 et 0.8 cm an
<sup>–1</sup>
. Ces valeurs sont généralement en accord avec les estimations indirectes basées sur les flux de carbone et de la minéralisation de l’azote qui indiquent a priori que le riz stoppera ou réduira de manière substantielle l’affaissement du sol. Les zones d’altitude inférieure à –2 m sont des zones candidates pour la mise en œuvre de mesures d’atténuation telles que la culture du riz car il s’y produit un affaissement du sol actif avec des taux supérieurs à 0.4 cm an
<sup>–1</sup>
.</p>
</trans-abstract>
<trans-abstract xml:lang="es" id="Abs3">
<title>Resumen</title>
<p>La subsidencia de los suelos orgánicos en el Delta de Sacramento-San Joaquín amenaza la sostenibilidad del sistema de suministro de agua y la agricultura en California (EE.UU.). Se recolectaron datos de elevación de la superficie del terreno para evaluar las tasas de subsidencia actuales y evaluar el cultivo de arroz como un uso de la tierra para la mitigación de la subsidencia. Se refinó y calibró el modelo SUBCALC desarrollado previamente para describir las tasas de la subsidencia en el ancho actual del Delta, usando los datos más recientes de las emisiones de CO
<sub>2</sub>
y los cambios en la elevación de la superficie del terreno medidos con extensómetros. Se evaluaron los datos de cambio de la elevación de la superficie del terreno con respecto a las estimaciones indirectas de la subsidencia y la acumulación de carbono a partir de datos y el flujo de nitrógeno para el cultivo de arroz. Los datos de extensómetros y de nivelación demuestran variaciones estacionales en las elevaciones de la superficie terrestre asociados a las fluctuaciones del nivel del agua subterránea y tasas de subsidencia inelásticas de 0.5 a 0.8 cm año
<sup>–1</sup>
. La calibración del modelo SUBCALC indicó una precisión de ±0.10 cm año
<sup>–1</sup>
, donde son conocidas la profundidad del agua subterránea, el contenido de materia orgánica del suelo y la temperatura. Las estimaciones regionales de subsidencia varía de <0.3 a >1.8 cm yr
<sup>–1</sup>
. La principal incertidumbre es la distribución del contenido de materia orgánica en el suelo que resulta del promedio espacial en el mapeo de las tasas de subsidencia. El análisis de los datos de nivelación y extensómetro en los campos de arroz resultó en una tasa de acreción estimada entre 0.02 y 0.8 cm yr
<sup>–1</sup>
. Estos valores en general concuerdan con las estimaciones indirectas basadas en los flujos de carbono y nitrógeno, lo que demuestra en forma preliminar que la mineralización del arroz va a detener o reducir en gran medida la subsidencia. Las áreas por debajo de elevaciones de –2 m son áreas examinadas para la implementación de medidas de mitigación, tales como el cultivo de arroz debido a que no hay lugar para un ritmo de subsidencia activa de más de 0.4 cm año
<sup>–1</sup>
.</p>
</trans-abstract>
<trans-abstract xml:lang="zh" id="Abs4">
<title>摘要</title>
<p>沙加缅度河—圣华金河三角洲有机土壤的下沉威胁着(美国)加利佛尼亚州供水系统和农业的可持续性。收集了地面高程资料以评价目前的下沉速率并且评估了土地种植水稻减缓下沉的作用。为了描述三角洲范围内目前的下沉速度,采用目前的CO
<sub>2</sub>
排放资料和伸长仪测量的地面高程变化对先前开发的SUBCALC模型进行了改进和校正。针对利用水稻种植碳和氮通量资料得到的间接下沉和吸积量估算结果,对地表高程变化资料进行了评估。伸长仪和水准测量资料显示了地表高程变化的季节性变化与地下水位波动及0.5 至 0.8 cm yr
<sup>–1</sup>
的非弹性下沉速度有关。在地下水深度、土壤有机物含量和温度已知的情况下,SUBCALC模型校正表明精确度为±0.10 cm yr
<sup>–1</sup>
。区域下沉的估算范围为 < 0.3 至 >1.8 cm yr
<sup>–1</sup>
。主要的不确定性为土壤有机物含量的分布状况,这种不确定性会导致绘制下沉速度时的空间平均值。水稻田中的水准测量和伸长仪资料分析得出的吸积率估算值为0.02 至 0.8 cm yr
<sup>–1</sup>
。这些值通常与根据碳通量和氮矿化作用得到的间接估算值一致,从而初步展示,水稻能阻止或减少下沉。高程低于–2 m的区域是实施减缓措施诸如种植水稻的候选区域,因为在这些区域将会有速度大于0.4 cm yr
<sup>–1</sup>
的下沉。</p>
</trans-abstract>
<trans-abstract xml:lang="pt" id="Abs5">
<title>Resumo</title>
<p>A subsidência dos organossolos no Delta dos rios Sacramento-San Joaquin põe em risco a sustentabilidade do sistema de abastecimento de água e da agricultura do estado da Califórnia (EUA). Foram coletados dados de elevação da superfície do solo para estimar as taxas atuais de subsidência e avaliar o uso de cultivo de arroz para mitigar a subsidência. Para simular as taxas atuais de subsidência da região do Delta, o modelo SUBCALC, desenvolvido anteriormente, foi refinado e calibrado utilizando dados recentes de emissões de CO
<sub>2</sub>
e mudanças na elevação do terreno obtidas com extensômetros. Os dados de mudança na elevação foram avaliados em relação a estimativas indiretas de subsidência e acreção, utilizando dados de fluxo de carbono e nitrogênio no cultivo de arroz. Os dados dos extensômetros e de nivelamento demonstraram variações sazonais de elevações do terreno, associados a flutuações do nível da água subterrânea e taxas de subsidência inelásticas que variam de 0.5 a 0.8 cm ano
<sup>–1</sup>
. A calibração do modelo SUBCALC indicou precisão de ±0.10 cm por ano
<sup>–1</sup>
, onde a profundidade das águas subterrâneas e o teor de matéria orgânica e temperatura do solo eram conhecidos. As estimativas regionais de subsidência variam de <0.3 a >1.8 cm ano
<sup>–1</sup>
. A principal incerteza nas estimativas de subsidência modeladas é a distribuição do conteúdo de matéria orgânica do solo. Porem, as taxas mapeadas de subsidência representam médias em áreas de solos mapeados com teor de materia organica semelhantes. Análises dos dados de nivelamento e dos extensômetros em campos de produção de arroz, resultaram em uma taxa de acreção estimada de 0.02 a 0.8 cm por ano
<sup>–1</sup>
. Estes valores geralmente concordam com estimativas indiretas baseadas em fluxos de carbono e a mineralização do nitrogênio, portanto, indicando que o cultivo de arroz ira parar ou reduzira significativamente o processo de subsidência. Áreas com elevação inferior a –2 m são candidatas para a implementação de medidas de mitigação como o cultivo de arroz, por haver subsidência ativa ocorrendo com taxas superiores a 0.4 cm por ano
<sup>–1</sup>
.</p>
</trans-abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Subsidence</kwd>
<kwd>Geohazard</kwd>
<kwd>USA</kwd>
<kwd>Land use</kwd>
<kwd>Soil processes</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100006196</institution-id>
<institution>Jet Propulsion Laboratory</institution>
</institution-wrap>
</funding-source>
</award-group>
<award-group>
<funding-source>
<institution>U.S. Department of Agriculture</institution>
</funding-source>
<award-id>2011-67003-30371</award-id>
</award-group>
<award-group>
<funding-source>
<institution>California Department of Water Resources</institution>
</funding-source>
<award-id>TW-08-03</award-id>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer-Verlag Berlin Heidelberg 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000055 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000055 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4944668
   |texte=   Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:27471427" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a SisAgriV1 

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024