Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulating the carbon flux between the terrestrial environment and the atmosphere

Identifieur interne : 001808 ( Main/Curation ); précédent : 001807; suivant : 001809

Simulating the carbon flux between the terrestrial environment and the atmosphere

Auteurs : K. Klein Goldewijk [Pays-Bas] ; J. G. Van Minnen [Pays-Bas] ; G. J. J. Kreileman [Pays-Bas] ; M. Vloedbeld [Pays-Bas] ; R. Leemans [Pays-Bas]

Source :

RBID : ISTEX:8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6

Abstract

Abstract: A Terrestrial C Cycle model that is incorporated in the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) is described. The model is a geographically explicit implementation of a model that simulates the major C fluxes in different compartments of the terrestrial biosphere and between the biosphere and the atmosphere. Climatic parameters, land cover and atmospheric C concentrations determine the result of the dynamic C simulations. The impact of changing land cover patterns, caused by anthropogenic activities (shifting agriculture, de- and afforestation) and climatic change are modeled implicitly. Feedback processes such as CO2 fertilization and temperature effects on photosynthesis, respiration and decomposition are modeled explicitly. The major innovation of this approach is that the consequences of climate change are taken into account instantly and that their results can be quantified on a global medium-resolution grid. The objectives of this paper are to describe the C cycle model in detail, present the linkages with other parts of the IMAGE 2.0 framework, and give an array of different simulations to validate and test the robustness of this modeling approach. The computed global net primary production (NPP) for the terrestrial biosphere in 1990 was 60.6 Gt C a−1, with a global net ecosystem production (NEP) of 2.4 Gt C a−1. The simulated C flux as result from land cover changes was 1.1 Gt C a−1, so that the terrestrial biosphere in 1990 acted as a C sink of 1.3 Gt C a−1. Global phytomass amounted 567.5 Gt C and the dead biomass pool was 1517.7 Gt C. IMAGE 2.0 simulated for the period 1970–2050 a global average temperature increase of 1.6 °C and a global average precipitation increase of 0.1 mm/day. The CO2 concentration in 2050 was 522.2 ppm. The computed NPP for the year 2050 is 82.5 Gt C a−1, with a NEP of 8.1 Gt C a−1. Projected land cover changes result in a C flux of 0.9 Gt C a−1, so that the terrestrial biosphere will be a strong sink of 7.2 Gt C a−1. The amount of phytomass hardly changed (600.7 Gt C) but the distribution over the different regions had. Dead biomass increased significantly to 1667.2 Gt C.

Url:
DOI: 10.1007/BF00478340

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Simulating the carbon flux between the terrestrial environment and the atmosphere</title>
<author>
<name sortKey="Goldewijk, K Klein" sort="Goldewijk, K Klein" uniqKey="Goldewijk K" first="K. Klein" last="Goldewijk">K. Klein Goldewijk</name>
</author>
<author>
<name sortKey="Van Minnen, J G" sort="Van Minnen, J G" uniqKey="Van Minnen J" first="J. G." last="Van Minnen">J. G. Van Minnen</name>
</author>
<author>
<name sortKey="Kreileman, G J J" sort="Kreileman, G J J" uniqKey="Kreileman G" first="G. J. J." last="Kreileman">G. J. J. Kreileman</name>
</author>
<author>
<name sortKey="Vloedbeld, M" sort="Vloedbeld, M" uniqKey="Vloedbeld M" first="M." last="Vloedbeld">M. Vloedbeld</name>
</author>
<author>
<name sortKey="Leemans, R" sort="Leemans, R" uniqKey="Leemans R" first="R." last="Leemans">R. Leemans</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1007/BF00478340</idno>
<idno type="url">https://api.istex.fr/document/8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001037</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001037</idno>
<idno type="wicri:Area/Istex/Curation">000F72</idno>
<idno type="wicri:Area/Istex/Checkpoint">000F48</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000F48</idno>
<idno type="wicri:doubleKey">0049-6979:1994:Goldewijk K:simulating:the:carbon</idno>
<idno type="wicri:Area/Main/Merge">001831</idno>
<idno type="wicri:Area/Main/Curation">001808</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Simulating the carbon flux between the terrestrial environment and the atmosphere</title>
<author>
<name sortKey="Goldewijk, K Klein" sort="Goldewijk, K Klein" uniqKey="Goldewijk K" first="K. Klein" last="Goldewijk">K. Klein Goldewijk</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720, BA Bilthoven</wicri:regionArea>
<wicri:noRegion>BA Bilthoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Minnen, J G" sort="Van Minnen, J G" uniqKey="Van Minnen J" first="J. G." last="Van Minnen">J. G. Van Minnen</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720, BA Bilthoven</wicri:regionArea>
<wicri:noRegion>BA Bilthoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kreileman, G J J" sort="Kreileman, G J J" uniqKey="Kreileman G" first="G. J. J." last="Kreileman">G. J. J. Kreileman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720, BA Bilthoven</wicri:regionArea>
<wicri:noRegion>BA Bilthoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vloedbeld, M" sort="Vloedbeld, M" uniqKey="Vloedbeld M" first="M." last="Vloedbeld">M. Vloedbeld</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720, BA Bilthoven</wicri:regionArea>
<wicri:noRegion>BA Bilthoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leemans, R" sort="Leemans, R" uniqKey="Leemans R" first="R." last="Leemans">R. Leemans</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>National Institute of Public Health and Environmental Protection (RIVM), P.O. Box 1, 3720, BA Bilthoven</wicri:regionArea>
<wicri:noRegion>BA Bilthoven</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Water, Air, and Soil Pollution</title>
<title level="j" type="sub">An International Journal of Environmental Pollution</title>
<title level="j" type="abbrev">Water Air Soil Pollut</title>
<idno type="ISSN">0049-6979</idno>
<idno type="eISSN">1573-2932</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1994-07-01">1994-07-01</date>
<biblScope unit="volume">76</biblScope>
<biblScope unit="issue">1-2</biblScope>
<biblScope unit="page" from="199">199</biblScope>
<biblScope unit="page" to="230">230</biblScope>
</imprint>
<idno type="ISSN">0049-6979</idno>
</series>
<idno type="istex">8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6</idno>
<idno type="DOI">10.1007/BF00478340</idno>
<idno type="ArticleID">BF00478340</idno>
<idno type="ArticleID">Art9</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0049-6979</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A Terrestrial C Cycle model that is incorporated in the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) is described. The model is a geographically explicit implementation of a model that simulates the major C fluxes in different compartments of the terrestrial biosphere and between the biosphere and the atmosphere. Climatic parameters, land cover and atmospheric C concentrations determine the result of the dynamic C simulations. The impact of changing land cover patterns, caused by anthropogenic activities (shifting agriculture, de- and afforestation) and climatic change are modeled implicitly. Feedback processes such as CO2 fertilization and temperature effects on photosynthesis, respiration and decomposition are modeled explicitly. The major innovation of this approach is that the consequences of climate change are taken into account instantly and that their results can be quantified on a global medium-resolution grid. The objectives of this paper are to describe the C cycle model in detail, present the linkages with other parts of the IMAGE 2.0 framework, and give an array of different simulations to validate and test the robustness of this modeling approach. The computed global net primary production (NPP) for the terrestrial biosphere in 1990 was 60.6 Gt C a−1, with a global net ecosystem production (NEP) of 2.4 Gt C a−1. The simulated C flux as result from land cover changes was 1.1 Gt C a−1, so that the terrestrial biosphere in 1990 acted as a C sink of 1.3 Gt C a−1. Global phytomass amounted 567.5 Gt C and the dead biomass pool was 1517.7 Gt C. IMAGE 2.0 simulated for the period 1970–2050 a global average temperature increase of 1.6 °C and a global average precipitation increase of 0.1 mm/day. The CO2 concentration in 2050 was 522.2 ppm. The computed NPP for the year 2050 is 82.5 Gt C a−1, with a NEP of 8.1 Gt C a−1. Projected land cover changes result in a C flux of 0.9 Gt C a−1, so that the terrestrial biosphere will be a strong sink of 7.2 Gt C a−1. The amount of phytomass hardly changed (600.7 Gt C) but the distribution over the different regions had. Dead biomass increased significantly to 1667.2 Gt C.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001808 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001808 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:8B1A9B77A2F980122A6D9A7BA6ED3CD1810348C6
   |texte=   Simulating the carbon flux between the terrestrial environment and the atmosphere
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024