Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning

Identifieur interne : 001420 ( Istex/Corpus ); précédent : 001419; suivant : 001421

A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning

Auteurs : David P. Turner ; Andrew R. Jacobson ; William D. Ritts ; Weile L. Wang ; Ramakrishna Nemani

Source :

RBID : ISTEX:D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17

Abstract

Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr−1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr−1), river/stream evasion (158 ± 50 TgC yr−1), and fire emissions (142 ± 45 TgC yr−1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.

Url:
DOI: 10.1111/gcb.12313

Links to Exploration step

ISTEX:D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
<author>
<name sortKey="Turner, David P" sort="Turner, David P" uniqKey="Turner D" first="David P." last="Turner">David P. Turner</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: david.turner@oregonstate.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Andrew R" sort="Jacobson, Andrew R" uniqKey="Jacobson A" first="Andrew R." last="Jacobson">Andrew R. Jacobson</name>
<affiliation>
<mods:affiliation>University of Colorado and NOAA Earth System Research Laboratory, CO, 80305, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ritts, William D" sort="Ritts, William D" uniqKey="Ritts W" first="William D." last="Ritts">William D. Ritts</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weile L" sort="Wang, Weile L" uniqKey="Wang W" first="Weile L." last="Wang">Weile L. Wang</name>
<affiliation>
<mods:affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nemani, Ramakrishna" sort="Nemani, Ramakrishna" uniqKey="Nemani R" first="Ramakrishna" last="Nemani">Ramakrishna Nemani</name>
<affiliation>
<mods:affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1111/gcb.12313</idno>
<idno type="url">https://api.istex.fr/document/D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001420</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001420</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
<author>
<name sortKey="Turner, David P" sort="Turner, David P" uniqKey="Turner D" first="David P." last="Turner">David P. Turner</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: david.turner@oregonstate.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobson, Andrew R" sort="Jacobson, Andrew R" uniqKey="Jacobson A" first="Andrew R." last="Jacobson">Andrew R. Jacobson</name>
<affiliation>
<mods:affiliation>University of Colorado and NOAA Earth System Research Laboratory, CO, 80305, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ritts, William D" sort="Ritts, William D" uniqKey="Ritts W" first="William D." last="Ritts">William D. Ritts</name>
<affiliation>
<mods:affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Weile L" sort="Wang, Weile L" uniqKey="Wang W" first="Weile L." last="Wang">Weile L. Wang</name>
<affiliation>
<mods:affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nemani, Ramakrishna" sort="Nemani, Ramakrishna" uniqKey="Nemani R" first="Ramakrishna" last="Nemani">Ramakrishna Nemani</name>
<affiliation>
<mods:affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Change Biology</title>
<title level="j" type="abbrev">Glob Change Biol</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-11">2013-11</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="3516">3516</biblScope>
<biblScope unit="page" to="3528">3528</biblScope>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
<idno type="istex">D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17</idno>
<idno type="DOI">10.1111/gcb.12313</idno>
<idno type="ArticleID">GCB12313</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr−1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr−1), river/stream evasion (158 ± 50 TgC yr−1), and fire emissions (142 ± 45 TgC yr−1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>David P. Turner</name>
<affiliations>
<json:string>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</json:string>
<json:string>E-mail: david.turner@oregonstate.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrew R. Jacobson</name>
<affiliations>
<json:string>University of Colorado and NOAA Earth System Research Laboratory, CO, 80305, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>William D. Ritts</name>
<affiliations>
<json:string>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Weile L. Wang</name>
<affiliations>
<json:string>NASA Ames Research Center, CA, 94035, Moffett Field, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ramakrishna Nemani</name>
<affiliations>
<json:string>NASA Ames Research Center, CA, 94035, Moffett Field, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>atmospheric inversion model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biomass burning</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carbon flux</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>net ecosystem exchange</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>net ecosystem production</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>river evasion</value>
</json:item>
</subject>
<articleId>
<json:string>GCB12313</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr−1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr−1), river/stream evasion (158 ± 50 TgC yr−1), and fire emissions (142 ± 45 TgC yr−1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.</abstract>
<qualityIndicators>
<score>10</score>
<pdfVersion>1.7</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2034</abstractCharCount>
<pdfWordCount>8727</pdfWordCount>
<pdfCharCount>51677</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>282</abstractWordCount>
</qualityIndicators>
<title>A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>19</volume>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<pages>
<total>13</total>
<last>3528</last>
<first>3516</first>
</pages>
<issn>
<json:string>1354-1013</json:string>
</issn>
<issue>11</issue>
<subject>
<json:item>
<value>Primary Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<title>Global Change Biology</title>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
<json:string>ecology</json:string>
<json:string>biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1111/gcb.12313</json:string>
</doi>
<id>D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17</id>
<score>0.041663777</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright © 2013 John Wiley & Sons Ltd© 2013 John Wiley & Sons Ltd</p>
</availability>
<date>2013-07-09</date>
</publicationStmt>
<notesStmt>
<note>NASA Terrestrial Ecology Program - No. NNX09AL51G;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
<author xml:id="author-1">
<persName>
<forename type="first">David P.</forename>
<surname>Turner</surname>
</persName>
<email>david.turner@oregonstate.edu</email>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Andrew R.</forename>
<surname>Jacobson</surname>
</persName>
<affiliation>University of Colorado and NOAA Earth System Research Laboratory, CO, 80305, Boulder, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">William D.</forename>
<surname>Ritts</surname>
</persName>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Weile L.</forename>
<surname>Wang</surname>
</persName>
<affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Ramakrishna</forename>
<surname>Nemani</surname>
</persName>
<affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Change Biology</title>
<title level="j" type="abbrev">Glob Change Biol</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="DOI">10.1111/(ISSN)1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-11"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="3516">3516</biblScope>
<biblScope unit="page" to="3528">3528</biblScope>
</imprint>
</monogr>
<idno type="istex">D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17</idno>
<idno type="DOI">10.1111/gcb.12313</idno>
<idno type="ArticleID">GCB12313</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013-07-09</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr−1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr−1), river/stream evasion (158 ± 50 TgC yr−1), and fire emissions (142 ± 45 TgC yr−1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>atmospheric inversion model</term>
</item>
<item>
<term>biomass burning</term>
</item>
<item>
<term>carbon flux</term>
</item>
<item>
<term>net ecosystem exchange</term>
</item>
<item>
<term>net ecosystem production</term>
</item>
<item>
<term>river evasion</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Primary Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2013-04-17">Received</change>
<change when="2013-05-29">Registration</change>
<change when="2013-07-09">Created</change>
<change when="2013-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:id="gcb12313" xml:lang="en">
<header>
<publicationMeta level="product">
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
</idGroup>
<titleGroup>
<title sort="GLOBAL CHANGE BIOLOGY" type="main">Global Change Biology</title>
<title type="short">Glob Change Biol</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="110">
<doi origin="wiley">10.1111/gcb.2013.19.issue-11</doi>
<copyright ownership="publisher">Copyright © 2013 John Wiley & Sons Ltd</copyright>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue">11</numbering>
</numberingGroup>
<coverDate startDate="2013-11">November 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="240" status="forIssue" type="article">
<doi>10.1111/gcb.12313</doi>
<idGroup>
<id type="unit" value="GCB12313"></id>
</idGroup>
<countGroup>
<count number="13" type="pageTotal"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Primary Research Article</title>
<title type="tocHeading1">Primary Research Articles</title>
</titleGroup>
<copyright ownership="publisher">© 2013 John Wiley & Sons Ltd</copyright>
<eventGroup>
<event date="2013-04-17" type="manuscriptReceived"></event>
<event date="2013-05-29" type="manuscriptAccepted"></event>
<event agent="SPS" date="2013-07-09" type="xmlCreated"></event>
<event type="publishedOnlineAccepted" date="2013-07-03"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-09-11"></event>
<event type="firstOnline" date="2013-09-11"></event>
<event type="publishedOnlineFinalForm" date="2013-10-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">3516</numbering>
<numbering type="pageLast">3528</numbering>
</numberingGroup>
<correspondenceTo>Correspondence: David P. Turner, tel. +541 737 5043, fax +541 737 1393, e‐mail:
<email>david.turner@oregonstate.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB12313.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">A large proportion of
<fc>N</fc>
orth
<fc>A</fc>
merican net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
<title type="shortAuthors">D. P. Turner
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator affiliationRef="#gcb12313-aff-0001" corresponding="yes" creatorRole="author" xml:id="gcb12313-cr-0001">
<personName>
<givenNames>David P.</givenNames>
<familyName>Turner</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12313-aff-0002" creatorRole="author" xml:id="gcb12313-cr-0002">
<personName>
<givenNames>Andrew R.</givenNames>
<familyName>Jacobson</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12313-aff-0001" creatorRole="author" xml:id="gcb12313-cr-0003">
<personName>
<givenNames>William D.</givenNames>
<familyName>Ritts</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12313-aff-0003" creatorRole="author" xml:id="gcb12313-cr-0004">
<personName>
<givenNames>Weile L.</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
<creator affiliationRef="#gcb12313-aff-0003" creatorRole="author" xml:id="gcb12313-cr-0005">
<personName>
<givenNames>Ramakrishna</givenNames>
<familyName>Nemani</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="gcb12313-aff-0001">
<orgDiv>Department of Forest Ecosystems and Society</orgDiv>
<orgName>Oregon State University</orgName>
<address>
<city>Corvallis</city>
<countryPart>OR</countryPart>
<postCode>97331</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="gcb12313-aff-0002">
<orgName>University of Colorado and NOAA Earth System Research Laboratory</orgName>
<address>
<city>Boulder</city>
<countryPart>CO</countryPart>
<postCode>80305</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="gcb12313-aff-0003">
<orgName>NASA Ames Research Center</orgName>
<address>
<city>Moffett Field</city>
<countryPart>CA</countryPart>
<postCode>94035</postCode>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="gcb12313-kwd-0001">atmospheric inversion model</keyword>
<keyword xml:id="gcb12313-kwd-0002">biomass burning</keyword>
<keyword xml:id="gcb12313-kwd-0003">carbon flux</keyword>
<keyword xml:id="gcb12313-kwd-0004">net ecosystem exchange</keyword>
<keyword xml:id="gcb12313-kwd-0005">net ecosystem production</keyword>
<keyword xml:id="gcb12313-kwd-0006">river evasion</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NASA Terrestrial Ecology Program</fundingAgency>
<fundingNumber>NNX09AL51G</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:id="gcb12313-abs-0001">
<title type="main">Abstract</title>
<p>Diagnostic carbon cycle models produce estimates of net ecosystem production (
<fc>NEP</fc>
, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (
<fc>NEE</fc>
) (used in model parameterization). However, a full bottom‐up accounting of
<fc>NEE</fc>
(the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products,
<fc>
<fr>CO
<sub>2</sub>
</fr>
</fc>
evasion from streams and rivers, and biomass burning. Here, we produce a daily time step
<fc>NEE</fc>
for North America for the year 2004 that includes
<fc>NEP</fc>
as well as the additional emissions. This
<fc>NEE</fc>
product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with
<fc>
<fr>CO
<sub>2</sub>
</fr>
</fc>
concentration observations. The year 2004 was climatologically favorable for
<fc>NEP</fc>
over
<fc>N</fc>
orth
<fc>A</fc>
merica and the continental total was estimated at 1730 ± 370 TgC yr
<sup>−1</sup>
(a carbon sink). Harvested product emissions (316 ± 80 TgC yr
<sup>−1</sup>
), river/stream evasion (158 ± 50 TgC yr
<sup>−1</sup>
), and fire emissions (142 ± 45 TgC yr
<sup>−1</sup>
) counteracted a large proportion (35%) of the
<fc>NEP</fc>
sink. Geographic areas with strong carbon sinks included Midwest
<fc>US</fc>
croplands, and forested regions of the
<fc>N</fc>
ortheast,
<fc>S</fc>
outheast, and
<fc>P</fc>
acific
<fc>N</fc>
orthwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime
<fc>
<fr>CO
<sub>2</sub>
</fr>
</fc>
concentrations aggregated over eight measurement sites around
<fc>N</fc>
orth
<fc>A</fc>
merica, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial
<fc>NEP</fc>
is the dominant offset to fossil fuel emission over
<fc>N</fc>
orth
<fc>A</fc>
merica, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning</title>
</titleInfo>
<name type="personal">
<namePart type="given">David P.</namePart>
<namePart type="family">Turner</namePart>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</affiliation>
<affiliation>E-mail: david.turner@oregonstate.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew R.</namePart>
<namePart type="family">Jacobson</namePart>
<affiliation>University of Colorado and NOAA Earth System Research Laboratory, CO, 80305, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William D.</namePart>
<namePart type="family">Ritts</namePart>
<affiliation>Department of Forest Ecosystems and Society, Oregon State University, OR, 97331, Corvallis, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weile L.</namePart>
<namePart type="family">Wang</namePart>
<affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramakrishna</namePart>
<namePart type="family">Nemani</namePart>
<affiliation>NASA Ames Research Center, CA, 94035, Moffett Field, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-11</dateIssued>
<dateCreated encoding="w3cdtf">2013-07-09</dateCreated>
<dateCaptured encoding="w3cdtf">2013-04-17</dateCaptured>
<dateValid encoding="w3cdtf">2013-05-29</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Diagnostic carbon cycle models produce estimates of net ecosystem production (NEP, the balance of net primary production and heterotrophic respiration) by integrating information from (i) satellite‐based observations of land surface vegetation characteristics; (ii) distributed meteorological data; and (iii) eddy covariance flux tower observations of net ecosystem exchange (NEE) (used in model parameterization). However, a full bottom‐up accounting of NEE (the vertical carbon flux) that is suitable for integration with atmosphere‐based inversion modeling also includes emissions from decomposition/respiration of harvested forest and agricultural products, CO2 evasion from streams and rivers, and biomass burning. Here, we produce a daily time step NEE for North America for the year 2004 that includes NEP as well as the additional emissions. This NEE product was run in the forward mode through the CarbonTracker inversion setup to evaluate its consistency with CO2 concentration observations. The year 2004 was climatologically favorable for NEP over North America and the continental total was estimated at 1730 ± 370 TgC yr−1 (a carbon sink). Harvested product emissions (316 ± 80 TgC yr−1), river/stream evasion (158 ± 50 TgC yr−1), and fire emissions (142 ± 45 TgC yr−1) counteracted a large proportion (35%) of the NEP sink. Geographic areas with strong carbon sinks included Midwest US croplands, and forested regions of the Northeast, Southeast, and Pacific Northwest. The forward mode run with CarbonTracker produced good agreement between observed and simulated wintertime CO2 concentrations aggregated over eight measurement sites around North America, but overestimates of summertime concentrations that suggested an underestimation of summertime carbon uptake. As terrestrial NEP is the dominant offset to fossil fuel emission over North America, a good understanding of its spatial and temporal variation – as well as the fate of the carbon it sequesters ─ is needed for a comprehensive view of the carbon cycle.</abstract>
<note type="funding">NASA Terrestrial Ecology Program - No. NNX09AL51G; </note>
<subject>
<genre>keywords</genre>
<topic>atmospheric inversion model</topic>
<topic>biomass burning</topic>
<topic>carbon flux</topic>
<topic>net ecosystem exchange</topic>
<topic>net ecosystem production</topic>
<topic>river evasion</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Glob Change Biol</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Primary Research Article</topic>
</subject>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>3516</start>
<end>3528</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17</identifier>
<identifier type="DOI">10.1111/gcb.12313</identifier>
<identifier type="ArticleID">GCB12313</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2013 John Wiley & Sons Ltd© 2013 John Wiley & Sons Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001420 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001420 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D07F24ACBF93B73BDDCD5A510EBBE67FB3FB7B17
   |texte=   A large proportion of North American net ecosystem production is offset by emissions from harvested products, river/stream evasion, and biomass burning
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024