Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PCR identification of rpgip1 transgene in Pisum sativum L.

Identifieur interne : 001411 ( Istex/Corpus ); précédent : 001410; suivant : 001412

PCR identification of rpgip1 transgene in Pisum sativum L.

Auteurs : Kornelia Polok ; Hans-Jörg Jacobsen

Source :

RBID : ISTEX:45C2F2AC45E321728C495AF8CA70326045E3B474

English descriptors

Abstract

Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The rpgip1 gene from Rubus idaeus was introduced by Agrobacterium-mediated transformation into Pisum sativum, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the rpgip1 transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to in silico analyses, they arose from retrotransposons and pea genes including homologues of rpgip1. Two sets of primers were prepared with the aim of simultaneous amplification of different rpgip1 fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous pgip genes present in the donor species, R. idaeus. Sequencing of two PCR products confirms that no substantial rearrangements at the rpgip1 transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10-3) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.

Url:
DOI: 10.2478/v10014-011-0011-y

Links to Exploration step

ISTEX:45C2F2AC45E321728C495AF8CA70326045E3B474

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PCR identification of rpgip1 transgene in Pisum sativum L.</title>
<author>
<name sortKey="Polok, Kornelia" sort="Polok, Kornelia" uniqKey="Polok K" first="Kornelia" last="Polok">Kornelia Polok</name>
<affiliation>
<mods:affiliation>Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobsen, Hans Jorg" sort="Jacobsen, Hans Jorg" uniqKey="Jacobsen H" first="Hans-Jörg" last="Jacobsen">Hans-Jörg Jacobsen</name>
<affiliation>
<mods:affiliation>Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:45C2F2AC45E321728C495AF8CA70326045E3B474</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.2478/v10014-011-0011-y</idno>
<idno type="url">https://api.istex.fr/document/45C2F2AC45E321728C495AF8CA70326045E3B474/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001411</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">PCR identification of rpgip1 transgene in Pisum sativum L.</title>
<author>
<name sortKey="Polok, Kornelia" sort="Polok, Kornelia" uniqKey="Polok K" first="Kornelia" last="Polok">Kornelia Polok</name>
<affiliation>
<mods:affiliation>Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jacobsen, Hans Jorg" sort="Jacobsen, Hans Jorg" uniqKey="Jacobsen H" first="Hans-Jörg" last="Jacobsen">Hans-Jörg Jacobsen</name>
<affiliation>
<mods:affiliation>Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Acta agriculturae Slovenica</title>
<idno type="ISSN">1581-9175</idno>
<idno type="eISSN">1854-1941</idno>
<imprint>
<publisher>Versita</publisher>
<date type="published" when="2011-09-01">2011-09-01</date>
<biblScope unit="volume">97</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="177">177</biblScope>
</imprint>
<idno type="ISSN">1581-9175</idno>
</series>
<idno type="istex">45C2F2AC45E321728C495AF8CA70326045E3B474</idno>
<idno type="DOI">10.2478/v10014-011-0011-y</idno>
<idno type="ArticleID">v10014-011-0011-y</idno>
<idno type="pdf">v10014-011-0011-y.pdf</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1581-9175</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Transgenic pea</term>
<term>fungal diseases</term>
<term>multiplex PCR</term>
<term>pgip homologues</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The rpgip1 gene from Rubus idaeus was introduced by Agrobacterium-mediated transformation into Pisum sativum, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the rpgip1 transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to in silico analyses, they arose from retrotransposons and pea genes including homologues of rpgip1. Two sets of primers were prepared with the aim of simultaneous amplification of different rpgip1 fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous pgip genes present in the donor species, R. idaeus. Sequencing of two PCR products confirms that no substantial rearrangements at the rpgip1 transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10-3) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.</div>
</front>
</TEI>
<istex>
<corpusName>degruyter-journals</corpusName>
<author>
<json:item>
<name>Kornelia Polok</name>
<affiliations>
<json:string>Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hans-Jörg Jacobsen</name>
<affiliations>
<json:string>Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Transgenic pea</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fungal diseases</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pgip homologues</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>multiplex PCR</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Transgeni grah</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glivične bolezni</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>homologi pgip</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>multipleksna PCR</value>
</json:item>
</subject>
<articleId>
<json:string>v10014-011-0011-y</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The rpgip1 gene from Rubus idaeus was introduced by Agrobacterium-mediated transformation into Pisum sativum, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the rpgip1 transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to in silico analyses, they arose from retrotransposons and pea genes including homologues of rpgip1. Two sets of primers were prepared with the aim of simultaneous amplification of different rpgip1 fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous pgip genes present in the donor species, R. idaeus. Sequencing of two PCR products confirms that no substantial rearrangements at the rpgip1 transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10-3) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.</abstract>
<qualityIndicators>
<score>9.964</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>578 x 776 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>8</keywordCount>
<abstractCharCount>1667</abstractCharCount>
<pdfWordCount>5150</pdfWordCount>
<pdfCharCount>34336</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>247</abstractWordCount>
</qualityIndicators>
<title>PCR identification of rpgip1 transgene in Pisum sativum L.</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>97</volume>
<publisherId>
<json:string>ACAS</json:string>
</publisherId>
<pages>
<last>177</last>
<first>167</first>
</pages>
<issn>
<json:string>1581-9175</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1854-1941</json:string>
</eissn>
<title>Acta agriculturae Slovenica</title>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.2478/v10014-011-0011-y</json:string>
</doi>
<id>45C2F2AC45E321728C495AF8CA70326045E3B474</id>
<score>0.036859404</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/45C2F2AC45E321728C495AF8CA70326045E3B474/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/45C2F2AC45E321728C495AF8CA70326045E3B474/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/45C2F2AC45E321728C495AF8CA70326045E3B474/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">PCR identification of rpgip1 transgene in Pisum sativum L.</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Versita</publisher>
<availability status="free">
<p>Open Access</p>
</availability>
<date>2011-11-09</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">PCR identification of rpgip1 transgene in Pisum sativum L.</title>
<author xml:id="author-1">
<persName>
<forename type="first">Kornelia</forename>
<surname>Polok</surname>
</persName>
<affiliation>Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Hans-Jörg</forename>
<surname>Jacobsen</surname>
</persName>
<affiliation>Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Acta agriculturae Slovenica</title>
<idno type="pISSN">1581-9175</idno>
<idno type="eISSN">1854-1941</idno>
<imprint>
<publisher>Versita</publisher>
<date type="published" when="2011-09-01"></date>
<biblScope unit="volume">97</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="167">167</biblScope>
<biblScope unit="page" to="177">177</biblScope>
</imprint>
</monogr>
<idno type="istex">45C2F2AC45E321728C495AF8CA70326045E3B474</idno>
<idno type="DOI">10.2478/v10014-011-0011-y</idno>
<idno type="ArticleID">v10014-011-0011-y</idno>
<idno type="pdf">v10014-011-0011-y.pdf</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011-11-09</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The rpgip1 gene from Rubus idaeus was introduced by Agrobacterium-mediated transformation into Pisum sativum, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the rpgip1 transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to in silico analyses, they arose from retrotransposons and pea genes including homologues of rpgip1. Two sets of primers were prepared with the aim of simultaneous amplification of different rpgip1 fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous pgip genes present in the donor species, R. idaeus. Sequencing of two PCR products confirms that no substantial rearrangements at the rpgip1 transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10-3) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.</p>
</abstract>
<abstract xml:lang="sl">
<p>Novejši dosežki pri povečanju odpornosti graha na Ascochyta so povezani z uvajanjem tujih genov s pomočjo genskega inženiringa. Gen rpgip1 iz malinjaka (Rubus idaeus) je vključen v grah, cv. Baroness, s transformacijo z bakterijo Agrobacterium, da bi se povečalo odpornost graha na to glivično bolezen. Pred praktično uporabo te metode je potrebno razviti načine za spremljanje dedovanja tega transgena. Enojna in multipleks PCR sta bili uporabljeni za testiranje učinkovitosti začetnikov in za identificiranje transgena rpgip1 pri 11 genotipih graha. Pet od desetih začetnikov je bilo uporabnih za identifikacijo transgenov ali za vključevanje sekvenc. PCR namnoževanje z drugimi petimi začetniki je dalo nespecifične namnožke. Glede na in silico analize so ti nastali zaradi retrotranspozonov in grahovih genov, ki vključujejo homologe rpgip1. Dva seta začetnikov sta bila pripravljena za istočasno namnoževanje različnih odlomkov rpgip1. Elektroferogrami so bili vsote črt individualnih parov, tako je prikazana uporabnost multipleksnega poskusa. Dodatna prednost multipleksnega PCR je razločna diferenciacija med transgenom in genom pgip prisotnim v donorski vrsti R. idaeus. Sekvenciranje dveh PCR produktov potrjuje, da ni pri rpgip1 bistvenega prerazporejanja tekom razvoja transgenih rastlin. Toda pojavila se je delecija pri 59 bp v liniji PGIP+VST in substitucija pri 392 bp v liniji PGIP. Relativna pogostnost točkovnih mutacij ni bila visoka (1.1 × 10-3) in je bila primerljiva z pogostnostjo pri gostiteljivih genih, glede na nevtralno teorijo molekulske evolucije.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Transgenic pea</term>
</item>
<item>
<term>fungal diseases</term>
</item>
<item>
<term>pgip homologues</term>
</item>
<item>
<term>multiplex PCR</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="sl">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Transgeni grah</term>
</item>
<item>
<term>glivične bolezni</term>
</item>
<item>
<term>homologi pgip</term>
</item>
<item>
<term>multipleksna PCR</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-11-09">Created</change>
<change when="2011-09-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/45C2F2AC45E321728C495AF8CA70326045E3B474/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus degruyter-journals" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v3.0 20080202//EN" URI="journalpublishing3.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="3.0" xml:lang="en">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">ACAS</journal-id>
<journal-title-group>
<abbrev-journal-title abbrev-type="full">Acta agriculturae Slovenica</abbrev-journal-title>
</journal-title-group>
<issn pub-type="epub">1854-1941</issn>
<issn pub-type="ppub">1581-9175</issn>
<publisher>
<publisher-name>Versita</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">v10014-011-0011-y</article-id>
<article-id pub-id-type="doi">10.2478/v10014-011-0011-y</article-id>
<title-group>
<article-title>PCR identification of
<italic>rpgip1</italic>
transgene in
<italic>Pisum sativum</italic>
L.</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Polok</surname>
<given-names>Kornelia</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jacobsen</surname>
<given-names>Hans-Jörg</given-names>
</name>
<xref ref-type="aff" rid="A2">
<sup>1</sup>
</xref>
</contrib>
<aff id="A1">Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland
<sup>1</sup>
</aff>
<aff id="A2">Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany
<sup>2</sup>
</aff>
</contrib-group>
<author-notes>
<corresp></corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>1</day>
<month>9</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>9</day>
<month>11</month>
<year>2011</year>
</pub-date>
<volume>97</volume>
<issue>3</issue>
<fpage>167</fpage>
<lpage>177</lpage>
<permissions>
<license license-type="open-access">
<license-p>This content is open access.</license-p>
</license>
</permissions>
<related-article related-article-type="pdf" xlink:href="v10014-011-0011-y.pdf"></related-article>
<abstract xml:lang="en">
<title>PCR identification of
<italic>rpgip1</italic>
transgene in
<italic>Pisum sativum</italic>
L.</title>
<p>Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The
<italic>rpgip1</italic>
gene from
<italic>Rubus idaeus</italic>
was introduced by
<italic>Agrobacterium</italic>
-mediated transformation into
<italic>Pisum sativum</italic>
, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the
<italic>rpgip1</italic>
transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to
<italic>in silico</italic>
analyses, they arose from retrotransposons and pea genes including homologues of
<italic>rpgip1.</italic>
Two sets of primers were prepared with the aim of simultaneous amplification of different
<italic>rpgip1</italic>
fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous
<italic>pgip</italic>
genes present in the donor species,
<italic>R. idaeus.</italic>
Sequencing of two PCR products confirms that no substantial rearrangements at the
<italic>rpgip1</italic>
transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10
<sup>-3</sup>
) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.</p>
</abstract>
<abstract xml:lang="sl">
<title>PCR Identifikacija Transgena
<italic>rpgip1</italic>
PRI GRAHU (
<italic>Pisum sativum</italic>
L.)</title>
<p>Novejši dosežki pri povečanju odpornosti graha na Ascochyta so povezani z uvajanjem tujih genov s pomočjo genskega inženiringa. Gen
<italic>rpgip1</italic>
iz malinjaka (
<italic>Rubus idaeus</italic>
) je vključen v grah, cv. Baroness, s transformacijo z bakterijo
<italic>Agrobacterium</italic>
, da bi se povečalo odpornost graha na to glivično bolezen. Pred praktično uporabo te metode je potrebno razviti načine za spremljanje dedovanja tega transgena. Enojna in multipleks PCR sta bili uporabljeni za testiranje učinkovitosti začetnikov in za identificiranje transgena
<italic>rpgip1</italic>
pri 11 genotipih graha. Pet od desetih začetnikov je bilo uporabnih za identifikacijo transgenov ali za vključevanje sekvenc. PCR namnoževanje z drugimi petimi začetniki je dalo nespecifične namnožke. Glede na
<italic>in silico</italic>
analize so ti nastali zaradi retrotranspozonov in grahovih genov, ki vključujejo homologe
<italic>rpgip1.</italic>
Dva seta začetnikov sta bila pripravljena za istočasno namnoževanje različnih odlomkov
<italic>rpgip1.</italic>
Elektroferogrami so bili vsote črt individualnih parov, tako je prikazana uporabnost multipleksnega poskusa. Dodatna prednost multipleksnega PCR je razločna diferenciacija med transgenom in genom
<italic>pgip</italic>
prisotnim v donorski vrsti
<italic>R. idaeus.</italic>
Sekvenciranje dveh PCR produktov potrjuje, da ni pri
<italic>rpgip1</italic>
bistvenega prerazporejanja tekom razvoja transgenih rastlin. Toda pojavila se je delecija pri 59 bp v liniji PGIP+VST in substitucija pri 392 bp v liniji PGIP. Relativna pogostnost točkovnih mutacij ni bila visoka (1.1 × 10
<sup>-3</sup>
) in je bila primerljiva z pogostnostjo pri gostiteljivih genih, glede na nevtralno teorijo molekulske evolucije.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Transgenic pea</kwd>
<kwd>fungal diseases</kwd>
<kwd>
<italic>Rubus idaeus</italic>
</kwd>
<kwd>
<italic>pgip</italic>
homologues</kwd>
<kwd>multiplex PCR</kwd>
</kwd-group>
<kwd-group xml:lang="sl">
<title>Keywords</title>
<kwd>Transgeni grah</kwd>
<kwd>glivične bolezni</kwd>
<kwd>
<italic>Rubus idaeus</italic>
</kwd>
<kwd>homologi
<italic>pgip</italic>
</kwd>
<kwd>multipleksna PCR</kwd>
</kwd-group>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>PCR identification of rpgip1 transgene in Pisum sativum L.</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>PCR identification of rpgip1 transgene in Pisum sativum L.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kornelia</namePart>
<namePart type="family">Polok</namePart>
<affiliation>Department of Genetics, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-967 Olsztyn, Poland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hans-Jörg</namePart>
<namePart type="family">Jacobsen</namePart>
<affiliation>Plant Biotech Unit, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhauserstr 2, D30-419 Hannover, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>Versita</publisher>
<dateIssued encoding="w3cdtf">2011-09-01</dateIssued>
<dateCreated encoding="w3cdtf">2011-11-09</dateCreated>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Recent efforts to increase Ascochyta blight resistance of pea have focused on the introduction of foreign genes by genetic engineering. The rpgip1 gene from Rubus idaeus was introduced by Agrobacterium-mediated transformation into Pisum sativum, cv. Baroness with the aim to increase pea resistance to fungal diseases. Notwithstanding this success, practical applications have to be preceded by the development of analytical methods for screening. Singleplex and multiplex PCR assays were employed to test primer efficiency in identifying the rpgip1 transgene in 11 pea genotypes. Five from ten primer combinations were effective in identifying transgene or insert sequences. PCR amplification using five other primer pairs revealed unspecific amplicons. According to in silico analyses, they arose from retrotransposons and pea genes including homologues of rpgip1. Two sets of primers were prepared with the aim of simultaneous amplification of different rpgip1 fragments. Fingerprints were sums of bands observed from individual pairs so the utility of multiplex assays was demonstrated. An additional advantage of multiplex PCR was clear differentiation between the transgene and endogenous pgip genes present in the donor species, R. idaeus. Sequencing of two PCR products confirms that no substantial rearrangements at the rpgip1 transgene arose during development of transgenic plants. However, a deletion occurred at 59 bp in the PGIP+VST line and a substitution at 392 bp in the PGIP line. The frequency of point mutations was not high (1.1 × 10-3) and comparable with the frequency expected for host genes based on the neutral theory of molecular evolution.</abstract>
<abstract lang="sl">Novejši dosežki pri povečanju odpornosti graha na Ascochyta so povezani z uvajanjem tujih genov s pomočjo genskega inženiringa. Gen rpgip1 iz malinjaka (Rubus idaeus) je vključen v grah, cv. Baroness, s transformacijo z bakterijo Agrobacterium, da bi se povečalo odpornost graha na to glivično bolezen. Pred praktično uporabo te metode je potrebno razviti načine za spremljanje dedovanja tega transgena. Enojna in multipleks PCR sta bili uporabljeni za testiranje učinkovitosti začetnikov in za identificiranje transgena rpgip1 pri 11 genotipih graha. Pet od desetih začetnikov je bilo uporabnih za identifikacijo transgenov ali za vključevanje sekvenc. PCR namnoževanje z drugimi petimi začetniki je dalo nespecifične namnožke. Glede na in silico analize so ti nastali zaradi retrotranspozonov in grahovih genov, ki vključujejo homologe rpgip1. Dva seta začetnikov sta bila pripravljena za istočasno namnoževanje različnih odlomkov rpgip1. Elektroferogrami so bili vsote črt individualnih parov, tako je prikazana uporabnost multipleksnega poskusa. Dodatna prednost multipleksnega PCR je razločna diferenciacija med transgenom in genom pgip prisotnim v donorski vrsti R. idaeus. Sekvenciranje dveh PCR produktov potrjuje, da ni pri rpgip1 bistvenega prerazporejanja tekom razvoja transgenih rastlin. Toda pojavila se je delecija pri 59 bp v liniji PGIP+VST in substitucija pri 392 bp v liniji PGIP. Relativna pogostnost točkovnih mutacij ni bila visoka (1.1 × 10-3) in je bila primerljiva z pogostnostjo pri gostiteljivih genih, glede na nevtralno teorijo molekulske evolucije.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>Transgenic pea</topic>
<topic>fungal diseases</topic>
<topic>pgip homologues</topic>
<topic>multiplex PCR</topic>
</subject>
<subject lang="sl">
<genre>Keywords</genre>
<topic>Transgeni grah</topic>
<topic>glivične bolezni</topic>
<topic>homologi pgip</topic>
<topic>multipleksna PCR</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Acta agriculturae Slovenica</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1581-9175</identifier>
<identifier type="eISSN">1854-1941</identifier>
<identifier type="PublisherID">ACAS</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>97</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>167</start>
<end>177</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">45C2F2AC45E321728C495AF8CA70326045E3B474</identifier>
<identifier type="DOI">10.2478/v10014-011-0011-y</identifier>
<identifier type="ArticleID">v10014-011-0011-y</identifier>
<identifier type="pdf">v10014-011-0011-y.pdf</identifier>
<accessCondition type="use and reproduction" contentType="open-access">This content is open access.</accessCondition>
<recordInfo>
<recordContentSource>De Gruyter</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001411 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001411 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:45C2F2AC45E321728C495AF8CA70326045E3B474
   |texte=   PCR identification of rpgip1 transgene in Pisum sativum L.
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024