Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subsurface topography to enhance the prediction of the spatial distribution of soil wetness

Identifieur interne : 001122 ( Istex/Corpus ); précédent : 001121; suivant : 001123

Subsurface topography to enhance the prediction of the spatial distribution of soil wetness

Auteurs : V. Chaplot ; C. Walter

Source :

RBID : ISTEX:4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83

English descriptors

Abstract

The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (E), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ10 of winter 1996 and the physically based attributes E and CTI estimated by using the subsurface DEM (r = 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ10 spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ10 range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.1273

Links to Exploration step

ISTEX:4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
<author>
<name sortKey="Chaplot, V" sort="Chaplot, V" uniqKey="Chaplot V" first="V." last="Chaplot">V. Chaplot</name>
<affiliation>
<mods:affiliation>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, C" sort="Walter, C" uniqKey="Walter C" first="C." last="Walter">C. Walter</name>
<affiliation>
<mods:affiliation>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/hyp.1273</idno>
<idno type="url">https://api.istex.fr/document/4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001122</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
<author>
<name sortKey="Chaplot, V" sort="Chaplot, V" uniqKey="Chaplot V" first="V." last="Chaplot">V. Chaplot</name>
<affiliation>
<mods:affiliation>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walter, C" sort="Walter, C" uniqKey="Walter C" first="C." last="Walter">C. Walter</name>
<affiliation>
<mods:affiliation>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-09">2003-09</date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2567">2567</biblScope>
<biblScope unit="page" to="2580">2580</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83</idno>
<idno type="DOI">10.1002/hyp.1273</idno>
<idno type="ArticleID">HYP1273</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DEM</term>
<term>hydrology</term>
<term>landscape</term>
<term>modelling</term>
<term>soil water content</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="de">The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (E), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ10 of winter 1996 and the physically based attributes E and CTI estimated by using the subsurface DEM (r = 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ10 spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ10 range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>V. Chaplot</name>
<affiliations>
<json:string>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</json:string>
<json:string>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Walter</name>
<affiliations>
<json:string>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil water content</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>DEM</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>modelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydrology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>landscape</value>
</json:item>
</subject>
<articleId>
<json:string>HYP1273</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (E), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ10 of winter 1996 and the physically based attributes E and CTI estimated by using the subsurface DEM (r = 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ10 spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ10 range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2429</abstractCharCount>
<pdfWordCount>5921</pdfWordCount>
<pdfCharCount>36538</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>373</abstractWordCount>
</qualityIndicators>
<title>Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>17</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>14</total>
<last>2580</last>
<first>2567</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>13</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1002/hyp.1273</json:string>
</doi>
<id>4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83</id>
<score>0.036872588</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2003 John Wiley & Sons, Ltd.</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
<author xml:id="author-1">
<persName>
<forename type="first">V.</forename>
<surname>Chaplot</surname>
</persName>
<affiliation>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</affiliation>
<affiliation>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">C.</forename>
<surname>Walter</surname>
</persName>
<affiliation>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-09"></date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="2567">2567</biblScope>
<biblScope unit="page" to="2580">2580</biblScope>
</imprint>
</monogr>
<idno type="istex">4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83</idno>
<idno type="DOI">10.1002/hyp.1273</idno>
<idno type="ArticleID">HYP1273</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="de">
<p>The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (E), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ10 of winter 1996 and the physically based attributes E and CTI estimated by using the subsurface DEM (r = 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ10 spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ10 range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>soil water content</term>
</item>
<item>
<term>DEM</term>
</item>
<item>
<term>modelling</term>
</item>
<item>
<term>hydrology</term>
</item>
<item>
<term>landscape</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-02-25">Received</change>
<change when="2003-01-08">Registration</change>
<change when="2003-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="130">
<doi origin="wiley" registered="yes">10.1002/hyp.v17:13</doi>
<numberingGroup>
<numbering type="journalVolume" number="17">17</numbering>
<numbering type="journalIssue">13</numbering>
</numberingGroup>
<coverDate startDate="2003-09">September 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="4" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hyp.1273</doi>
<idGroup>
<id type="unit" value="HYP1273"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2003 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2002-02-25"></event>
<event type="manuscriptAccepted" date="2003-01-08"></event>
<event type="firstOnline" date="2003-08-26"></event>
<event type="publishedOnlineFinalForm" date="2003-08-26"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2567</numbering>
<numbering type="pageLast">2580</numbering>
</numberingGroup>
<correspondenceTo>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP1273.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="39"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
<title type="short" xml:lang="en">PREDICTION OF SOIL WETNESS</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>V.</givenNames>
<familyName>Chaplot</familyName>
</personName>
<contactDetails>
<email>chaplotird@laopdr.com</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>C.</givenNames>
<familyName>Walter</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">soil water content</keyword>
<keyword xml:id="kwd2">DEM</keyword>
<keyword xml:id="kwd3">modelling</keyword>
<keyword xml:id="kwd4">hydrology</keyword>
<keyword xml:id="kwd5">landscape</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="de">
<title type="main">Abstract</title>
<p>The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (
<i>E</i>
), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ
<sub>10</sub>
of winter 1996 and the physically based attributes
<i>E</i>
and CTI estimated by using the subsurface DEM (
<i>r</i>
= 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ
<sub>10</sub>
spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ
<sub>10</sub>
range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>PREDICTION OF SOIL WETNESS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Subsurface topography to enhance the prediction of the spatial distribution of soil wetness</title>
</titleInfo>
<name type="personal">
<namePart type="given">V.</namePart>
<namePart type="family">Chaplot</namePart>
<affiliation>IRD‐UR049, Ambassade de France, BP 06, Vientiane, Laos</affiliation>
<affiliation>IRD—UR 049, Ambassade de France, BP 06 Vientiane, RPD Laos.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Walter</namePart>
<affiliation>UMR Sol, Agronomie, Spatialisation, ENSA‐INRA, 65, rue Saint Brieuc 35042, Rennes Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-09</dateIssued>
<dateCaptured encoding="w3cdtf">2002-02-25</dateCaptured>
<dateValid encoding="w3cdtf">2003-01-08</dateValid>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">3</extent>
<extent unit="references">39</extent>
</physicalDescription>
<abstract lang="de">The estimation of the spatial distribution of soil wetness within a catchment is one of the most important issues in hydrological and erosion modelling. So far, such models have been based on soil surface topographic information only. However, soil hydrology is also controlled by subsurface flow pathways that may not be explained only by surface terrain features. This study examined how the topography of the lower limit of the soil cover could improve quantitative modelling for the spatial prediction of soil wetness. The study was conducted in an agricultural catchment of the Armorican Massif (western France) characterized by impermeable granitic saprolites. Two digital elevation models (DEMs) with a 10‐m grid mesh and with a 0·3 m vertical resolution were generated from field investigations throughout the catchment. One DEM was a numerical representation of the soil surface and the other described the topography of the boundary between the soil cover and the underlying impermeable saprolite. Soil wetness (θ) was surveyed systematically from 1996 to 1997 along a hillslope. The sampling scheme consisted of 149 nodes of a 10‐m grid where θ at 0–10 cm was estimated using time‐domain reflectometry. The value of θ at depths of 20–30, 50–60 and 110–120 cm was estimated for a subset of 112 data points using a gravimetric method. For both surface and subsurface DEMs, soil wetness at all depths significantly correlated with the topographic attributes, namely the distance to the stream bank, the elevation above the stream bank (E), the downslope gradient, the revised compound topographic index (CTI), and the specific monodirectional and multidirectional catchment areas. The best correlations were observed between θ10 of winter 1996 and the physically based attributes E and CTI estimated by using the subsurface DEM (r = 0·83 and 0·86, respectively). Two multiple non‐linear regression models for θ10 spatial prediction were generated using non‐autocorrelated topographic attributes estimated from both surface and subsurface topography. Model validation using a new set of 41 data points showed root mean square errors (RMSE) lower than 10% of the θ10 range. The model based on subsurface topography decreased RMSE by 43%. Prediction errors were not spatially distributed. Finally, theses results are discussed in respect of processes involved in hillslope hydrology. Copyright © 2003 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>soil water content</topic>
<topic>DEM</topic>
<topic>modelling</topic>
<topic>hydrology</topic>
<topic>landscape</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2567</start>
<end>2580</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83</identifier>
<identifier type="DOI">10.1002/hyp.1273</identifier>
<identifier type="ArticleID">HYP1273</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4A1A8ABA0A593E2FB51338EC6C4A7A052C145D83
   |texte=   Subsurface topography to enhance the prediction of the spatial distribution of soil wetness
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024