Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Denitrification in marine shales in northeastern Colorado

Identifieur interne : 001112 ( Istex/Corpus ); précédent : 001111; suivant : 001113

Denitrification in marine shales in northeastern Colorado

Auteurs : P. B. Mcmahon ; J. K. Böhlke ; B. W. Bruce

Source :

RBID : ISTEX:C4BD682D97E84B5BC653D4BEE889FB44ADF65959

Abstract

Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3‐, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3− and to measure denitrification rates in the shale. Measured values of NO3−, N2, NH4+, δ15N[NO3−], δ15N[N2], and δ15N[NH4+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3−. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3− transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr−1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr−1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3‐input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO3− uptake by the shale could be considerably larger in areas where NO3− advection.

Url:
DOI: 10.1029/1999WR900004

Links to Exploration step

ISTEX:C4BD682D97E84B5BC653D4BEE889FB44ADF65959

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Denitrification in marine shales in northeastern Colorado</title>
<author wicri:is="90%">
<name sortKey="Mcmahon, P B" sort="Mcmahon, P B" uniqKey="Mcmahon P" first="P. B." last="Mcmahon">P. B. Mcmahon</name>
</author>
<author wicri:is="90%">
<name sortKey="Bohlke, J K" sort="Bohlke, J K" uniqKey="Bohlke J" first="J. K." last="Böhlke">J. K. Böhlke</name>
</author>
<author wicri:is="90%">
<name sortKey="Bruce, B W" sort="Bruce, B W" uniqKey="Bruce B" first="B. W." last="Bruce">B. W. Bruce</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C4BD682D97E84B5BC653D4BEE889FB44ADF65959</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1029/1999WR900004</idno>
<idno type="url">https://api.istex.fr/document/C4BD682D97E84B5BC653D4BEE889FB44ADF65959/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001112</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Denitrification in marine shales in northeastern Colorado</title>
<author wicri:is="90%">
<name sortKey="Mcmahon, P B" sort="Mcmahon, P B" uniqKey="Mcmahon P" first="P. B." last="Mcmahon">P. B. Mcmahon</name>
</author>
<author wicri:is="90%">
<name sortKey="Bohlke, J K" sort="Bohlke, J K" uniqKey="Bohlke J" first="J. K." last="Böhlke">J. K. Böhlke</name>
</author>
<author wicri:is="90%">
<name sortKey="Bruce, B W" sort="Bruce, B W" uniqKey="Bruce B" first="B. W." last="Bruce">B. W. Bruce</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1999-05">1999-05</date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1629">1629</biblScope>
<biblScope unit="page" to="1642">1642</biblScope>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
<idno type="istex">C4BD682D97E84B5BC653D4BEE889FB44ADF65959</idno>
<idno type="DOI">10.1029/1999WR900004</idno>
<idno type="ArticleID">1999WR900004</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3‐, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3− and to measure denitrification rates in the shale. Measured values of NO3−, N2, NH4+, δ15N[NO3−], δ15N[N2], and δ15N[NH4+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3−. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3− transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr−1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr−1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3‐input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO3− uptake by the shale could be considerably larger in areas where NO3− advection.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>P. B. McMahon</name>
</json:item>
<json:item>
<name>J. K. Böhlke</name>
</json:item>
<json:item>
<name>B. W. Bruce</name>
</json:item>
</author>
<articleId>
<json:string>1999WR900004</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is >1000 m thick. Ground water in the aquifer is contaminated with NO3‐, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3− and to measure denitrification rates in the shale. Measured values of NO3−, N2, NH4+, δ15N[NO3−], δ15N[N2], and δ15N[NH4+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3−. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3− transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr−1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr−1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3‐input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO3− uptake by the shale could be considerably larger in areas where NO3− advection.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 814 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1871</abstractCharCount>
<pdfWordCount>6076</pdfWordCount>
<pdfCharCount>59397</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>294</abstractWordCount>
</qualityIndicators>
<title>Denitrification in marine shales in northeastern Colorado</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>35</volume>
<publisherId>
<json:string>WRCR</json:string>
</publisherId>
<pages>
<total>14</total>
<last>1642</last>
<first>1629</first>
</pages>
<issn>
<json:string>0043-1397</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>GEOCHEMISTRY</value>
</json:item>
<json:item>
<value>Geochemical cycles</value>
</json:item>
<json:item>
<value>Hydrogeochemistry</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-7973</json:string>
</eissn>
<title>Water Resources Research</title>
<doi>
<json:string>10.1002/(ISSN)1944-7973</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>limnology</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1029/1999WR900004</json:string>
</doi>
<id>C4BD682D97E84B5BC653D4BEE889FB44ADF65959</id>
<score>0.037704695</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C4BD682D97E84B5BC653D4BEE889FB44ADF65959/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C4BD682D97E84B5BC653D4BEE889FB44ADF65959/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C4BD682D97E84B5BC653D4BEE889FB44ADF65959/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Denitrification in marine shales in northeastern Colorado</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>This paper is not subject to U.S. copyright. Published in 1999 by the American Geophysical Union.</p>
</availability>
<date>1999</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Denitrification in marine shales in northeastern Colorado</title>
<author xml:id="author-1">
<persName>
<forename type="first">P. B.</forename>
<surname>McMahon</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">J. K.</forename>
<surname>Böhlke</surname>
</persName>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">B. W.</forename>
<surname>Bruce</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="pISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<idno type="DOI">10.1002/(ISSN)1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1999-05"></date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1629">1629</biblScope>
<biblScope unit="page" to="1642">1642</biblScope>
</imprint>
</monogr>
<idno type="istex">C4BD682D97E84B5BC653D4BEE889FB44ADF65959</idno>
<idno type="DOI">10.1029/1999WR900004</idno>
<idno type="ArticleID">1999WR900004</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3‐, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3− and to measure denitrification rates in the shale. Measured values of NO3−, N2, NH4+, δ15N[NO3−], δ15N[N2], and δ15N[NH4+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3−. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3− transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr−1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr−1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3‐input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO3− uptake by the shale could be considerably larger in areas where NO3− advection.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>GEOCHEMISTRY</term>
</item>
<item>
<term>Geochemical cycles</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Hydrogeochemistry</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998-04-28">Received</change>
<change when="1998-12-30">Registration</change>
<change when="1999-05">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C4BD682D97E84B5BC653D4BEE889FB44ADF65959/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="wrcr8127">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-7973</doi>
<issn type="print">0043-1397</issn>
<issn type="electronic">1944-7973</issn>
<idGroup>
<id type="product" value="WRCR"></id>
<id type="coden" value="WRERAQ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="WATER RESOURCES RESEARCH">Water Resources Research</title>
<title type="short">Water Resour. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi>10.1002/wrcr.v35.5</doi>
<numberingGroup>
<numbering type="journalVolume" number="35">35</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="1999-05">May 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="260" status="forIssue">
<doi>10.1029/1999WR900004</doi>
<idGroup>
<id type="editorialOffice" value="1999WR900004"></id>
<id type="unit" value="WRCR8127"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Hydrogeochemistry</title>
<title type="tocHeading1">Hydrogeochemistry</title>
</titleGroup>
<copyright ownership="thirdParty">This paper is not subject to U.S. copyright. Published in 1999 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1998-04-28"></event>
<event type="manuscriptAccepted" date="1998-12-30"></event>
<event type="publishedPrint" date="1999-05"></event>
<event type="firstOnline" date="2010-07-09"></event>
<event type="publishedOnlineFinalForm" date="2010-07-09"></event>
<event type="publishedPrint" date="1999-05"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1629</numbering>
<numbering type="pageLast">1642</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1030">Geochemical cycles</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="wrcr8127-cit-0000" type="self">
<author>
<familyName>McMahon</familyName>
,
<givenNames>P. B.</givenNames>
</author>
,
<author>
<givenNames>J. K.</givenNames>
<familyName>Böhlke</familyName>
</author>
, and
<author>
<givenNames>B. W.</givenNames>
<familyName>Bruce</familyName>
</author>
(
<pubYear year="1999">1999</pubYear>
),
<articleTitle>Denitrification in marine shales in northeastern Colorado</articleTitle>
,
<journalTitle>Water Resour. Res.</journalTitle>
,
<vol>35</vol>
(
<issue>5</issue>
),
<pageFirst>1629</pageFirst>
<pageLast>1642</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/1999WR900004">10.1029/1999WR900004</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRCR.WRCR8127.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Denitrification in marine shales in northeastern Colorado</title>
<title type="shortAuthors">McMahon ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="wrcr8127-cr-0001">
<personName>
<givenNames>P. B.</givenNames>
<familyName>McMahon</familyName>
</personName>
</creator>
<creator xml:id="wrcr8127-cr-0002">
<personName>
<givenNames>J. K.</givenNames>
<familyName>Böhlke</familyName>
</personName>
</creator>
<creator xml:id="wrcr8127-cr-0003">
<personName>
<givenNames>B. W.</givenNames>
<familyName>Bruce</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="wrcr8127-para-0001">Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO
<sub>3</sub>
<sup></sup>
, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO
<sub>3</sub>
<sup></sup>
and to measure denitrification rates in the shale. Measured values of NO
<sub>3</sub>
<sup></sup>
, N
<sub>2</sub>
, NH
<sub>4</sub>
<sup>+</sup>
, δ
<sup>15</sup>
N[NO
<sub>3</sub>
<sup></sup>
], δ
<sup>15</sup>
N[N
<sub>2</sub>
], and δ
<sup>15</sup>
N[NH
<sub>4</sub>
<sup>+</sup>
] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO
<sub>3</sub>
<sup></sup>
. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO
<sub>3</sub>
<sup></sup>
transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr
<sup>−1</sup>
, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr
<sup>−1</sup>
. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO
<sub>3</sub>
<sup></sup>
input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO
<sub>3</sub>
<sup></sup>
uptake by the shale could be considerably larger in areas where NO
<sub>3</sub>
<sup></sup>
advection.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Denitrification in marine shales in northeastern Colorado</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Denitrification in marine shales in northeastern Colorado</title>
</titleInfo>
<name type="personal">
<namePart type="given">P. B.</namePart>
<namePart type="family">McMahon</namePart>
</name>
<name type="personal">
<namePart type="given">J. K.</namePart>
<namePart type="family">Böhlke</namePart>
</name>
<name type="personal">
<namePart type="given">B. W.</namePart>
<namePart type="family">Bruce</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1999-05</dateIssued>
<dateCaptured encoding="w3cdtf">1998-04-28</dateCaptured>
<dateValid encoding="w3cdtf">1998-12-30</dateValid>
<edition>McMahon, P. B., J. K. Böhlke, and B. W. Bruce (1999), Denitrification in marine shales in northeastern Colorado, Water Resour. Res., 35(5), 1629–1642, doi:10.1029/1999WR900004.</edition>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is <1000 m thick. Ground water in the aquifer is contaminated with NO3‐, and the shale contains abundant potential electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3− and to measure denitrification rates in the shale. Measured values of NO3−, N2, NH4+, δ15N[NO3−], δ15N[N2], and δ15N[NH4+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3−. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3− transport (possibly by diffusion) into the shale. The apparent in situ first‐order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04–0.4 yr−1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr−1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3‐input to the alluvial aquifer. However, the relatively large potential first‐order rate constant for denitrification in the shale indicated that the percentage of NO3− uptake by the shale could be considerably larger in areas where NO3− advection.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Water Resources Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Water Resour. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1000">GEOCHEMISTRY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1030">Geochemical cycles</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Hydrogeochemistry</topic>
</subject>
<identifier type="ISSN">0043-1397</identifier>
<identifier type="eISSN">1944-7973</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-7973</identifier>
<identifier type="CODEN">WRERAQ</identifier>
<identifier type="PublisherID">WRCR</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1629</start>
<end>1642</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C4BD682D97E84B5BC653D4BEE889FB44ADF65959</identifier>
<identifier type="DOI">10.1029/1999WR900004</identifier>
<identifier type="ArticleID">1999WR900004</identifier>
<accessCondition type="use and reproduction" contentType="copyright">This paper is not subject to U.S. copyright. Published in 1999 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C4BD682D97E84B5BC653D4BEE889FB44ADF65959
   |texte=   Denitrification in marine shales in northeastern Colorado
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024