Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate

Identifieur interne : 001067 ( Istex/Corpus ); précédent : 001066; suivant : 001068

Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate

Auteurs : D. A. Roshier ; P. H. Whetton ; R. J. Allan ; A. I. Robertson

Source :

RBID : ISTEX:3252D43F174541D5501BC2A6095C7EEAEAB4D3D0

English descriptors

Abstract

The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.

Url:
DOI: 10.1046/j.1442-9993.2001.01122.x

Links to Exploration step

ISTEX:3252D43F174541D5501BC2A6095C7EEAEAB4D3D0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
<author>
<name sortKey="Roshier, D A" sort="Roshier, D A" uniqKey="Roshier D" first="D. A." last="Roshier">D. A. Roshier</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*Corresponding author.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whetton, P H" sort="Whetton, P H" uniqKey="Whetton P" first="P. H." last="Whetton">P. H. Whetton</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allan, R J" sort="Allan, R J" uniqKey="Allan R" first="R. J." last="Allan">R. J. Allan</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robertson, A I" sort="Robertson, A I" uniqKey="Robertson A" first="A. I." last="Robertson">A. I. Robertson</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3252D43F174541D5501BC2A6095C7EEAEAB4D3D0</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1046/j.1442-9993.2001.01122.x</idno>
<idno type="url">https://api.istex.fr/document/3252D43F174541D5501BC2A6095C7EEAEAB4D3D0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001067</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
<author>
<name sortKey="Roshier, D A" sort="Roshier, D A" uniqKey="Roshier D" first="D. A." last="Roshier">D. A. Roshier</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*Corresponding author.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Whetton, P H" sort="Whetton, P H" uniqKey="Whetton P" first="P. H." last="Whetton">P. H. Whetton</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Allan, R J" sort="Allan, R J" uniqKey="Allan R" first="R. J." last="Allan">R. J. Allan</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Robertson, A I" sort="Robertson, A I" uniqKey="Robertson A" first="A. I." last="Robertson">A. I. Robertson</name>
<affiliation>
<mods:affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Austral Ecology</title>
<idno type="ISSN">1442-9985</idno>
<idno type="eISSN">1442-9993</idno>
<imprint>
<publisher>Blackwell Science Asia Pty. Ltd.</publisher>
<pubPlace>Melbourne, Australia</pubPlace>
<date type="published" when="2001-08">2001-08</date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="371">371</biblScope>
<biblScope unit="page" to="384">384</biblScope>
</imprint>
<idno type="ISSN">1442-9985</idno>
</series>
<idno type="istex">3252D43F174541D5501BC2A6095C7EEAEAB4D3D0</idno>
<idno type="DOI">10.1046/j.1442-9993.2001.01122.x</idno>
<idno type="ArticleID">AEC1122</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1442-9985</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>El Niño–Southern Oscillation</term>
<term>climate change</term>
<term>temporary wetlands</term>
<term>tropical weather systems</term>
<term>waterbirds</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>D. A. Roshier</name>
<affiliations>
<json:string>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</json:string>
<json:string>*Corresponding author.</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. H. Whetton</name>
<affiliations>
<json:string>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. J. Allan</name>
<affiliations>
<json:string>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. I. Robertson</name>
<affiliations>
<json:string>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>climate change</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>El Niño–Southern Oscillation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temporary wetlands</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tropical weather systems</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>waterbirds</value>
</json:item>
</subject>
<articleId>
<json:string>AEC1122</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 858 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2017</abstractCharCount>
<pdfWordCount>7843</pdfWordCount>
<pdfCharCount>49310</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>314</abstractWordCount>
</qualityIndicators>
<title>Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>26</volume>
<publisherId>
<json:string>AEC</json:string>
</publisherId>
<pages>
<total>14</total>
<last>384</last>
<first>371</first>
</pages>
<issn>
<json:string>1442-9985</json:string>
</issn>
<issue>4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1442-9993</json:string>
</eissn>
<title>Austral Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1442-9993</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>ecology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1046/j.1442-9993.2001.01122.x</json:string>
</doi>
<id>3252D43F174541D5501BC2A6095C7EEAEAB4D3D0</id>
<score>0.03951158</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3252D43F174541D5501BC2A6095C7EEAEAB4D3D0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3252D43F174541D5501BC2A6095C7EEAEAB4D3D0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3252D43F174541D5501BC2A6095C7EEAEAB4D3D0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science Asia Pty. Ltd.</publisher>
<pubPlace>Melbourne, Australia</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2001</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
<author xml:id="author-1">
<persName>
<forename type="first">D. A.</forename>
<surname>Roshier</surname>
</persName>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
<affiliation>*Corresponding author.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">P. H.</forename>
<surname>Whetton</surname>
</persName>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">R. J.</forename>
<surname>Allan</surname>
</persName>
<note type="biography">†Present address: Hadley Centre for Climate Prediction and Research, United Kingdom Meteorological Office, Bracknell, Berkshire, UK.</note>
<affiliation>†Present address: Hadley Centre for Climate Prediction and Research, United Kingdom Meteorological Office, Bracknell, Berkshire, UK.</affiliation>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">A. I.</forename>
<surname>Robertson</surname>
</persName>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Austral Ecology</title>
<idno type="pISSN">1442-9985</idno>
<idno type="eISSN">1442-9993</idno>
<idno type="DOI">10.1111/(ISSN)1442-9993</idno>
<imprint>
<publisher>Blackwell Science Asia Pty. Ltd.</publisher>
<pubPlace>Melbourne, Australia</pubPlace>
<date type="published" when="2001-08"></date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="371">371</biblScope>
<biblScope unit="page" to="384">384</biblScope>
</imprint>
</monogr>
<idno type="istex">3252D43F174541D5501BC2A6095C7EEAEAB4D3D0</idno>
<idno type="DOI">10.1046/j.1442-9993.2001.01122.x</idno>
<idno type="ArticleID">AEC1122</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>climate change</term>
</item>
<item>
<term>El Niño–Southern Oscillation</term>
</item>
<item>
<term>temporary wetlands</term>
</item>
<item>
<term>tropical weather systems</term>
</item>
<item>
<term>waterbirds</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3252D43F174541D5501BC2A6095C7EEAEAB4D3D0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science Asia Pty. Ltd.</publisherName>
<publisherLoc>Melbourne, Australia</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1442-9993</doi>
<issn type="print">1442-9985</issn>
<issn type="electronic">1442-9993</issn>
<idGroup>
<id type="product" value="AEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="AUSTRAL ECOLOGY">Austral Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="08104">
<doi origin="wiley">10.1111/aec.2001.26.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="26">26</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="2001-08">August 2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0037100" status="forIssue">
<doi origin="wiley">10.1046/j.1442-9993.2001.01122.x</doi>
<idGroup>
<id type="unit" value="AEC1122"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Article</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2001-12-20"></event>
<event type="publishedOnlineFinalForm" date="2001-12-20"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4.7 mode:FullText" date="2011-03-02"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-15"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="371">371</numbering>
<numbering type="pageLast" number="384">384</numbering>
</numberingGroup>
<correspondenceTo>*Corresponding author.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:AEC.AEC1122.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="95"></count>
<count type="wordTotal" number="9340"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="9"></count>
</countGroup>
<titleGroup>
<title type="main">Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
<title type="shortAuthors">D. A. ROSHIER
<i>ET AL.</i>
</title>
<title type="short">WETLAND HABITATS IN ARID AUSTRALIA</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#aff-1-1" corresponding="yes">
<personName>
<givenNames>D. A.</givenNames>
<familyName>Roshier</familyName>
</personName>
</creator>
1
<creator creatorRole="author" xml:id="cr2" affiliationRef="#aff-1-1">
<personName>
<givenNames>P. H.</givenNames>
<familyName>Whetton</familyName>
</personName>
</creator>
2
<creator creatorRole="author" xml:id="cr3" affiliationRef="#aff-1-1" noteRef="#fn1">
<personName>
<givenNames>R. J.</givenNames>
<familyName>Allan</familyName>
</personName>
</creator>
2
<creator creatorRole="author" xml:id="cr4" affiliationRef="#aff-1-1">
<personName>
<givenNames>A. I.</givenNames>
<familyName>Robertson</familyName>
</personName>
</creator>
1 </creators>
<affiliationGroup>
<affiliation xml:id="aff-1-1" countryCode="AU">
<unparsedAffiliation>
<sup>1</sup>
Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email:
<email>droshier@csu.edu.au</email>
) and
<sup>2</sup>
Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">climate change</keyword>
<keyword xml:id="k2">El Niño–Southern Oscillation</keyword>
<keyword xml:id="k3">temporary wetlands</keyword>
<keyword xml:id="k4">tropical weather systems</keyword>
<keyword xml:id="k5">waterbirds</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>†Present address: Hadley Centre for Climate Prediction and Research, United Kingdom Meteorological Office, Bracknell, Berkshire, UK.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>WETLAND HABITATS IN ARID AUSTRALIA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate</title>
</titleInfo>
<name type="personal">
<namePart type="given">D. A.</namePart>
<namePart type="family">Roshier</namePart>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
<affiliation>*Corresponding author.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P. H.</namePart>
<namePart type="family">Whetton</namePart>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. J.</namePart>
<namePart type="family">Allan</namePart>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
<description>†Present address: Hadley Centre for Climate Prediction and Research, United Kingdom Meteorological Office, Bracknell, Berkshire, UK.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A. I.</namePart>
<namePart type="family">Robertson</namePart>
<affiliation>1 Johnstone Centre, School of Science and Technology, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales 2678, Australia (Email: droshier@csu.edu.au) and 2Climate Impact Team, CSIRO Atmospheric Research, Aspendale, Victoria, Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Science Asia Pty. Ltd.</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2001-08</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">3</extent>
<extent unit="references">95</extent>
<extent unit="words">9340</extent>
</physicalDescription>
<abstract lang="en">The distribution and area of temporary wetlands across the arid zone of Australia are highly variable. Any change in their distribution or extent due to climate change and/or extraction of water has the potential to adversely impact dependent biota. Satellite imagery was used to determine the spatial and temporal distribution of wetlands across arid Australia over an 11‐year period. Synoptic climate data were examined to identify the weather systems that caused wetland filling events. Simple threshold models relating rainfall to wetland filling for seven large regions of Australia were developed to examine patterns of wetland filling over the last 100 years. These data were used to examine the climatic processes that drive wetland filling and the likely impacts of climate change on wetland distribution. The strongest climatic influence on wetland filling in the arid zone was tropical weather systems. Their influence extended into southern regions and their effects were often widespread. Variation in wetland area in all regions of the arid zone was high. The Lake Eyre Basin experienced more large flood events than other regions and had the most large, persistent wetlands that remain unregulated by humans. Hindcasting of past filling events indicated that there was a general pattern of frequent wetland filling across inland Australia in the 1910s, 1950s and 1970s, and less frequent wetland filling in the late 1920s, 1930s and 1960s. Furthermore, there appeared to be no period greater than 12 months over the previous 95 years when there was no predicted wetland filling in the arid zone. Wetland ecosystems dependent on a few infrequent heavy rainfalls are clearly vulnerable to any change in frequency or magnitude of these events. Climate change that results in a drying or reduced frequency of large flood events, exacerbated by extraction of water for agriculture, could be catastrophic for some biota, particularly waterbirds, which use a mosaic of wetland habitat at broad spatial scales.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>climate change</topic>
<topic>El Niño–Southern Oscillation</topic>
<topic>temporary wetlands</topic>
<topic>tropical weather systems</topic>
<topic>waterbirds</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Austral Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1442-9985</identifier>
<identifier type="eISSN">1442-9993</identifier>
<identifier type="DOI">10.1111/(ISSN)1442-9993</identifier>
<identifier type="PublisherID">AEC</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>371</start>
<end>384</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3252D43F174541D5501BC2A6095C7EEAEAB4D3D0</identifier>
<identifier type="DOI">10.1046/j.1442-9993.2001.01122.x</identifier>
<identifier type="ArticleID">AEC1122</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Science Asia Pty. Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001067 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001067 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3252D43F174541D5501BC2A6095C7EEAEAB4D3D0
   |texte=   Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024