Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling

Identifieur interne : 001051 ( Istex/Corpus ); précédent : 001050; suivant : 001052

Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling

Auteurs : Changsheng Li ; Arvin Mosier ; Reiner Wassmann ; Zucong Cai ; Xunhua Zheng ; Yao Huang ; Haruo Tsuruta ; Jariya Boonjawat ; Rhoda Lantin

Source :

RBID : ISTEX:1B4FB20A0B7F5072AD70E80662A241152848939A

Abstract

A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO2), methane (CH4), or nitrous oxide (N2O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO2, CH4, and N2O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH4‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH4 flux from rice agriculture reduced to 1.7–7.9 Tg CH4‐C. It implied that the water management change in China reduced CH4 fluxes by 4.2–4.7 Tg CH4‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N2O fluxes by 0.13–0.20 Tg N2O‐N/yr, although CO2 fluxes were only slightly altered. Since N2O possesses a radiative forcing more than 10 times higher than CH4, the increase in N2O offset about 65% of the benefit gained by the decrease in CH4 emissions.

Url:
DOI: 10.1029/2003GB002045

Links to Exploration step

ISTEX:1B4FB20A0B7F5072AD70E80662A241152848939A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
<author>
<name sortKey="Li, Changsheng" sort="Li, Changsheng" uniqKey="Li C" first="Changsheng" last="Li">Changsheng Li</name>
<affiliation>
<mods:affiliation>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, New Hampshire, Durham, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosier, Arvin" sort="Mosier, Arvin" uniqKey="Mosier A" first="Arvin" last="Mosier">Arvin Mosier</name>
<affiliation>
<mods:affiliation>U.S. Department of Agriculture/ARS, Colorado, Fort Collins, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: amosier@lamar.colostate.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wassmann, Reiner" sort="Wassmann, Reiner" uniqKey="Wassmann R" first="Reiner" last="Wassmann">Reiner Wassmann</name>
<affiliation>
<mods:affiliation>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe), Garmisch‐Partenkirchen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cai, Zucong" sort="Cai, Zucong" uniqKey="Cai Z" first="Zucong" last="Cai">Zucong Cai</name>
<affiliation>
<mods:affiliation>Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xunhua" sort="Zheng, Xunhua" uniqKey="Zheng X" first="Xunhua" last="Zheng">Xunhua Zheng</name>
<affiliation>
<mods:affiliation>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yao" sort="Huang, Yao" uniqKey="Huang Y" first="Yao" last="Huang">Yao Huang</name>
<affiliation>
<mods:affiliation>College of Agricultural Environment, Nanjing University of Agriculture, Nanjing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsuruta, Haruo" sort="Tsuruta, Haruo" uniqKey="Tsuruta H" first="Haruo" last="Tsuruta">Haruo Tsuruta</name>
<affiliation>
<mods:affiliation>National Institute for Agricultural Environmental Sciences, Tsukuba, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boonjawat, Jariya" sort="Boonjawat, Jariya" uniqKey="Boonjawat J" first="Jariya" last="Boonjawat">Jariya Boonjawat</name>
<affiliation>
<mods:affiliation>Southeast Asia START Regional Centre, Chulalongkorn University, Bangkok, Thailand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lantin, Rhoda" sort="Lantin, Rhoda" uniqKey="Lantin R" first="Rhoda" last="Lantin">Rhoda Lantin</name>
<affiliation>
<mods:affiliation>International Rice Research Institute, Manila, Philippines</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1B4FB20A0B7F5072AD70E80662A241152848939A</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1029/2003GB002045</idno>
<idno type="url">https://api.istex.fr/document/1B4FB20A0B7F5072AD70E80662A241152848939A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001051</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001051</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
<author>
<name sortKey="Li, Changsheng" sort="Li, Changsheng" uniqKey="Li C" first="Changsheng" last="Li">Changsheng Li</name>
<affiliation>
<mods:affiliation>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, New Hampshire, Durham, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mosier, Arvin" sort="Mosier, Arvin" uniqKey="Mosier A" first="Arvin" last="Mosier">Arvin Mosier</name>
<affiliation>
<mods:affiliation>U.S. Department of Agriculture/ARS, Colorado, Fort Collins, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: amosier@lamar.colostate.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wassmann, Reiner" sort="Wassmann, Reiner" uniqKey="Wassmann R" first="Reiner" last="Wassmann">Reiner Wassmann</name>
<affiliation>
<mods:affiliation>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe), Garmisch‐Partenkirchen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cai, Zucong" sort="Cai, Zucong" uniqKey="Cai Z" first="Zucong" last="Cai">Zucong Cai</name>
<affiliation>
<mods:affiliation>Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Xunhua" sort="Zheng, Xunhua" uniqKey="Zheng X" first="Xunhua" last="Zheng">Xunhua Zheng</name>
<affiliation>
<mods:affiliation>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Yao" sort="Huang, Yao" uniqKey="Huang Y" first="Yao" last="Huang">Yao Huang</name>
<affiliation>
<mods:affiliation>College of Agricultural Environment, Nanjing University of Agriculture, Nanjing, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tsuruta, Haruo" sort="Tsuruta, Haruo" uniqKey="Tsuruta H" first="Haruo" last="Tsuruta">Haruo Tsuruta</name>
<affiliation>
<mods:affiliation>National Institute for Agricultural Environmental Sciences, Tsukuba, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boonjawat, Jariya" sort="Boonjawat, Jariya" uniqKey="Boonjawat J" first="Jariya" last="Boonjawat">Jariya Boonjawat</name>
<affiliation>
<mods:affiliation>Southeast Asia START Regional Centre, Chulalongkorn University, Bangkok, Thailand</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lantin, Rhoda" sort="Lantin, Rhoda" uniqKey="Lantin R" first="Rhoda" last="Lantin">Rhoda Lantin</name>
<affiliation>
<mods:affiliation>International Rice Research Institute, Manila, Philippines</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Biogeochemical Cycles</title>
<title level="j" type="abbrev">Global Biogeochem. Cycles</title>
<idno type="ISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-03">2004-03</date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0886-6236</idno>
</series>
<idno type="istex">1B4FB20A0B7F5072AD70E80662A241152848939A</idno>
<idno type="DOI">10.1029/2003GB002045</idno>
<idno type="ArticleID">2003GB002045</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO2), methane (CH4), or nitrous oxide (N2O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO2, CH4, and N2O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH4‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH4 flux from rice agriculture reduced to 1.7–7.9 Tg CH4‐C. It implied that the water management change in China reduced CH4 fluxes by 4.2–4.7 Tg CH4‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N2O fluxes by 0.13–0.20 Tg N2O‐N/yr, although CO2 fluxes were only slightly altered. Since N2O possesses a radiative forcing more than 10 times higher than CH4, the increase in N2O offset about 65% of the benefit gained by the decrease in CH4 emissions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Changsheng Li</name>
<affiliations>
<json:string>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, New Hampshire, Durham, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Arvin Mosier</name>
<affiliations>
<json:string>U.S. Department of Agriculture/ARS, Colorado, Fort Collins, USA</json:string>
<json:string>E-mail: amosier@lamar.colostate.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Reiner Wassmann</name>
<affiliations>
<json:string>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe), Garmisch‐Partenkirchen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Zucong Cai</name>
<affiliations>
<json:string>Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xunhua Zheng</name>
<affiliations>
<json:string>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yao Huang</name>
<affiliations>
<json:string>College of Agricultural Environment, Nanjing University of Agriculture, Nanjing, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Haruo Tsuruta</name>
<affiliations>
<json:string>National Institute for Agricultural Environmental Sciences, Tsukuba, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jariya Boonjawat</name>
<affiliations>
<json:string>Southeast Asia START Regional Centre, Chulalongkorn University, Bangkok, Thailand</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rhoda Lantin</name>
<affiliations>
<json:string>International Rice Research Institute, Manila, Philippines</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>climate change</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methane</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nitrous oxide</value>
</json:item>
</subject>
<articleId>
<json:string>2003GB002045</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO2), methane (CH4), or nitrous oxide (N2O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO2, CH4, and N2O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH4‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH4 flux from rice agriculture reduced to 1.7–7.9 Tg CH4‐C. It implied that the water management change in China reduced CH4 fluxes by 4.2–4.7 Tg CH4‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N2O fluxes by 0.13–0.20 Tg N2O‐N/yr, although CO2 fluxes were only slightly altered. Since N2O possesses a radiative forcing more than 10 times higher than CH4, the increase in N2O offset about 65% of the benefit gained by the decrease in CH4 emissions.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>610 x 795 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2943</abstractCharCount>
<pdfWordCount>10459</pdfWordCount>
<pdfCharCount>62654</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>447</abstractWordCount>
</qualityIndicators>
<title>Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>18</volume>
<publisherId>
<json:string>GBC</json:string>
</publisherId>
<pages>
<total>19</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0886-6236</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Biosphere/atmosphere interactions</value>
</json:item>
<json:item>
<value>Troposphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Biosphere/atmosphere interactions</value>
</json:item>
<json:item>
<value>Evolution of the atmosphere</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Biogeochemical kinetics and reaction modeling</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Biogeochemistry</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Atmosphere</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Biogeochemical cycles, processes, and modeling</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-9224</json:string>
</eissn>
<title>Global Biogeochemical Cycles</title>
<doi>
<json:string>10.1002/(ISSN)1944-9224</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1029/2003GB002045</json:string>
</doi>
<id>1B4FB20A0B7F5072AD70E80662A241152848939A</id>
<score>0.036044475</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1B4FB20A0B7F5072AD70E80662A241152848939A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1B4FB20A0B7F5072AD70E80662A241152848939A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1B4FB20A0B7F5072AD70E80662A241152848939A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2004 by the American Geophysical Union.</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
<author xml:id="author-1">
<persName>
<forename type="first">Changsheng</forename>
<surname>Li</surname>
</persName>
<affiliation>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, New Hampshire, Durham, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Arvin</forename>
<surname>Mosier</surname>
</persName>
<email>amosier@lamar.colostate.edu</email>
<affiliation>U.S. Department of Agriculture/ARS, Colorado, Fort Collins, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Reiner</forename>
<surname>Wassmann</surname>
</persName>
<affiliation>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe), Garmisch‐Partenkirchen, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Zucong</forename>
<surname>Cai</surname>
</persName>
<affiliation>Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Xunhua</forename>
<surname>Zheng</surname>
</persName>
<affiliation>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Yao</forename>
<surname>Huang</surname>
</persName>
<affiliation>College of Agricultural Environment, Nanjing University of Agriculture, Nanjing, China</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Haruo</forename>
<surname>Tsuruta</surname>
</persName>
<affiliation>National Institute for Agricultural Environmental Sciences, Tsukuba, Japan</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">Jariya</forename>
<surname>Boonjawat</surname>
</persName>
<affiliation>Southeast Asia START Regional Centre, Chulalongkorn University, Bangkok, Thailand</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">Rhoda</forename>
<surname>Lantin</surname>
</persName>
<affiliation>International Rice Research Institute, Manila, Philippines</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Biogeochemical Cycles</title>
<title level="j" type="abbrev">Global Biogeochem. Cycles</title>
<idno type="pISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<idno type="DOI">10.1002/(ISSN)1944-9224</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-03"></date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">1B4FB20A0B7F5072AD70E80662A241152848939A</idno>
<idno type="DOI">10.1029/2003GB002045</idno>
<idno type="ArticleID">2003GB002045</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO2), methane (CH4), or nitrous oxide (N2O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO2, CH4, and N2O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH4‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH4 flux from rice agriculture reduced to 1.7–7.9 Tg CH4‐C. It implied that the water management change in China reduced CH4 fluxes by 4.2–4.7 Tg CH4‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N2O fluxes by 0.13–0.20 Tg N2O‐N/yr, although CO2 fluxes were only slightly altered. Since N2O possesses a radiative forcing more than 10 times higher than CH4, the increase in N2O offset about 65% of the benefit gained by the decrease in CH4 emissions.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>climate change</term>
</item>
<item>
<term>methane</term>
</item>
<item>
<term>nitrous oxide</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Biosphere/atmosphere interactions</term>
</item>
<item>
<term>Troposphere: composition and chemistry</term>
</item>
<item>
<term>Biosphere/atmosphere interactions</term>
</item>
<item>
<term>Evolution of the atmosphere</term>
</item>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Biogeochemical kinetics and reaction modeling</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Biogeochemistry</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Atmosphere</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
<item>
<term>PALEOCEANOGRAPHY</term>
</item>
<item>
<term>Biogeochemical cycles, processes, and modeling</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-01-29">Received</change>
<change when="2004-01-30">Registration</change>
<change when="2004-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1B4FB20A0B7F5072AD70E80662A241152848939A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="gbc1038">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-9224</doi>
<issn type="print">0886-6236</issn>
<issn type="electronic">1944-9224</issn>
<idGroup>
<id type="product" value="GBC"></id>
<id type="coden" value="GBCYEP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="GLOBAL BIOGEOCHEMICAL CYCLES">Global Biogeochemical Cycles</title>
<title type="short">Global Biogeochem. Cycles</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi>10.1002/gbc.v18.1</doi>
<numberingGroup>
<numbering type="journalVolume" number="18">18</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2004-03">March 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="30" type="article" status="forIssue">
<doi>10.1029/2003GB002045</doi>
<idGroup>
<id type="editorialOffice" value="2003GB002045"></id>
<id type="society" value="GB1043"></id>
<id type="unit" value="GBC1038"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2004 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-01-29"></event>
<event type="manuscriptRevised" date="2004-01-12"></event>
<event type="manuscriptAccepted" date="2004-01-30"></event>
<event type="firstOnline" date="2004-03-25"></event>
<event type="publishedOnlineFinalForm" date="2004-03-25"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.3; WileyML 3G Packaging Tool v1.0; AGU2WileyML3G Final Clean Up v1.0" date="2012-12-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</subject>
<subject href="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1610">Atmosphere</subject>
<subject href="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="gbc1038-cit-0000" type="self">
<author>
<familyName>Li</familyName>
,
<givenNames>C.</givenNames>
</author>
,
<author>
<givenNames>A.</givenNames>
<familyName>Mosier</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Wassmann</familyName>
</author>
,
<author>
<givenNames>Z.</givenNames>
<familyName>Cai</familyName>
</author>
,
<author>
<givenNames>X.</givenNames>
<familyName>Zheng</familyName>
</author>
,
<author>
<givenNames>Y.</givenNames>
<familyName>Huang</familyName>
</author>
,
<author>
<givenNames>H.</givenNames>
<familyName>Tsuruta</familyName>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Boonjawat</familyName>
</author>
, and
<author>
<givenNames>R.</givenNames>
<familyName>Lantin</familyName>
</author>
(
<pubYear year="2004">2004</pubYear>
),
<articleTitle>Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</articleTitle>
,
<journalTitle>Global Biogeochem. Cycles</journalTitle>
,
<vol>18</vol>
, GB1043, doi:
<accessionId ref="info:doi/10.1029/2003GB002045">10.1029/2003GB002045</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GBC.GBC1038.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="14"></count>
<count type="tableTotal" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
<title type="short">MODELING GHGS IN RICE‐BASED AGRICULTURE</title>
<title type="shortAuthors">Li
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="gbc1038-cr-0001" affiliationRef="#gbc1038-aff-0001">
<personName>
<givenNames>Changsheng</givenNames>
<familyName>Li</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0002" affiliationRef="#gbc1038-aff-0002">
<personName>
<givenNames>Arvin</givenNames>
<familyName>Mosier</familyName>
</personName>
<contactDetails>
<email normalForm="amosier@lamar.colostate.edu">amosier@lamar.colostate.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0003" affiliationRef="#gbc1038-aff-0003">
<personName>
<givenNames>Reiner</givenNames>
<familyName>Wassmann</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0004" affiliationRef="#gbc1038-aff-0004">
<personName>
<givenNames>Zucong</givenNames>
<familyName>Cai</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0005" affiliationRef="#gbc1038-aff-0005">
<personName>
<givenNames>Xunhua</givenNames>
<familyName>Zheng</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0006" affiliationRef="#gbc1038-aff-0006">
<personName>
<givenNames>Yao</givenNames>
<familyName>Huang</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0007" affiliationRef="#gbc1038-aff-0007">
<personName>
<givenNames>Haruo</givenNames>
<familyName>Tsuruta</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0008" affiliationRef="#gbc1038-aff-0008">
<personName>
<givenNames>Jariya</givenNames>
<familyName>Boonjawat</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="gbc1038-cr-0009" affiliationRef="#gbc1038-aff-0009">
<personName>
<givenNames>Rhoda</givenNames>
<familyName>Lantin</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="gbc1038-aff-0001">
<orgDiv>Institute for the Study of Earth, Oceans, and Space</orgDiv>
<orgName>University of New Hampshire</orgName>
<address>
<city>Durham</city>
<countryPart>New Hampshire</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="gbc1038-aff-0002">
<orgName>U.S. Department of Agriculture/ARS</orgName>
<address>
<city>Fort Collins</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="gbc1038-aff-0003">
<orgName>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe)</orgName>
<address>
<city>Garmisch‐Partenkirchen</city>
<country>Germany</country>
</address>
</affiliation>
<affiliation countryCode="CN" type="organization" xml:id="gbc1038-aff-0004">
<orgDiv>Institute of Soil Science</orgDiv>
<orgName>Chinese Academy of Sciences</orgName>
<address>
<city>Nanjing</city>
<country>China</country>
</address>
</affiliation>
<affiliation countryCode="CN" type="organization" xml:id="gbc1038-aff-0005">
<orgDiv>Institute of Atmospheric Physics</orgDiv>
<orgName>Chinese Academy of Sciences</orgName>
<address>
<city>Beijing</city>
<country>China</country>
</address>
</affiliation>
<affiliation countryCode="CN" type="organization" xml:id="gbc1038-aff-0006">
<orgDiv>College of Agricultural Environment</orgDiv>
<orgName>Nanjing University of Agriculture</orgName>
<address>
<city>Nanjing</city>
<country>China</country>
</address>
</affiliation>
<affiliation countryCode="JP" type="organization" xml:id="gbc1038-aff-0007">
<orgName>National Institute for Agricultural Environmental Sciences</orgName>
<address>
<city>Tsukuba</city>
<country>Japan</country>
</address>
</affiliation>
<affiliation countryCode="TH" type="organization" xml:id="gbc1038-aff-0008">
<orgDiv>Southeast Asia START Regional Centre</orgDiv>
<orgName>Chulalongkorn University</orgName>
<address>
<city>Bangkok</city>
<country>Thailand</country>
</address>
</affiliation>
<affiliation countryCode="PH" type="organization" xml:id="gbc1038-aff-0009">
<orgName>International Rice Research Institute</orgName>
<address>
<city>Manila</city>
<country>Philippines</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="gbc1038-kwd-0001">climate change</keyword>
<keyword xml:id="gbc1038-kwd-0002">methane</keyword>
<keyword xml:id="gbc1038-kwd-0003">nitrous oxide</keyword>
</keywordGroup>
<supportingInformation></supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="gbc1038-para-0001" label="1">A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO
<sub>2</sub>
), methane (CH
<sub>4</sub>
), or nitrous oxide (N
<sub>2</sub>
O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO
<sub>2</sub>
, CH
<sub>4</sub>
, and N
<sub>2</sub>
O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH
<sub>4</sub>
flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH
<sub>4</sub>
‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH
<sub>4</sub>
flux from rice agriculture reduced to 1.7–7.9 Tg CH
<sub>4</sub>
‐C. It implied that the water management change in China reduced CH
<sub>4</sub>
fluxes by 4.2–4.7 Tg CH
<sub>4</sub>
‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N
<sub>2</sub>
O fluxes by 0.13–0.20 Tg N
<sub>2</sub>
O‐N/yr, although CO
<sub>2</sub>
fluxes were only slightly altered. Since N
<sub>2</sub>
O possesses a radiative forcing more than 10 times higher than CH
<sub>4</sub>
, the increase in N
<sub>2</sub>
O offset about 65% of the benefit gained by the decrease in CH
<sub>4</sub>
emissions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MODELING GHGS IN RICE‐BASED AGRICULTURE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changsheng</namePart>
<namePart type="family">Li</namePart>
<affiliation>Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, New Hampshire, Durham, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arvin</namePart>
<namePart type="family">Mosier</namePart>
<affiliation>U.S. Department of Agriculture/ARS, Colorado, Fort Collins, USA</affiliation>
<affiliation>E-mail: amosier@lamar.colostate.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reiner</namePart>
<namePart type="family">Wassmann</namePart>
<affiliation>Institute for Meteorology and Climate Research (Forschungszentrum Karlsruhe), Garmisch‐Partenkirchen, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zucong</namePart>
<namePart type="family">Cai</namePart>
<affiliation>Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xunhua</namePart>
<namePart type="family">Zheng</namePart>
<affiliation>Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Huang</namePart>
<affiliation>College of Agricultural Environment, Nanjing University of Agriculture, Nanjing, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haruo</namePart>
<namePart type="family">Tsuruta</namePart>
<affiliation>National Institute for Agricultural Environmental Sciences, Tsukuba, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jariya</namePart>
<namePart type="family">Boonjawat</namePart>
<affiliation>Southeast Asia START Regional Centre, Chulalongkorn University, Bangkok, Thailand</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rhoda</namePart>
<namePart type="family">Lantin</namePart>
<affiliation>International Rice Research Institute, Manila, Philippines</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2004-03</dateIssued>
<dateCaptured encoding="w3cdtf">2003-01-29</dateCaptured>
<dateValid encoding="w3cdtf">2004-01-30</dateValid>
<edition>Li, C., A. Mosier, R. Wassmann, Z. Cai, X. Zheng, Y. Huang, H. Tsuruta, J. Boonjawat, and R. Lantin (2004), Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling, Global Biogeochem. Cycles, 18, GB1043, doi:10.1029/2003GB002045.</edition>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">14</extent>
<extent unit="tables">3</extent>
</physicalDescription>
<abstract>A biogeochemical model, Denitrification‐Decomposition (DNDC), was modified to enhance its capacity of predicting greenhouse gas (GHG) emissions from paddy rice ecosystems. The major modifications focused on simulations of anaerobic biogeochemistry and rice growth as well as parameterization of paddy rice management. The new model was tested for its sensitivities to management alternatives and variations in natural conditions including weather and soil properties. The test results indicated that (1) varying management practices could substantially affect carbon dioxide (CO2), methane (CH4), or nitrous oxide (N2O) emissions from rice paddies; (2) soil properties affected the impacts of management alternatives on GHG emissions; and (3) the most sensitive management practices or soil factors varied for different GHGs. For estimating GHG emissions under certain management conditions at regional scale, the spatial heterogeneity of soil properties (e.g., texture, SOC content, pH) are the major source of uncertainty. An approach, the most sensitive factor (MSF) method, was developed for DNDC to bring the uncertainty under control. According to the approach, DNDC was run twice for each grid cell with the maximum and minimum values of the most sensitive soil factors commonly observed in the grid cell. The simulated two fluxes formed a range, which was wide enough to include the “real” flux from the grid cell with a high probability. This approach was verified against a traditional statistical approach, the Monte Carlo analysis, for three selected counties or provinces in China, Thailand, and United States. Comparison between the results from the two methods indicated that 61‐99% of the Monte Carlo‐produced GHG fluxes were located within the MSA‐produced flux ranges. The result implies that the MSF method is feasible and reliable to quantify the uncertainties produced in the upscaling processes. Equipped with the MSF method, DNDC modeled emissions of CO2, CH4, and N2O from all of the rice paddies in China with two different water management practices, i.e., continuous flooding and midseason drainage, which were the dominant practices before 1980 and in 2000, respectively. The modeled results indicated that total CH4 flux from the simulated 30 million ha of Chinese rice fields ranged from 6.4 to 12.0 Tg CH4‐C per year under the continuous flooding conditions. With the midseason drainage scenario, the national CH4 flux from rice agriculture reduced to 1.7–7.9 Tg CH4‐C. It implied that the water management change in China reduced CH4 fluxes by 4.2–4.7 Tg CH4‐C per year. Shifting the water management from continuous flooding to midseason drainage increased N2O fluxes by 0.13–0.20 Tg N2O‐N/yr, although CO2 fluxes were only slightly altered. Since N2O possesses a radiative forcing more than 10 times higher than CH4, the increase in N2O offset about 65% of the benefit gained by the decrease in CH4 emissions.</abstract>
<subject>
<genre>keywords</genre>
<topic>climate change</topic>
<topic>methane</topic>
<topic>nitrous oxide</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Biogeochemical Cycles</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Global Biogeochem. Cycles</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0412">Biogeochemical kinetics and reaction modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0414">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0793">Biogeochemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1610">Atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1615">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4805">Biogeochemical cycles, processes, and modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4912">Biogeochemical cycles, processes, and modeling</topic>
</subject>
<identifier type="ISSN">0886-6236</identifier>
<identifier type="eISSN">1944-9224</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-9224</identifier>
<identifier type="CODEN">GBCYEP</identifier>
<identifier type="PublisherID">GBC</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1B4FB20A0B7F5072AD70E80662A241152848939A</identifier>
<identifier type="DOI">10.1029/2003GB002045</identifier>
<identifier type="ArticleID">2003GB002045</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2004 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001051 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001051 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1B4FB20A0B7F5072AD70E80662A241152848939A
   |texte=   Modeling greenhouse gas emissions from rice‐based production systems: Sensitivity and upscaling
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024