Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats

Identifieur interne : 000F76 ( Istex/Corpus ); précédent : 000F75; suivant : 000F77

Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats

Auteurs : Jay R. Reichman ; Lidia S. Watrud ; E. Henry Lee ; Connie A. Burdick ; Mike A. Bollman ; Marjorie J. Storm ; George A. King ; Carol Mallory-Smith

Source :

RBID : ISTEX:C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D

English descriptors

Abstract

Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.

Url:
DOI: 10.1111/j.1365-294X.2006.03072.x

Links to Exploration step

ISTEX:C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
<author>
<name sortKey="Reichman, Jay R" sort="Reichman, Jay R" uniqKey="Reichman J" first="Jay R." last="Reichman">Jay R. Reichman</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watrud, Lidia S" sort="Watrud, Lidia S" uniqKey="Watrud L" first="Lidia S." last="Watrud">Lidia S. Watrud</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, E Henry" sort="Lee, E Henry" uniqKey="Lee E" first="E. Henry" last="Lee">E. Henry Lee</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burdick, Connie A" sort="Burdick, Connie A" uniqKey="Burdick C" first="Connie A." last="Burdick">Connie A. Burdick</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bollman, Mike A" sort="Bollman, Mike A" uniqKey="Bollman M" first="Mike A." last="Bollman">Mike A. Bollman</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Storm, Marjorie J" sort="Storm, Marjorie J" uniqKey="Storm M" first="Marjorie J." last="Storm">Marjorie J. Storm</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="King, George A" sort="King, George A" uniqKey="King G" first="George A." last="King">George A. King</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mallory Mith, Carol" sort="Mallory Mith, Carol" uniqKey="Mallory Mith C" first="Carol" last="Mallory-Smith">Carol Mallory-Smith</name>
<affiliation>
<mods:affiliation>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1111/j.1365-294X.2006.03072.x</idno>
<idno type="url">https://api.istex.fr/document/C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F76</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
<author>
<name sortKey="Reichman, Jay R" sort="Reichman, Jay R" uniqKey="Reichman J" first="Jay R." last="Reichman">Jay R. Reichman</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Watrud, Lidia S" sort="Watrud, Lidia S" uniqKey="Watrud L" first="Lidia S." last="Watrud">Lidia S. Watrud</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, E Henry" sort="Lee, E Henry" uniqKey="Lee E" first="E. Henry" last="Lee">E. Henry Lee</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burdick, Connie A" sort="Burdick, Connie A" uniqKey="Burdick C" first="Connie A." last="Burdick">Connie A. Burdick</name>
<affiliation>
<mods:affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bollman, Mike A" sort="Bollman, Mike A" uniqKey="Bollman M" first="Mike A." last="Bollman">Mike A. Bollman</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Storm, Marjorie J" sort="Storm, Marjorie J" uniqKey="Storm M" first="Marjorie J." last="Storm">Marjorie J. Storm</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="King, George A" sort="King, George A" uniqKey="King G" first="George A." last="King">George A. King</name>
<affiliation>
<mods:affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mallory Mith, Carol" sort="Mallory Mith, Carol" uniqKey="Mallory Mith C" first="Carol" last="Mallory-Smith">Carol Mallory-Smith</name>
<affiliation>
<mods:affiliation>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Ecology</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2006-11">2006-11</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="4243">4243</biblScope>
<biblScope unit="page" to="4255">4255</biblScope>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
<idno type="istex">C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D</idno>
<idno type="DOI">10.1111/j.1365-294X.2006.03072.x</idno>
<idno type="ArticleID">MEC3072</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrostis stolonifera</term>
<term>CP4 EPSPS</term>
<term>creeping bentgrass</term>
<term>transgene escape</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>JAY R. REICHMAN</name>
<affiliations>
<json:string>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>LIDIA S. WATRUD</name>
<affiliations>
<json:string>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. HENRY LEE</name>
<affiliations>
<json:string>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CONNIE A. BURDICK</name>
<affiliations>
<json:string>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MIKE A. BOLLMAN</name>
<affiliations>
<json:string>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MARJORIE J. STORM</name>
<affiliations>
<json:string>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>GEORGE A. KING</name>
<affiliations>
<json:string>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CAROL MALLORY‐SMITH</name>
<affiliations>
<json:string>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Agrostis stolonifera</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CP4 EPSPS</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>creeping bentgrass</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>transgene escape</value>
</json:item>
</subject>
<articleId>
<json:string>MEC3072</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 782 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1933</abstractCharCount>
<pdfWordCount>8516</pdfWordCount>
<pdfCharCount>53670</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>258</abstractWordCount>
</qualityIndicators>
<title>Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>15</volume>
<publisherId>
<json:string>MEC</json:string>
</publisherId>
<pages>
<total>13</total>
<last>4255</last>
<first>4243</first>
</pages>
<issn>
<json:string>0962-1083</json:string>
</issn>
<issue>13</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-294X</json:string>
</eissn>
<title>Molecular Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1365-294X</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>evolutionary biology</json:string>
<json:string>ecology</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>evolutionary biology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1111/j.1365-294X.2006.03072.x</json:string>
</doi>
<id>C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D</id>
<score>0.04101784</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
<author xml:id="author-1">
<persName>
<forename type="first">JAY R.</forename>
<surname>REICHMAN</surname>
</persName>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">LIDIA S.</forename>
<surname>WATRUD</surname>
</persName>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">E. HENRY</forename>
<surname>LEE</surname>
</persName>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">CONNIE A.</forename>
<surname>BURDICK</surname>
</persName>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">MIKE A.</forename>
<surname>BOLLMAN</surname>
</persName>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">MARJORIE J.</forename>
<surname>STORM</surname>
</persName>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">GEORGE A.</forename>
<surname>KING</surname>
</persName>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">CAROL</forename>
<surname>MALLORY‐SMITH</surname>
</persName>
<affiliation>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Molecular Ecology</title>
<idno type="pISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<idno type="DOI">10.1111/(ISSN)1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2006-11"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">13</biblScope>
<biblScope unit="page" from="4243">4243</biblScope>
<biblScope unit="page" to="4255">4255</biblScope>
</imprint>
</monogr>
<idno type="istex">C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D</idno>
<idno type="DOI">10.1111/j.1365-294X.2006.03072.x</idno>
<idno type="ArticleID">MEC3072</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Agrostis stolonifera</term>
</item>
<item>
<term>CP4 EPSPS</term>
</item>
<item>
<term>creeping bentgrass</term>
</item>
<item>
<term>transgene escape</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-294X</doi>
<issn type="print">0962-1083</issn>
<issn type="electronic">1365-294X</issn>
<idGroup>
<id type="product" value="MEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MOLECULAR ECOLOGY">Molecular Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="11113">
<doi origin="wiley">10.1111/mec.2006.15.issue-13</doi>
<numberingGroup>
<numbering type="journalVolume" number="15">15</numbering>
<numbering type="journalIssue" number="13">13</numbering>
</numberingGroup>
<coverDate startDate="2006-11">November 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="28" status="forIssue">
<doi origin="wiley">10.1111/j.1365-294X.2006.03072.x</doi>
<idGroup>
<id type="unit" value="MEC3072"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">ORIGINAL ARTICLES</title>
<title type="tocHeading2">GMOs and Their Release</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2006-08-17"></event>
<event type="publishedOnlineFinalForm" date="2006-08-17"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.3.5 mode:FullText" date="2014-09-29"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.5 mode:FullText" date="2014-09-29"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="4243">4243</numbering>
<numbering type="pageLast" number="4255">4255</numbering>
</numberingGroup>
<correspondenceTo> Jay R. Reichman, Fax: (541) 754–4799; E‐mail:
<email>reichman.jay@epa.gov</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MEC.MEC3072.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received December 15, 2005; revision received March 16, 2006; accepted May 22, 2006</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="72"></count>
<count type="wordTotal" number="6392"></count>
</countGroup>
<titleGroup>
<title type="main">Establishment of transgenic herbicide‐resistant creeping bentgrass (
<i>Agrostis stolonifera</i>
L.) in nonagronomic habitats</title>
<title type="shortAuthors">J. R. REICHMAN
<i>ET AL.</i>
</title>
<title type="short">TRANSGENIC AGROSTIS
<i>STOLONIFERA</i>
OUTSIDE OF CULTIVATION</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>JAY R.</givenNames>
<familyName>REICHMAN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>LIDIA S.</givenNames>
<familyName>WATRUD</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>E. HENRY</givenNames>
<familyName>LEE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>CONNIE A.</givenNames>
<familyName>BURDICK</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2">
<personName>
<givenNames>MIKE A.</givenNames>
<familyName>BOLLMAN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a2">
<personName>
<givenNames>MARJORIE J.</givenNames>
<familyName>STORM</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a2">
<personName>
<givenNames>GEORGE A.</givenNames>
<familyName>KING</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a3">
<personName>
<givenNames>CAROL</givenNames>
<familyName>MALLORY‐SMITH</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2">
<unparsedAffiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">
<i>Agrostis stolonifera</i>
</keyword>
<keyword xml:id="k2">
<i>CP4 EPSPS</i>
</keyword>
<keyword xml:id="k3">creeping bentgrass</keyword>
<keyword xml:id="k4">transgene escape</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (
<i>Agrostis stolonifera</i>
L.) plants expressing
<i>CP4 EPSPS</i>
transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible
<i>Agrostis</i>
species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass.
<i>CP4 EPSPS</i>
protein and the corresponding transgene were found in nine
<i>A. stolonifera</i>
plants screened from 20 400 samples (0.04 ± 0.01% SE).
<i>CP4 EPSPS</i>
‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast
<i>matK</i>
gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of
<i>CP4 EPSPS</i>
transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of
<i>CP4 EPSPS</i>
transgenes in wild
<i>Agrostis</i>
populations, both in the presence or absence of herbicide selection.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>TRANSGENIC AGROSTIS STOLONIFERA OUTSIDE OF CULTIVATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats</title>
</titleInfo>
<name type="personal">
<namePart type="given">JAY R.</namePart>
<namePart type="family">REICHMAN</namePart>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LIDIA S.</namePart>
<namePart type="family">WATRUD</namePart>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E. HENRY</namePart>
<namePart type="family">LEE</namePart>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CONNIE A.</namePart>
<namePart type="family">BURDICK</namePart>
<affiliation>Western Ecology Division, US Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Research Laboratory, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MIKE A.</namePart>
<namePart type="family">BOLLMAN</namePart>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MARJORIE J.</namePart>
<namePart type="family">STORM</namePart>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GEORGE A.</namePart>
<namePart type="family">KING</namePart>
<affiliation>Dynamac Corporation, 200 SW 35th Street, Corvallis, OR 97333,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CAROL</namePart>
<namePart type="family">MALLORY‐SMITH</namePart>
<affiliation>Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-11</dateIssued>
<edition>Received December 15, 2005; revision received March 16, 2006; accepted May 22, 2006</edition>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="tables">2</extent>
<extent unit="references">72</extent>
<extent unit="words">6392</extent>
</physicalDescription>
<abstract lang="en">Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate‐resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate‐resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20 400 samples (0.04 ± 0.01% SE). CP4 EPSPS‐positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen‐mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short‐term production can result in establishment of transgenic plants at multi‐kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Agrostis stolonifera</topic>
<topic>CP4 EPSPS</topic>
<topic>creeping bentgrass</topic>
<topic>transgene escape</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0962-1083</identifier>
<identifier type="eISSN">1365-294X</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-294X</identifier>
<identifier type="PublisherID">MEC</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>4243</start>
<end>4255</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D</identifier>
<identifier type="DOI">10.1111/j.1365-294X.2006.03072.x</identifier>
<identifier type="ArticleID">MEC3072</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C85CE19E47C8ACF7B46FF5C10A20FCB788236F3D
   |texte=   Establishment of transgenic herbicide‐resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024