Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields

Identifieur interne : 000F48 ( Istex/Corpus ); précédent : 000F47; suivant : 000F49

Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields

Auteurs : Assefa M. Melesse ; Vijay Nangia

Source :

RBID : ISTEX:EF4665BE6B8055EA18A571330F4ADF9885716C06

English descriptors

Abstract

Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.5779

Links to Exploration step

ISTEX:EF4665BE6B8055EA18A571330F4ADF9885716C06

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
<author>
<name sortKey="Melesse, Assefa M" sort="Melesse, Assefa M" uniqKey="Melesse A" first="Assefa M." last="Melesse">Assefa M. Melesse</name>
<affiliation>
<mods:affiliation>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nangia, Vijay" sort="Nangia, Vijay" uniqKey="Nangia V" first="Vijay" last="Nangia">Vijay Nangia</name>
<affiliation>
<mods:affiliation>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EF4665BE6B8055EA18A571330F4ADF9885716C06</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1002/hyp.5779</idno>
<idno type="url">https://api.istex.fr/document/EF4665BE6B8055EA18A571330F4ADF9885716C06/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F48</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
<author>
<name sortKey="Melesse, Assefa M" sort="Melesse, Assefa M" uniqKey="Melesse A" first="Assefa M." last="Melesse">Assefa M. Melesse</name>
<affiliation>
<mods:affiliation>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nangia, Vijay" sort="Nangia, Vijay" uniqKey="Nangia V" first="Vijay" last="Nangia">Vijay Nangia</name>
<affiliation>
<mods:affiliation>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="sub">An International Journal</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-09">2005-09</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">14</biblScope>
<biblScope unit="page" from="2653">2653</biblScope>
<biblScope unit="page" to="2670">2670</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">EF4665BE6B8055EA18A571330F4ADF9885716C06</idno>
<idno type="DOI">10.1002/hyp.5779</idno>
<idno type="ArticleID">HYP5779</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Landsat</term>
<term>SEBAL</term>
<term>latent heat</term>
<term>remote sensing</term>
<term>surface energy flux</term>
<term>two‐source model</term>
<term>yield</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Assefa M. Melesse</name>
<affiliations>
<json:string>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</json:string>
<json:string>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vijay Nangia</name>
<affiliations>
<json:string>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>remote sensing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>latent heat</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>SEBAL</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>two‐source model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface energy flux</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>yield</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Landsat</value>
</json:item>
</subject>
<articleId>
<json:string>HYP5779</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2147</abstractCharCount>
<pdfWordCount>6055</pdfWordCount>
<pdfCharCount>36412</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>322</abstractWordCount>
</qualityIndicators>
<title>Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>19</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>18</total>
<last>2670</last>
<first>2653</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>14</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1002/hyp.5779</json:string>
</doi>
<id>EF4665BE6B8055EA18A571330F4ADF9885716C06</id>
<score>0.03963691</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/EF4665BE6B8055EA18A571330F4ADF9885716C06/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/EF4665BE6B8055EA18A571330F4ADF9885716C06/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/EF4665BE6B8055EA18A571330F4ADF9885716C06/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2005 John Wiley & Sons, Ltd.</p>
</availability>
<date>2005</date>
</publicationStmt>
<notesStmt>
<note>NASA - No. NAG 13‐02047;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
<author xml:id="author-1">
<persName>
<forename type="first">Assefa M.</forename>
<surname>Melesse</surname>
</persName>
<affiliation>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</affiliation>
<affiliation>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Vijay</forename>
<surname>Nangia</surname>
</persName>
<affiliation>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="sub">An International Journal</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-09"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">14</biblScope>
<biblScope unit="page" from="2653">2653</biblScope>
<biblScope unit="page" to="2670">2670</biblScope>
</imprint>
</monogr>
<idno type="istex">EF4665BE6B8055EA18A571330F4ADF9885716C06</idno>
<idno type="DOI">10.1002/hyp.5779</idno>
<idno type="ArticleID">HYP5779</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>remote sensing</term>
</item>
<item>
<term>latent heat</term>
</item>
<item>
<term>SEBAL</term>
</item>
<item>
<term>two‐source model</term>
</item>
<item>
<term>surface energy flux</term>
</item>
<item>
<term>yield</term>
</item>
<item>
<term>Landsat</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-09-10">Received</change>
<change when="2004-06-23">Registration</change>
<change when="2005-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/EF4665BE6B8055EA18A571330F4ADF9885716C06/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="subtitle">An International Journal</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="140">
<doi origin="wiley" registered="yes">10.1002/hyp.v19:14</doi>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue">14</numbering>
</numberingGroup>
<coverDate startDate="2005-09">September 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="1" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hyp.5779</doi>
<idGroup>
<id type="unit" value="HYP5779"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2005 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-09-10"></event>
<event type="manuscriptAccepted" date="2004-06-23"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2005-04-19"></event>
<event type="firstOnline" date="2005-04-19"></event>
<event type="publishedOnlineFinalForm" date="2005-09-03"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2653</numbering>
<numbering type="pageLast">2670</numbering>
</numberingGroup>
<correspondenceTo>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP5779.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="6"></count>
<count type="referenceTotal" number="29"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
<title type="short" xml:lang="en">SURFACE ENERGY FLUXES OF AGRICULTURAL FIELDS</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Assefa M.</givenNames>
<familyName>Melesse</familyName>
</personName>
<contactDetails>
<email>assefa.melesse@fiu.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Vijay</givenNames>
<familyName>Nangia</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">remote sensing</keyword>
<keyword xml:id="kwd2">latent heat</keyword>
<keyword xml:id="kwd3">SEBAL</keyword>
<keyword xml:id="kwd4">two‐source model</keyword>
<keyword xml:id="kwd5">surface energy flux</keyword>
<keyword xml:id="kwd6">yield</keyword>
<keyword xml:id="kwd7">Landsat</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>NASA</fundingAgency>
<fundingNumber>NAG 13‐02047</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m
<sup>−2</sup>
and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean
<i>R</i>
<sup>2</sup>
= 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m
<sup>3</sup>
ha
<sup>−1</sup>
). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SURFACE ENERGY FLUXES OF AGRICULTURAL FIELDS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields</title>
</titleInfo>
<name type="personal">
<namePart type="given">Assefa M.</namePart>
<namePart type="family">Melesse</namePart>
<affiliation>Department of Environmental Studies, Florida University, Miami, FL 33199, USA</affiliation>
<affiliation>Department of Environmental Studies, Florida International University, Miami, FL 33199, USA.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vijay</namePart>
<namePart type="family">Nangia</namePart>
<affiliation>Earth System Science Institute, University of North Dakota, Grand Forks, ND 58202, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-09</dateIssued>
<dateCaptured encoding="w3cdtf">2003-09-10</dateCaptured>
<dateValid encoding="w3cdtf">2004-06-23</dateValid>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">6</extent>
<extent unit="references">29</extent>
</physicalDescription>
<abstract lang="en">Land surface energy fluxes are required in many environmental studies, including hydrology, agronomy and meteorology. Surface energy balance models simulate microscale energy exchange processes between the ground surface and the atmospheric layer near ground level. Spatial variability of energy fluxes limits point measurements to be used for larger areas. Remote sensing provides the basis for spatial mapping of energy fluxes. Remote‐sensing‐based surface energy flux‐mapping was conducted using seven Landsat images from 1997 to 2002 at four contiguous crop fields located in Polk County, northwestern Minnesota. Spatially distributed surface energy fluxes were estimated and mapped at 30 m pixel level from Landsat Thematic Mapper and Enhanced Thematic Mapper images and weather information. Net radiation was determined using the surface energy balance algorithm for land (SEBAL) procedure. Applying the two‐source energy balance (TSEB) model, the surface temperature and the latent and sensible heat fluxes were partitioned into vegetation and soil components and estimated at the pixel level. Yield data for wheat and soybean from 1997 to 2002 were mapped and compared with latent heat (evapotranspiration) for four of the fields at pixel level. The spatial distribution and the relation of latent heat flux and Bowen ratio (ratio of sensible heat to latent heat) to crop yield were studied. The root‐mean‐square error and the mean absolute percentage of error between the observed and predicted energy fluxes were between 7 and 22 W m−2 and 12 and 24% respectively. Results show that latent heat flux and Bowen ratio were correlated (positive and negative) to the yield data. Wheat and soybean yields were predicted using latent heat flux with mean R2 = 0·67 and 0·70 respectively, average residual means of −4·2 bushels/acre and 0·11 bushels/acre respectively, and average residual standard deviations of 16·2 bushels/acre and 16·6 bushels/acre respectively (1 bushel/acre ≈ 0·087 m3 ha−1). The flux estimation procedure from the SEBAL‐TSEB model was useful and applicable to agricultural fields. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<note type="funding">NASA - No. NAG 13‐02047; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>remote sensing</topic>
<topic>latent heat</topic>
<topic>SEBAL</topic>
<topic>two‐source model</topic>
<topic>surface energy flux</topic>
<topic>yield</topic>
<topic>Landsat</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
<subTitle>An International Journal</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>2653</start>
<end>2670</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">EF4665BE6B8055EA18A571330F4ADF9885716C06</identifier>
<identifier type="DOI">10.1002/hyp.5779</identifier>
<identifier type="ArticleID">HYP5779</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2005 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EF4665BE6B8055EA18A571330F4ADF9885716C06
   |texte=   Estimation of spatially distributed surface energy fluxes using remotely‐sensed data for agricultural fields
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024