Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plant diversity positively affects short‐term soil carbon storage in experimental grasslands

Identifieur interne : 000F28 ( Istex/Corpus ); précédent : 000F27; suivant : 000F29

Plant diversity positively affects short‐term soil carbon storage in experimental grasslands

Auteurs : Sibylle Steinbeiss ; Holger Be Ler ; Christof Engels ; Vicky M. Temperton ; Nina Buchmann ; Christiane Roscher ; Yvonne Kreutziger ; Jussi Baade ; Maike Habekost ; Gerd Gleixner

Source :

RBID : ISTEX:DEF246F36D5CEA46CB3C15CA0265A558ED704A64

English descriptors

Abstract

Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m−2 in 2002 to 6.9 kg C m−2 in 2004, but had recovered to 7.8 kg C m−2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.

Url:
DOI: 10.1111/j.1365-2486.2008.01697.x

Links to Exploration step

ISTEX:DEF246F36D5CEA46CB3C15CA0265A558ED704A64

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
<author>
<name sortKey="Steinbeiss, Sibylle" sort="Steinbeiss, Sibylle" uniqKey="Steinbeiss S" first="Sibylle" last="Steinbeiss">Sibylle Steinbeiss</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Be Ler, Holger" sort="Be Ler, Holger" uniqKey="Be Ler H" first="Holger" last="Be Ler">Holger Be Ler</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engels, Christof" sort="Engels, Christof" uniqKey="Engels C" first="Christof" last="Engels">Christof Engels</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Temperton, Vicky M" sort="Temperton, Vicky M" uniqKey="Temperton V" first="Vicky M." last="Temperton">Vicky M. Temperton</name>
<affiliation>
<mods:affiliation>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buchmann, Nina" sort="Buchmann, Nina" uniqKey="Buchmann N" first="Nina" last="Buchmann">Nina Buchmann</name>
<affiliation>
<mods:affiliation>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roscher, Christiane" sort="Roscher, Christiane" uniqKey="Roscher C" first="Christiane" last="Roscher">Christiane Roscher</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreutziger, Yvonne" sort="Kreutziger, Yvonne" uniqKey="Kreutziger Y" first="Yvonne" last="Kreutziger">Yvonne Kreutziger</name>
<affiliation>
<mods:affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baade, Jussi" sort="Baade, Jussi" uniqKey="Baade J" first="Jussi" last="Baade">Jussi Baade</name>
<affiliation>
<mods:affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Habekost, Maike" sort="Habekost, Maike" uniqKey="Habekost M" first="Maike" last="Habekost">Maike Habekost</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleixner, Gerd" sort="Gleixner, Gerd" uniqKey="Gleixner G" first="Gerd" last="Gleixner">Gerd Gleixner</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DEF246F36D5CEA46CB3C15CA0265A558ED704A64</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1111/j.1365-2486.2008.01697.x</idno>
<idno type="url">https://api.istex.fr/document/DEF246F36D5CEA46CB3C15CA0265A558ED704A64/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F28</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
<author>
<name sortKey="Steinbeiss, Sibylle" sort="Steinbeiss, Sibylle" uniqKey="Steinbeiss S" first="Sibylle" last="Steinbeiss">Sibylle Steinbeiss</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Be Ler, Holger" sort="Be Ler, Holger" uniqKey="Be Ler H" first="Holger" last="Be Ler">Holger Be Ler</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Engels, Christof" sort="Engels, Christof" uniqKey="Engels C" first="Christof" last="Engels">Christof Engels</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Temperton, Vicky M" sort="Temperton, Vicky M" uniqKey="Temperton V" first="Vicky M." last="Temperton">Vicky M. Temperton</name>
<affiliation>
<mods:affiliation>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buchmann, Nina" sort="Buchmann, Nina" uniqKey="Buchmann N" first="Nina" last="Buchmann">Nina Buchmann</name>
<affiliation>
<mods:affiliation>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roscher, Christiane" sort="Roscher, Christiane" uniqKey="Roscher C" first="Christiane" last="Roscher">Christiane Roscher</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreutziger, Yvonne" sort="Kreutziger, Yvonne" uniqKey="Kreutziger Y" first="Yvonne" last="Kreutziger">Yvonne Kreutziger</name>
<affiliation>
<mods:affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baade, Jussi" sort="Baade, Jussi" uniqKey="Baade J" first="Jussi" last="Baade">Jussi Baade</name>
<affiliation>
<mods:affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Habekost, Maike" sort="Habekost, Maike" uniqKey="Habekost M" first="Maike" last="Habekost">Maike Habekost</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gleixner, Gerd" sort="Gleixner, Gerd" uniqKey="Gleixner G" first="Gerd" last="Gleixner">Gerd Gleixner</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Change Biology</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-12">2008-12</date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="2937">2937</biblScope>
<biblScope unit="page" to="2949">2949</biblScope>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
<idno type="istex">DEF246F36D5CEA46CB3C15CA0265A558ED704A64</idno>
<idno type="DOI">10.1111/j.1365-2486.2008.01697.x</idno>
<idno type="ArticleID">GCB1697</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>The Jena Experiment</term>
<term>carbon sequestration</term>
<term>functional groups</term>
<term>managed grassland</term>
<term>root biomass input</term>
<term>soil organic matter</term>
<term>species richness</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m−2 in 2002 to 6.9 kg C m−2 in 2004, but had recovered to 7.8 kg C m−2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>SIBYLLE STEINBEISS</name>
<affiliations>
<json:string>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>HOLGER BEßLER</name>
<affiliations>
<json:string>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHRISTOF ENGELS</name>
<affiliations>
<json:string>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>VICKY M. TEMPERTON</name>
<affiliations>
<json:string>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>NINA BUCHMANN</name>
<affiliations>
<json:string>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHRISTIANE ROSCHER</name>
<affiliations>
<json:string>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>YVONNE KREUTZIGER</name>
<affiliations>
<json:string>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>JUSSI BAADE</name>
<affiliations>
<json:string>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>MAIKE HABEKOST</name>
<affiliations>
<json:string>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>GERD GLEIXNER</name>
<affiliations>
<json:string>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carbon sequestration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>functional groups</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>managed grassland</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>root biomass input</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil organic matter</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>species richness</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>The Jena Experiment</value>
</json:item>
</subject>
<articleId>
<json:string>GCB1697</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m−2 in 2002 to 6.9 kg C m−2 in 2004, but had recovered to 7.8 kg C m−2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1902</abstractCharCount>
<pdfWordCount>7894</pdfWordCount>
<pdfCharCount>47995</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>280</abstractWordCount>
</qualityIndicators>
<title>Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>14</volume>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<pages>
<total>13</total>
<last>2949</last>
<first>2937</first>
</pages>
<issn>
<json:string>1354-1013</json:string>
</issn>
<issue>12</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<title>Global Change Biology</title>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
<json:string>ecology</json:string>
<json:string>biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2486.2008.01697.x</json:string>
</doi>
<id>DEF246F36D5CEA46CB3C15CA0265A558ED704A64</id>
<score>0.03914247</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DEF246F36D5CEA46CB3C15CA0265A558ED704A64/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DEF246F36D5CEA46CB3C15CA0265A558ED704A64/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DEF246F36D5CEA46CB3C15CA0265A558ED704A64/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</p>
</availability>
<date>2008</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
<author xml:id="author-1">
<persName>
<forename type="first">SIBYLLE</forename>
<surname>STEINBEISS</surname>
</persName>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">HOLGER</forename>
<surname>BEßLER</surname>
</persName>
<affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">CHRISTOF</forename>
<surname>ENGELS</surname>
</persName>
<affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">VICKY M.</forename>
<surname>TEMPERTON</surname>
</persName>
<affiliation>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">NINA</forename>
<surname>BUCHMANN</surname>
</persName>
<affiliation>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">CHRISTIANE</forename>
<surname>ROSCHER</surname>
</persName>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">YVONNE</forename>
<surname>KREUTZIGER</surname>
</persName>
<affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">JUSSI</forename>
<surname>BAADE</surname>
</persName>
<affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">MAIKE</forename>
<surname>HABEKOST</surname>
</persName>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
</author>
<author xml:id="author-10">
<persName>
<forename type="first">GERD</forename>
<surname>GLEIXNER</surname>
</persName>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Change Biology</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="DOI">10.1111/(ISSN)1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2008-12"></date>
<biblScope unit="volume">14</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="2937">2937</biblScope>
<biblScope unit="page" to="2949">2949</biblScope>
</imprint>
</monogr>
<idno type="istex">DEF246F36D5CEA46CB3C15CA0265A558ED704A64</idno>
<idno type="DOI">10.1111/j.1365-2486.2008.01697.x</idno>
<idno type="ArticleID">GCB1697</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m−2 in 2002 to 6.9 kg C m−2 in 2004, but had recovered to 7.8 kg C m−2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>carbon sequestration</term>
</item>
<item>
<term>functional groups</term>
</item>
<item>
<term>managed grassland</term>
</item>
<item>
<term>root biomass input</term>
</item>
<item>
<term>soil organic matter</term>
</item>
<item>
<term>species richness</term>
</item>
<item>
<term>The Jena Experiment</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DEF246F36D5CEA46CB3C15CA0265A558ED704A64/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="GLOBAL CHANGE BIOLOGY">Global Change Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12012">
<doi origin="wiley">10.1111/gcb.2008.14.issue-12</doi>
<numberingGroup>
<numbering type="journalVolume" number="14">14</numbering>
<numbering type="journalIssue" number="12">12</numbering>
</numberingGroup>
<coverDate startDate="2008-12">December 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="13" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2486.2008.01697.x</doi>
<idGroup>
<id type="unit" value="GCB1697"></id>
<id type="supplier" value="1697"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<copyright>© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="firstOnline" date="2008-09-25"></event>
<event type="publishedOnlineFinalForm" date="2008-11-18"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2937">2937</numbering>
<numbering type="pageLast" number="2949">2949</numbering>
</numberingGroup>
<correspondenceTo> Gerd Gleixner, tel. +49 3641 576172, fax +49 3641 577863, e‐mail:
<email normalForm="ggleix@bgc-jena.mpg.de">ggleix@bgc‐jena.mpg.de</email>
</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB1697.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 6 February 2008; revised version received 5 May 2008 and accepted 13 May 2008</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="5"></count>
<count type="formulaTotal" number="1"></count>
<count type="referenceTotal" number="52"></count>
<count type="wordTotal" number="10025"></count>
<count type="linksCrossRef" number="65"></count>
</countGroup>
<titleGroup>
<title type="main">Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
<title type="shortAuthors">S. STEINBEISS
<i>et al.</i>
</title>
<title type="short">BIODIVERSITY INCREASES CARBON STORAGE</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>SIBYLLE</givenNames>
<familyName>STEINBEISS</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>HOLGER</givenNames>
<familyName>BEßLER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>CHRISTOF</givenNames>
<familyName>ENGELS</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>VICKY M.</givenNames>
<familyName>TEMPERTON</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a4">
<personName>
<givenNames>NINA</givenNames>
<familyName>BUCHMANN</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>CHRISTIANE</givenNames>
<familyName>ROSCHER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a5">
<personName>
<givenNames>YVONNE</givenNames>
<familyName>KREUTZIGER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a5">
<personName>
<givenNames>JUSSI</givenNames>
<familyName>BAADE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a1">
<personName>
<givenNames>MAIKE</givenNames>
<familyName>HABEKOST</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr10" affiliationRef="#a1">
<personName>
<givenNames>GERD</givenNames>
<familyName>GLEIXNER</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE">
<unparsedAffiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE">
<unparsedAffiliation>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="CH">
<unparsedAffiliation>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="DE">
<unparsedAffiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">carbon sequestration</keyword>
<keyword xml:id="k2">functional groups</keyword>
<keyword xml:id="k3">managed grassland</keyword>
<keyword xml:id="k4">root biomass input</keyword>
<keyword xml:id="k5">soil organic matter</keyword>
<keyword xml:id="k6">species richness</keyword>
<keyword xml:id="k7">The Jena Experiment</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Increasing atmospheric CO
<sub>2</sub>
concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m
<sup>−2</sup>
in 2002 to 6.9 kg C m
<sup>−2</sup>
in 2004, but had recovered to 7.8 kg C m
<sup>−2</sup>
by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity
<i>per se</i>
was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>BIODIVERSITY INCREASES CARBON STORAGE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Plant diversity positively affects short‐term soil carbon storage in experimental grasslands</title>
</titleInfo>
<name type="personal">
<namePart type="given">SIBYLLE</namePart>
<namePart type="family">STEINBEISS</namePart>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">HOLGER</namePart>
<namePart type="family">BEßLER</namePart>
<affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CHRISTOF</namePart>
<namePart type="family">ENGELS</namePart>
<affiliation>Institute of Plant Nutrition, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VICKY M.</namePart>
<namePart type="family">TEMPERTON</namePart>
<affiliation>Phytosphere Institute ICG‐3, Juelich Research Centre GmbH, 52425 Juelich, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">NINA</namePart>
<namePart type="family">BUCHMANN</namePart>
<affiliation>Institute of Plant Science, ETH Zurich, Universitaetsstr. 2, 8092 Zurich, Switzerland,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CHRISTIANE</namePart>
<namePart type="family">ROSCHER</namePart>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">YVONNE</namePart>
<namePart type="family">KREUTZIGER</namePart>
<affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JUSSI</namePart>
<namePart type="family">BAADE</namePart>
<affiliation>Institute of Geography, Friedrich Schiller University Jena, Loebdergraben 32, 07743 Jena, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MAIKE</namePart>
<namePart type="family">HABEKOST</namePart>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GERD</namePart>
<namePart type="family">GLEIXNER</namePart>
<affiliation>Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008-12</dateIssued>
<edition>Received 6 February 2008; revised version received 5 May 2008 and accepted 13 May 2008</edition>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">5</extent>
<extent unit="formulas">1</extent>
<extent unit="references">52</extent>
<extent unit="words">10025</extent>
</physicalDescription>
<abstract lang="en">Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ‘The Jena Experiment’, a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0–30 cm decreased from 7.3 kg C m−2 in 2002 to 6.9 kg C m−2 in 2004, but had recovered to 7.8 kg C m−2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short‐term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log‐transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build‐up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long‐term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>carbon sequestration</topic>
<topic>functional groups</topic>
<topic>managed grassland</topic>
<topic>root biomass input</topic>
<topic>soil organic matter</topic>
<topic>species richness</topic>
<topic>The Jena Experiment</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>2937</start>
<end>2949</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DEF246F36D5CEA46CB3C15CA0265A558ED704A64</identifier>
<identifier type="DOI">10.1111/j.1365-2486.2008.01697.x</identifier>
<identifier type="ArticleID">GCB1697</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DEF246F36D5CEA46CB3C15CA0265A558ED704A64
   |texte=   Plant diversity positively affects short‐term soil carbon storage in experimental grasslands
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024