Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass

Identifieur interne : 000E63 ( Istex/Corpus ); précédent : 000E62; suivant : 000E64

The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass

Auteurs : Stefan Wirsenius

Source :

RBID : ISTEX:DE5683DA6F6468E1AE52A368BBF25E2EF12798FB

English descriptors

Abstract

The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce. This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food. The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 1010 short tons) dry matter, or 230 EJ (2.18 × 1017 Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.

Url:
DOI: 10.1162/108819803766729195

Links to Exploration step

ISTEX:DE5683DA6F6468E1AE52A368BBF25E2EF12798FB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
<author>
<name sortKey="Wirsenius, Stefan" sort="Wirsenius, Stefan" uniqKey="Wirsenius S" first="Stefan" last="Wirsenius">Stefan Wirsenius</name>
<affiliation>
<mods:affiliation>E-mail: frtswi@fy.chalmers.se</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DE5683DA6F6468E1AE52A368BBF25E2EF12798FB</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1162/108819803766729195</idno>
<idno type="url">https://api.istex.fr/document/DE5683DA6F6468E1AE52A368BBF25E2EF12798FB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E63</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
<author>
<name sortKey="Wirsenius, Stefan" sort="Wirsenius, Stefan" uniqKey="Wirsenius S" first="Stefan" last="Wirsenius">Stefan Wirsenius</name>
<affiliation>
<mods:affiliation>E-mail: frtswi@fy.chalmers.se</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Industrial Ecology</title>
<idno type="ISSN">1088-1980</idno>
<idno type="eISSN">1530-9290</idno>
<imprint>
<publisher>MIT Press</publisher>
<pubPlace>238 Main St., Suite 500, Cambridge, MA 02142‐1046 USA</pubPlace>
<date type="published" when="2003-01">2003-01</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="47">47</biblScope>
<biblScope unit="page" to="80">80</biblScope>
</imprint>
<idno type="ISSN">1088-1980</idno>
</series>
<idno type="istex">DE5683DA6F6468E1AE52A368BBF25E2EF12798FB</idno>
<idno type="DOI">10.1162/108819803766729195</idno>
<idno type="ArticleID">JIEC47</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1088-1980</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>agriculture</term>
<term>biomass</term>
<term>food production</term>
<term>materials flow analysis (MFA)</term>
<term>phytomass</term>
<term>ruminants</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce. This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food. The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 1010 short tons) dry matter, or 230 EJ (2.18 × 1017 Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Stefan Wirsenius</name>
<affiliations>
<json:string>E-mail: frtswi@fy.chalmers.se</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>agriculture</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biomass</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>food production</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>materials flow analysis (MFA)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phytomass</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ruminants</value>
</json:item>
</subject>
<articleId>
<json:string>JIEC47</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>miscellaneous</json:string>
</originalGenre>
<abstract>The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce. This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food. The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 1010 short tons) dry matter, or 230 EJ (2.18 × 1017 Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2032</abstractCharCount>
<pdfWordCount>13310</pdfWordCount>
<pdfCharCount>83937</pdfCharCount>
<pdfPageCount>34</pdfPageCount>
<abstractWordCount>311</abstractWordCount>
</qualityIndicators>
<title>The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
<genre>
<json:string>other</json:string>
</genre>
<host>
<volume>7</volume>
<publisherId>
<json:string>JIEC</json:string>
</publisherId>
<pages>
<total>34</total>
<last>80</last>
<first>47</first>
</pages>
<issn>
<json:string>1088-1980</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1530-9290</json:string>
</eissn>
<title>Journal of Industrial Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1530-9290</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>environmental sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1162/108819803766729195</json:string>
</doi>
<id>DE5683DA6F6468E1AE52A368BBF25E2EF12798FB</id>
<score>0.041010965</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DE5683DA6F6468E1AE52A368BBF25E2EF12798FB/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DE5683DA6F6468E1AE52A368BBF25E2EF12798FB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DE5683DA6F6468E1AE52A368BBF25E2EF12798FB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>MIT Press</publisher>
<pubPlace>238 Main St., Suite 500, Cambridge, MA 02142‐1046 USA</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
<author xml:id="author-1">
<persName>
<forename type="first">Stefan</forename>
<surname>Wirsenius</surname>
</persName>
<email>frtswi@fy.chalmers.se</email>
</author>
</analytic>
<monogr>
<title level="j">Journal of Industrial Ecology</title>
<idno type="pISSN">1088-1980</idno>
<idno type="eISSN">1530-9290</idno>
<idno type="DOI">10.1111/(ISSN)1530-9290</idno>
<imprint>
<publisher>MIT Press</publisher>
<pubPlace>238 Main St., Suite 500, Cambridge, MA 02142‐1046 USA</pubPlace>
<date type="published" when="2003-01"></date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="47">47</biblScope>
<biblScope unit="page" to="80">80</biblScope>
</imprint>
</monogr>
<idno type="istex">DE5683DA6F6468E1AE52A368BBF25E2EF12798FB</idno>
<idno type="DOI">10.1162/108819803766729195</idno>
<idno type="ArticleID">JIEC47</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce. This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food. The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 1010 short tons) dry matter, or 230 EJ (2.18 × 1017 Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>agriculture</term>
</item>
<item>
<term>biomass</term>
</item>
<item>
<term>food production</term>
</item>
<item>
<term>materials flow analysis (MFA)</term>
</item>
<item>
<term>phytomass</term>
</item>
<item>
<term>ruminants</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DE5683DA6F6468E1AE52A368BBF25E2EF12798FB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>MIT Press</publisherName>
<publisherLoc>238 Main St., Suite 500, Cambridge, MA 02142‐1046 USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1530-9290</doi>
<issn type="print">1088-1980</issn>
<issn type="electronic">1530-9290</issn>
<idGroup>
<id type="product" value="JIEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF INDUSTRIAL ECOLOGY">Journal of Industrial Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="01001">
<doi origin="wiley">10.1111/jiec.2003.7.issue-1</doi>
<numberingGroup>
<numbering type="journalVolume" number="7">7</numbering>
<numbering type="journalIssue" number="1">1</numbering>
</numberingGroup>
<coverDate startDate="2003-01">January 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="miscellaneous" position="0004700" status="forIssue">
<doi origin="wiley">10.1162/108819803766729195</doi>
<idGroup>
<id type="unit" value="JIEC47"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Research and Analysis</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2008-02-08"></event>
<event type="publishedOnlineFinalForm" date="2008-02-08"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.6 mode:FullText source:HeaderRef result:HeaderRef" date="2010-04-20"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="47">47</numbering>
<numbering type="pageLast" number="80">80</numbering>
</numberingGroup>
<correspondenceTo> Department of Physical Resource Theory, Chalmers University of Technology, Göteborg University, SE‐412 96 Göteborg, Sweden,
<email>frtswi@fy.chalmers.se</email>
,
<url href="http://www.frt.fy.chalmers.se">http:www.frt.fy.chalmers.se</url>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JIEC.JIEC47.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="referenceTotal" number="63"></count>
<count type="linksCrossRef" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" noteRef="#fn1" corresponding="yes">
<personName>
<givenNames>Stefan</givenNames>
<familyName>Wirsenius</familyName>
</personName>
</creator>
</creators>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">agriculture</keyword>
<keyword xml:id="k2">biomass</keyword>
<keyword xml:id="k3">food production</keyword>
<keyword xml:id="k4">materials flow analysis (MFA)</keyword>
<keyword xml:id="k5">phytomass</keyword>
<keyword xml:id="k6">ruminants</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Summary</title>
<p>The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce.</p>
<p>This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food.</p>
<p>The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 10
<sup>10</sup>
short tons) dry matter, or 230 EJ (2.18 × 10
<sup>17</sup>
Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<label>1</label>
<p>Researcher in the Department of Physical Resource Theory at Chalmers University of Technology, Sweden.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Wirsenius</namePart>
<affiliation>E-mail: frtswi@fy.chalmers.se</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="other" displayLabel="miscellaneous"></genre>
<originInfo>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">238 Main St., Suite 500, Cambridge, MA 02142‐1046 USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-01</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="references">63</extent>
</physicalDescription>
<abstract lang="en">The food and agriculture system is among the largest anthropogenic activities in terms of appropriation of land and biological primary production, as well as alteration of the grand biogeochemical cycles of carbon, water, and nitrogen. Despite its importance in these respects, physically coherent descriptions and analyses of the food and agriculture system regarding the total turnover of fundamental flows (such as biomass) and resource use and efficiency of critical processes (such as animal food production) are relatively scarce. This article presents a survey of the current flows of biomass in the food and agriculture system. The survey gives a mass‐ and energy‐balanced description of biomass from its production on cropland and grassland through its transformations into animal and vegetable food products to its final conversion into respiratory heat, feces, and other residues. This assessment was carried out by means of a physical model that, for eight world regions, calculates the necessary production of crops and other phytomass (plant biomass) from a prescribed end use of food, efficiency in food production and processing, and use of system‐internal by‐products and residues as feed, feedstock, and food. The global appropriation of terrestrial phytomass production by the food system was estimated to be some 13 Pg (1.43 × 1010 short tons) dry matter, or 230 EJ (2.18 × 1017 Btu) gross energy (higher heating value), per year in 1992‐1994. Of this phytomass, about 8% ended up in food commodities eaten. Animal food systems accounted for roughly two‐thirds of the total appropriation of phytomass, whereas their contribution to the human diet was about 13% (both on a gross energy basis). The ruminant meat systems were found to have a far greater influence than any other subsystem on the food system's biomass metabolism, primarily because of the lower feed‐conversion efficiency (calculated as carcass produced by total feed intake, including pasture and other human‐inedible feedstuffs) of those systems.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>agriculture</topic>
<topic>biomass</topic>
<topic>food production</topic>
<topic>materials flow analysis (MFA)</topic>
<topic>phytomass</topic>
<topic>ruminants</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Industrial Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1088-1980</identifier>
<identifier type="eISSN">1530-9290</identifier>
<identifier type="DOI">10.1111/(ISSN)1530-9290</identifier>
<identifier type="PublisherID">JIEC</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>47</start>
<end>80</end>
<total>34</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DE5683DA6F6468E1AE52A368BBF25E2EF12798FB</identifier>
<identifier type="DOI">10.1162/108819803766729195</identifier>
<identifier type="ArticleID">JIEC47</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>MIT Press</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DE5683DA6F6468E1AE52A368BBF25E2EF12798FB
   |texte=   The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024