Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A hydrological model for predicting runoff from different land use areas

Identifieur interne : 000E59 ( Istex/Corpus ); précédent : 000E58; suivant : 000E60

A hydrological model for predicting runoff from different land use areas

Auteurs : T. Karvonen ; H. Koivusalo ; M. Jauhiainen ; J. Palko ; K. Weppling

Source :

RBID : ISTEX:4C47812205B01694510EFB7A9F1854227CA81C76

English descriptors

Abstract

The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290km2) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2-y calibration period, and 0.70 for a 3-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.

Url:
DOI: 10.1016/S0022-1694(98)00280-7

Links to Exploration step

ISTEX:4C47812205B01694510EFB7A9F1854227CA81C76

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A hydrological model for predicting runoff from different land use areas</title>
<author>
<name sortKey="Karvonen, T" sort="Karvonen, T" uniqKey="Karvonen T" first="T." last="Karvonen">T. Karvonen</name>
<affiliation>
<mods:affiliation>E-mail: tkarvone@pato.hut.fi</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koivusalo, H" sort="Koivusalo, H" uniqKey="Koivusalo H" first="H." last="Koivusalo">H. Koivusalo</name>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jauhiainen, M" sort="Jauhiainen, M" uniqKey="Jauhiainen M" first="M." last="Jauhiainen">M. Jauhiainen</name>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palko, J" sort="Palko, J" uniqKey="Palko J" first="J." last="Palko">J. Palko</name>
<affiliation>
<mods:affiliation>Envitop Ltd, Oulu, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weppling, K" sort="Weppling, K" uniqKey="Weppling K" first="K." last="Weppling">K. Weppling</name>
<affiliation>
<mods:affiliation>Nordkalk Ltd, Parainen, Finland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4C47812205B01694510EFB7A9F1854227CA81C76</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0022-1694(98)00280-7</idno>
<idno type="url">https://api.istex.fr/document/4C47812205B01694510EFB7A9F1854227CA81C76/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E59</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A hydrological model for predicting runoff from different land use areas</title>
<author>
<name sortKey="Karvonen, T" sort="Karvonen, T" uniqKey="Karvonen T" first="T." last="Karvonen">T. Karvonen</name>
<affiliation>
<mods:affiliation>E-mail: tkarvone@pato.hut.fi</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koivusalo, H" sort="Koivusalo, H" uniqKey="Koivusalo H" first="H." last="Koivusalo">H. Koivusalo</name>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jauhiainen, M" sort="Jauhiainen, M" uniqKey="Jauhiainen M" first="M." last="Jauhiainen">M. Jauhiainen</name>
<affiliation>
<mods:affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palko, J" sort="Palko, J" uniqKey="Palko J" first="J." last="Palko">J. Palko</name>
<affiliation>
<mods:affiliation>Envitop Ltd, Oulu, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weppling, K" sort="Weppling, K" uniqKey="Weppling K" first="K." last="Weppling">K. Weppling</name>
<affiliation>
<mods:affiliation>Nordkalk Ltd, Parainen, Finland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Hydrology</title>
<title level="j" type="abbrev">HYDROL</title>
<idno type="ISSN">0022-1694</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">217</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="253">253</biblScope>
<biblScope unit="page" to="265">265</biblScope>
</imprint>
<idno type="ISSN">0022-1694</idno>
</series>
<idno type="istex">4C47812205B01694510EFB7A9F1854227CA81C76</idno>
<idno type="DOI">10.1016/S0022-1694(98)00280-7</idno>
<idno type="PII">S0022-1694(98)00280-7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1694</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Hydrological model</term>
<term>Hydrologically similar unit</term>
<term>Runoff</term>
<term>Scaling</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290km2) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2-y calibration period, and 0.70 for a 3-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>T. Karvonen</name>
<affiliations>
<json:string>E-mail: tkarvone@pato.hut.fi</json:string>
<json:string>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. Koivusalo</name>
<affiliations>
<json:string>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Jauhiainen</name>
<affiliations>
<json:string>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Palko</name>
<affiliations>
<json:string>Envitop Ltd, Oulu, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Weppling</name>
<affiliations>
<json:string>Nordkalk Ltd, Parainen, Finland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydrological model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Runoff</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydrologically similar unit</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Scaling</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290km2) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2-y calibration period, and 0.70 for a 3-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1805</abstractCharCount>
<pdfWordCount>5705</pdfWordCount>
<pdfCharCount>36045</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>270</abstractWordCount>
</qualityIndicators>
<title>A hydrological model for predicting runoff from different land use areas</title>
<pii>
<json:string>S0022-1694(98)00280-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>217</volume>
<pii>
<json:string>S0022-1694(00)X0071-6</json:string>
</pii>
<pages>
<last>265</last>
<first>253</first>
</pages>
<issn>
<json:string>0022-1694</json:string>
</issn>
<issue>3–4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Journal of Hydrology</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>engineering, civil</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0022-1694(98)00280-7</json:string>
</doi>
<id>4C47812205B01694510EFB7A9F1854227CA81C76</id>
<score>0.04067297</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4C47812205B01694510EFB7A9F1854227CA81C76/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4C47812205B01694510EFB7A9F1854227CA81C76/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4C47812205B01694510EFB7A9F1854227CA81C76/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A hydrological model for predicting runoff from different land use areas</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Illustration of the hydrological model sub-dividing the catchment into characteristic profiles.</note>
<note type="content">Fig. 2: Characteristic profile for an agricultural area is a cross-section between two parallel drains.</note>
<note type="content">Fig. 3: Characteristic profile for a forest area is a hillslope strip sub-divided into vertical soil profiles.</note>
<note type="content">Fig. 4: Location of Lestijoki river and extent of areas containing acid sulfate soils at the coastal side of southern and western Finland.</note>
<note type="content">Fig. 5: Water retention curves characterizing typical agricultural soils.</note>
<note type="content">Fig. 6: Water retention curves characterizing typical forest soils. The solid lines represent the van Genuchten (1980) function fitted to the measurements.</note>
<note type="content">Fig. 7: Measured and calculated flow from Lestijoki catchment during model calibration period of 1991–1993.</note>
<note type="content">Fig. 8: Measured and calculated flow from Lestijoki catchment during model testing period of 1993–1996.</note>
<note type="content">Fig. 9: Partition of monthly river flow to contributions from areas of different land use type during 1993–1996.</note>
<note type="content">Fig. 10: Partition of daily river flow to components of surface runoff, sub-surface runoff and drainage flow from different land areas during springmelt 1994.</note>
<note type="content">Table 1: Classification of land use in the Lestijoki catchment</note>
<note type="content">Table 2: Parameters of characteristic profiles in Lestijoki catchment. The soil types for agricultural profiles are: 2=Loamy sand, 3=Fine sandy loam, 6=Loess loam and 7=Light clay. The hydraulic conductivity represents a value for saturated soil</note>
<note type="content">Table 3: Results of model calibration and testing during 1991–1996. The fitness coefficients are defined, e.g., in Franchini et al. (1996), p. 307</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A hydrological model for predicting runoff from different land use areas</title>
<author xml:id="author-1">
<persName>
<forename type="first">T.</forename>
<surname>Karvonen</surname>
</persName>
<email>tkarvone@pato.hut.fi</email>
<note type="correspondence">
<p>Corresponding author. Fax: +358-9-451 3827</p>
</note>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">H.</forename>
<surname>Koivusalo</surname>
</persName>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">M.</forename>
<surname>Jauhiainen</surname>
</persName>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">J.</forename>
<surname>Palko</surname>
</persName>
<affiliation>Envitop Ltd, Oulu, Finland</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">K.</forename>
<surname>Weppling</surname>
</persName>
<affiliation>Nordkalk Ltd, Parainen, Finland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Hydrology</title>
<title level="j" type="abbrev">HYDROL</title>
<idno type="pISSN">0022-1694</idno>
<idno type="PII">S0022-1694(00)X0071-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">217</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="253">253</biblScope>
<biblScope unit="page" to="265">265</biblScope>
</imprint>
</monogr>
<idno type="istex">4C47812205B01694510EFB7A9F1854227CA81C76</idno>
<idno type="DOI">10.1016/S0022-1694(98)00280-7</idno>
<idno type="PII">S0022-1694(98)00280-7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290km2) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2-y calibration period, and 0.70 for a 3-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Hydrological model</term>
</item>
<item>
<term>Runoff</term>
</item>
<item>
<term>Hydrologically similar unit</term>
</item>
<item>
<term>Scaling</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998-10-02">Modified</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4C47812205B01694510EFB7A9F1854227CA81C76/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>HYDROL</jid>
<aid>3697</aid>
<ce:pii>S0022-1694(98)00280-7</ce:pii>
<ce:doi>10.1016/S0022-1694(98)00280-7</ce:doi>
<ce:copyright type="full-transfer" year="1999">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>A hydrological model for predicting runoff from different land use areas</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>T.</ce:given-name>
<ce:surname>Karvonen</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
<ce:e-address>tkarvone@pato.hut.fi</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>H.</ce:given-name>
<ce:surname>Koivusalo</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Jauhiainen</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Palko</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Weppling</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Envitop Ltd, Oulu, Finland</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Nordkalk Ltd, Parainen, Finland</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Fax: +358-9-451 3827</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="24" month="11" year="1997"></ce:date-received>
<ce:date-revised day="2" month="10" year="1998"></ce:date-revised>
<ce:date-accepted day="22" month="10" year="1998"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290
<ce:hsp sp="0.25"></ce:hsp>
km
<ce:sup>2</ce:sup>
) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2
<ce:hsp sp="0.25"></ce:hsp>
-y calibration period, and 0.70 for a 3
<ce:hsp sp="0.25"></ce:hsp>
-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Hydrological model</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Runoff</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Hydrologically similar unit</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Scaling</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A hydrological model for predicting runoff from different land use areas</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>A hydrological model for predicting runoff from different land use areas</title>
</titleInfo>
<name type="personal">
<namePart type="given">T.</namePart>
<namePart type="family">Karvonen</namePart>
<affiliation>E-mail: tkarvone@pato.hut.fi</affiliation>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
<description>Corresponding author. Fax: +358-9-451 3827</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Koivusalo</namePart>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Jauhiainen</namePart>
<affiliation>Helsinki University of Technology, Laboratory of Water Resources, P.O. Box 5300, 02015 Espoo, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Palko</namePart>
<affiliation>Envitop Ltd, Oulu, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Weppling</namePart>
<affiliation>Nordkalk Ltd, Parainen, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateModified encoding="w3cdtf">1998-10-02</dateModified>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The purpose of this article is to model the influence of land use on catchment runoff. The modeling is based on the sub-division of the catchment into smaller units by generation of the so-called “hydrologically similar units” (HSU) or “patch types“. HSUs aggregate areas of hydrologically similar behavior, e.g., land use, soil, slope, and vegetation. Each HSU is represented using a cross-section called a “characteristic profile“. For the calculation of the water balance of the characteristic profiles, a mathematical treatment of the key partitions of the hydrograph response was developed. The characteristic profile is the largest unit that can be handled mathematically still maintaining the idea of a hydrologically similar regime. An agricultural characteristic profile is a cross-section between two parallel open ditches or sub-surface drains. For forest areas the characteristic profile is called hillslope and the length of the hillslope can vary from few meters up to hundreds of meters. The total runoff from the characteristic profiles is an input to a channel network. In the present model, the channel processes are described using the geomorphologic instantaneous unit hydrograph (GIUH). The proposed hydrological model was tested in the Lestijoki catchment (1290km2) located in western Finland. The catchment was subdivided into 25 characteristic profiles with parameters fixed to typical values measured in Finnish conditions. The model calibration was carried out for the GIUH parameters using measured every-day river flow. The coefficient of determination was 0.74 for a 2-y calibration period, and 0.70 for a 3-y testing period. The model represented well the extent of variable contributing areas, which was the main reason for the non-linear behavior of the catchment response.</abstract>
<note type="content">Fig. 1: Illustration of the hydrological model sub-dividing the catchment into characteristic profiles.</note>
<note type="content">Fig. 2: Characteristic profile for an agricultural area is a cross-section between two parallel drains.</note>
<note type="content">Fig. 3: Characteristic profile for a forest area is a hillslope strip sub-divided into vertical soil profiles.</note>
<note type="content">Fig. 4: Location of Lestijoki river and extent of areas containing acid sulfate soils at the coastal side of southern and western Finland.</note>
<note type="content">Fig. 5: Water retention curves characterizing typical agricultural soils.</note>
<note type="content">Fig. 6: Water retention curves characterizing typical forest soils. The solid lines represent the van Genuchten (1980) function fitted to the measurements.</note>
<note type="content">Fig. 7: Measured and calculated flow from Lestijoki catchment during model calibration period of 1991–1993.</note>
<note type="content">Fig. 8: Measured and calculated flow from Lestijoki catchment during model testing period of 1993–1996.</note>
<note type="content">Fig. 9: Partition of monthly river flow to contributions from areas of different land use type during 1993–1996.</note>
<note type="content">Fig. 10: Partition of daily river flow to components of surface runoff, sub-surface runoff and drainage flow from different land areas during springmelt 1994.</note>
<note type="content">Table 1: Classification of land use in the Lestijoki catchment</note>
<note type="content">Table 2: Parameters of characteristic profiles in Lestijoki catchment. The soil types for agricultural profiles are: 2=Loamy sand, 3=Fine sandy loam, 6=Loess loam and 7=Light clay. The hydraulic conductivity represents a value for saturated soil</note>
<note type="content">Table 3: Results of model calibration and testing during 1991–1996. The fitness coefficients are defined, e.g., in Franchini et al. (1996), p. 307</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Hydrological model</topic>
<topic>Runoff</topic>
<topic>Hydrologically similar unit</topic>
<topic>Scaling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Hydrology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>HYDROL</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19990430</dateIssued>
</originInfo>
<identifier type="ISSN">0022-1694</identifier>
<identifier type="PII">S0022-1694(00)X0071-6</identifier>
<part>
<date>19990430</date>
<detail type="volume">
<number>217</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>169</start>
<end>338</end>
</extent>
<extent unit="pages">
<start>253</start>
<end>265</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">4C47812205B01694510EFB7A9F1854227CA81C76</identifier>
<identifier type="DOI">10.1016/S0022-1694(98)00280-7</identifier>
<identifier type="PII">S0022-1694(98)00280-7</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4C47812205B01694510EFB7A9F1854227CA81C76
   |texte=   A hydrological model for predicting runoff from different land use areas
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024