Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea

Identifieur interne : 000E48 ( Istex/Corpus ); précédent : 000E47; suivant : 000E49

Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea

Auteurs : Byoung-Young Choi ; Seong-Taek Yun ; Bernhard Mayer ; Gi-Tak Chae ; Kyoung-Ho Kim ; Kangjoo Kim ; Yong-Kwon Koh

Source :

RBID : ISTEX:5BA52B155FF4F9D8000A39711C188650444493C5

English descriptors

Abstract

We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3− and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3−, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18Oδ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3−. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.7488

Links to Exploration step

ISTEX:5BA52B155FF4F9D8000A39711C188650444493C5

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
<author>
<name sortKey="Choi, Byoung Oung" sort="Choi, Byoung Oung" uniqKey="Choi B" first="Byoung-Young" last="Choi">Byoung-Young Choi</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yun, Seong Aek" sort="Yun, Seong Aek" uniqKey="Yun S" first="Seong-Taek" last="Yun">Seong-Taek Yun</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Bernhard" sort="Mayer, Bernhard" uniqKey="Mayer B" first="Bernhard" last="Mayer">Bernhard Mayer</name>
<affiliation>
<mods:affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chae, Gi Ak" sort="Chae, Gi Ak" uniqKey="Chae G" first="Gi-Tak" last="Chae">Gi-Tak Chae</name>
<affiliation>
<mods:affiliation>CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyoung O" sort="Kim, Kyoung O" uniqKey="Kim K" first="Kyoung-Ho" last="Kim">Kyoung-Ho Kim</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kangjoo" sort="Kim, Kangjoo" uniqKey="Kim K" first="Kangjoo" last="Kim">Kangjoo Kim</name>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koh, Yong Won" sort="Koh, Yong Won" uniqKey="Koh Y" first="Yong-Kwon" last="Koh">Yong-Kwon Koh</name>
<affiliation>
<mods:affiliation>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5BA52B155FF4F9D8000A39711C188650444493C5</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/hyp.7488</idno>
<idno type="url">https://api.istex.fr/document/5BA52B155FF4F9D8000A39711C188650444493C5/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E48</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E48</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
<author>
<name sortKey="Choi, Byoung Oung" sort="Choi, Byoung Oung" uniqKey="Choi B" first="Byoung-Young" last="Choi">Byoung-Young Choi</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yun, Seong Aek" sort="Yun, Seong Aek" uniqKey="Yun S" first="Seong-Taek" last="Yun">Seong-Taek Yun</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Bernhard" sort="Mayer, Bernhard" uniqKey="Mayer B" first="Bernhard" last="Mayer">Bernhard Mayer</name>
<affiliation>
<mods:affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chae, Gi Ak" sort="Chae, Gi Ak" uniqKey="Chae G" first="Gi-Tak" last="Chae">Gi-Tak Chae</name>
<affiliation>
<mods:affiliation>CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kyoung O" sort="Kim, Kyoung O" uniqKey="Kim K" first="Kyoung-Ho" last="Kim">Kyoung-Ho Kim</name>
<affiliation>
<mods:affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Kangjoo" sort="Kim, Kangjoo" uniqKey="Kim K" first="Kangjoo" last="Kim">Kangjoo Kim</name>
<affiliation>
<mods:affiliation>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Koh, Yong Won" sort="Koh, Yong Won" uniqKey="Koh Y" first="Yong-Kwon" last="Koh">Yong-Kwon Koh</name>
<affiliation>
<mods:affiliation>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="sub">An International Journal</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-01-30">2010-01-30</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="317">317</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">5BA52B155FF4F9D8000A39711C188650444493C5</idno>
<idno type="DOI">10.1002/hyp.7488</idno>
<idno type="ArticleID">HYP7488</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>geologic control</term>
<term>groundwater recharge</term>
<term>heterogeneous alluvial aquifer</term>
<term>hydrochemistry and environmental isotopes</term>
<term>multi‐level monitoring</term>
<term>riverside agricultural field</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3− and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3−, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18Oδ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3−. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Byoung‐Young Choi</name>
<affiliations>
<json:string>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</json:string>
<json:string>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Seong‐Taek Yun</name>
<affiliations>
<json:string>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</json:string>
<json:string>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</json:string>
<json:string>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bernhard Mayer</name>
<affiliations>
<json:string>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gi‐Tak Chae</name>
<affiliations>
<json:string>CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kyoung‐Ho Kim</name>
<affiliations>
<json:string>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kangjoo Kim</name>
<affiliations>
<json:string>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yong‐Kwon Koh</name>
<affiliations>
<json:string>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heterogeneous alluvial aquifer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>riverside agricultural field</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydrochemistry and environmental isotopes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>multi‐level monitoring</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>groundwater recharge</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>geologic control</value>
</json:item>
</subject>
<articleId>
<json:string>HYP7488</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3− and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3−, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18Oδ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3−. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2022</abstractCharCount>
<pdfWordCount>7071</pdfWordCount>
<pdfCharCount>44038</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>296</abstractWordCount>
</qualityIndicators>
<title>Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>24</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>14</total>
<last>330</last>
<first>317</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/hyp.7488</json:string>
</doi>
<id>5BA52B155FF4F9D8000A39711C188650444493C5</id>
<score>0.041485194</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/5BA52B155FF4F9D8000A39711C188650444493C5/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/5BA52B155FF4F9D8000A39711C188650444493C5/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/5BA52B155FF4F9D8000A39711C188650444493C5/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2009 John Wiley & Sons, Ltd.</p>
</availability>
<date>2010</date>
</publicationStmt>
<notesStmt>
<note>Korea Science and Engineering Foundation (KOSEF) - No. R01‐2007‐000‐20964‐0;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
<author xml:id="author-1">
<persName>
<forename type="first">Byoung‐Young</forename>
<surname>Choi</surname>
</persName>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
<affiliation>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Seong‐Taek</forename>
<surname>Yun</surname>
</persName>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
<affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</affiliation>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Bernhard</forename>
<surname>Mayer</surname>
</persName>
<affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Gi‐Tak</forename>
<surname>Chae</surname>
</persName>
<affiliation>CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Kyoung‐Ho</forename>
<surname>Kim</surname>
</persName>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Kangjoo</forename>
<surname>Kim</surname>
</persName>
<affiliation>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Yong‐Kwon</forename>
<surname>Koh</surname>
</persName>
<affiliation>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="sub">An International Journal</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-01-30"></date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="317">317</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
</monogr>
<idno type="istex">5BA52B155FF4F9D8000A39711C188650444493C5</idno>
<idno type="DOI">10.1002/hyp.7488</idno>
<idno type="ArticleID">HYP7488</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3− and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3−, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18Oδ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3−. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>heterogeneous alluvial aquifer</term>
</item>
<item>
<term>riverside agricultural field</term>
</item>
<item>
<term>hydrochemistry and environmental isotopes</term>
</item>
<item>
<term>multi‐level monitoring</term>
</item>
<item>
<term>groundwater recharge</term>
</item>
<item>
<term>geologic control</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-07-25">Received</change>
<change when="2009-09-07">Registration</change>
<change when="2010-01-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/5BA52B155FF4F9D8000A39711C188650444493C5/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="subtitle">An International Journal</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/hyp.v24:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="24">24</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2010-01-30">30 January 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="70" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hyp.7488</doi>
<idGroup>
<id type="unit" value="HYP7488"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2009 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-07-25"></event>
<event type="manuscriptAccepted" date="2009-09-07"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2009-10-27"></event>
<event type="firstOnline" date="2009-10-27"></event>
<event type="publishedOnlineFinalForm" date="2010-01-18"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">317</numbering>
<numbering type="pageLast">330</numbering>
</numberingGroup>
<correspondenceTo>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP7488.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="10"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
<title type="short" xml:lang="en">GROUNDWATER RECHARGE IN A HETEROGENEOUS ALLUVIAL AQUIFER</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Byoung‐Young</givenNames>
<familyName>Choi</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af3" corresponding="yes">
<personName>
<givenNames>Seong‐Taek</givenNames>
<familyName>Yun</familyName>
</personName>
<contactDetails>
<email>styun@korea.ac.kr</email>
</contactDetails>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Bernhard</givenNames>
<familyName>Mayer</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>Gi‐Tak</givenNames>
<familyName>Chae</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Kyoung‐Ho</givenNames>
<familyName>Kim</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af5">
<personName>
<givenNames>Kangjoo</givenNames>
<familyName>Kim</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af6">
<personName>
<givenNames>Yong‐Kwon</givenNames>
<familyName>Koh</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="KR" type="organization">
<unparsedAffiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="KR" type="organization">
<unparsedAffiliation>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="CA" type="organization">
<unparsedAffiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="KR" type="organization">
<unparsedAffiliation>CO
<sub>2</sub>
Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af5" countryCode="KR" type="organization">
<unparsedAffiliation>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af6" countryCode="KR" type="organization">
<unparsedAffiliation>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">heterogeneous alluvial aquifer</keyword>
<keyword xml:id="kwd2">riverside agricultural field</keyword>
<keyword xml:id="kwd3">hydrochemistry and environmental isotopes</keyword>
<keyword xml:id="kwd4">multi‐level monitoring</keyword>
<keyword xml:id="kwd5">groundwater recharge</keyword>
<keyword xml:id="kwd6">geologic control</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Korea Science and Engineering Foundation (KOSEF)</fundingAgency>
<fundingNumber>R01‐2007‐000‐20964‐0</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO
<sub>3</sub>
<sup></sup>
and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO
<sub>3</sub>
<sup></sup>
, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ
<sup>18</sup>
O and δ
<sup>2</sup>
H values of groundwater were also different between the two zones. Hydrochemical and δ
<sup>18</sup>
Oδ
<sup>2</sup>
H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO
<sub>3</sub>
<sup></sup>
. The
<sup>3</sup>
H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ
<sup>18</sup>
O and δ
<sup>2</sup>
H values and lower
<i>d</i>
‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GROUNDWATER RECHARGE IN A HETEROGENEOUS ALLUVIAL AQUIFER</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea</title>
</titleInfo>
<name type="personal">
<namePart type="given">Byoung‐Young</namePart>
<namePart type="family">Choi</namePart>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
<affiliation>Korea Environmental Industry & Technology Institute, Seoul 122–706, Republic of Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seong‐Taek</namePart>
<namePart type="family">Yun</namePart>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
<affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</affiliation>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernhard</namePart>
<namePart type="family">Mayer</namePart>
<affiliation>Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gi‐Tak</namePart>
<namePart type="family">Chae</namePart>
<affiliation>CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources, Daejeon 305–350, Republic of Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyoung‐Ho</namePart>
<namePart type="family">Kim</namePart>
<affiliation>Department of Earth and Environmental Sciences, Korea University, Seoul 136–701, Republic of Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kangjoo</namePart>
<namePart type="family">Kim</namePart>
<affiliation>School of Civil and Environmental Engineering, Kunsan National University, Jeonbuk 573‐701, Republic of Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong‐Kwon</namePart>
<namePart type="family">Koh</namePart>
<affiliation>High‐Level Nuclear Waste Disposal Research Center, Korea Atomic Energy Research Institute, Daejeon 305–356, Republic of Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-01-30</dateIssued>
<dateCaptured encoding="w3cdtf">2008-07-25</dateCaptured>
<dateValid encoding="w3cdtf">2009-09-07</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">10</extent>
<extent unit="tables">1</extent>
<extent unit="references">34</extent>
</physicalDescription>
<abstract lang="en">We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3− and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3−, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18Oδ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3−. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<note type="funding">Korea Science and Engineering Foundation (KOSEF) - No. R01‐2007‐000‐20964‐0; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>heterogeneous alluvial aquifer</topic>
<topic>riverside agricultural field</topic>
<topic>hydrochemistry and environmental isotopes</topic>
<topic>multi‐level monitoring</topic>
<topic>groundwater recharge</topic>
<topic>geologic control</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
<subTitle>An International Journal</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>317</start>
<end>330</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">5BA52B155FF4F9D8000A39711C188650444493C5</identifier>
<identifier type="DOI">10.1002/hyp.7488</identifier>
<identifier type="ArticleID">HYP7488</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5BA52B155FF4F9D8000A39711C188650444493C5
   |texte=   Identification of groundwater recharge sources and processes in a heterogeneous alluvial aquifer: results from multi‐level monitoring of hydrochemistry and environmental isotopes in a riverside agricultural area in Korea
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024