Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain

Identifieur interne : 000E36 ( Istex/Corpus ); précédent : 000E35; suivant : 000E37

A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain

Auteurs : P. G. Slavich ; G. R. Walker ; I. D. Jolly

Source :

RBID : ISTEX:71D9613400F24964A96579591EE1356241A80EAC

Abstract

Native Eucalyptus woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.

Url:
DOI: 10.1016/S0378-3774(98)00075-4

Links to Exploration step

ISTEX:71D9613400F24964A96579591EE1356241A80EAC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
<author>
<name sortKey="Slavich, P G" sort="Slavich, P G" uniqKey="Slavich P" first="P. G." last="Slavich">P. G. Slavich</name>
<affiliation>
<mods:affiliation>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walker, G R" sort="Walker, G R" uniqKey="Walker G" first="G. R." last="Walker">G. R. Walker</name>
<affiliation>
<mods:affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jolly, I D" sort="Jolly, I D" uniqKey="Jolly I" first="I. D." last="Jolly">I. D. Jolly</name>
<affiliation>
<mods:affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:71D9613400F24964A96579591EE1356241A80EAC</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0378-3774(98)00075-4</idno>
<idno type="url">https://api.istex.fr/document/71D9613400F24964A96579591EE1356241A80EAC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E36</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
<author>
<name sortKey="Slavich, P G" sort="Slavich, P G" uniqKey="Slavich P" first="P. G." last="Slavich">P. G. Slavich</name>
<affiliation>
<mods:affiliation>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walker, G R" sort="Walker, G R" uniqKey="Walker G" first="G. R." last="Walker">G. R. Walker</name>
<affiliation>
<mods:affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jolly, I D" sort="Jolly, I D" uniqKey="Jolly I" first="I. D." last="Jolly">I. D. Jolly</name>
<affiliation>
<mods:affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Agricultural Water Management</title>
<title level="j" type="abbrev">AGWAT</title>
<idno type="ISSN">0378-3774</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">2–3</biblScope>
<biblScope unit="page" from="135">135</biblScope>
<biblScope unit="page" to="151">151</biblScope>
</imprint>
<idno type="ISSN">0378-3774</idno>
</series>
<idno type="istex">71D9613400F24964A96579591EE1356241A80EAC</idno>
<idno type="DOI">10.1016/S0378-3774(98)00075-4</idno>
<idno type="PII">S0378-3774(98)00075-4</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0378-3774</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Native Eucalyptus woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>P.G. Slavich</name>
<affiliations>
<json:string>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>G.R. Walker</name>
<affiliations>
<json:string>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</json:string>
</affiliations>
</json:item>
<json:item>
<name>I.D. Jolly</name>
<affiliations>
<json:string>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Salinity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Flood</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Eucalyptus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Watertable</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Native Eucalyptus woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>466 x 681 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>2258</abstractCharCount>
<pdfWordCount>5329</pdfWordCount>
<pdfCharCount>31690</pdfCharCount>
<pdfPageCount>17</pdfPageCount>
<abstractWordCount>328</abstractWordCount>
</qualityIndicators>
<title>A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
<pii>
<json:string>S0378-3774(98)00075-4</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>39</volume>
<pii>
<json:string>S0378-3774(00)X0036-4</json:string>
</pii>
<pages>
<last>151</last>
<first>135</first>
</pages>
<issn>
<json:string>0378-3774</json:string>
</issn>
<issue>2–3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Agricultural Water Management</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>agronomy</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>agronomy & agriculture</json:string>
</scienceMetrix>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0378-3774(98)00075-4</json:string>
</doi>
<id>71D9613400F24964A96579591EE1356241A80EAC</id>
<score>0.044472024</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/71D9613400F24964A96579591EE1356241A80EAC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/71D9613400F24964A96579591EE1356241A80EAC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/71D9613400F24964A96579591EE1356241A80EAC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Schematic representation of salinity profile and associated symbols. Note double ended arrows indicate varying positions of watertable depth (Zw) and salt front (Zf). Single ended arrows indicate lateral groundwater flow. Cg is the groundwater salinity; C(0−zf) is the average soil water salinity above the solute front; Ct is the maximum soil water salinity which roots can extract water from; Zwmax is the maximum depth the watertable falls to during long dry periods; Ze is a critical soil depth which needs to remain salt free for vegetation survival during long dry periods and coincides with the depth from which vegetation extracts groundwater during long dry periods.</note>
<note type="content">Fig. 2: The dependence of the exponent (p) of the power function relating the watertable depth and the groundwater discharge rate on the C parameter of the Broadbridge White soil hydraulic model. ○ fitted values from Fig. A.1. ——— represents fitted curve Eq. (3).</note>
<note type="content">Fig. 3: Profiles of soil water salinity measured beneath black box trees with varying health. ECsw is electrical conductivity of soil water.</note>
<note type="content">Fig. 4: Schematic of flood history concepts used to calculate the salinity index. Soil water availability is averaged across successive RDI. tdi is the duration of the ith discharge interval, tsi is the duration of the ith recharge interval.</note>
<note type="content">Fig. 5: Dependence of tdmax on watertable depth at two sites (Sites 1 and 6).</note>
<note type="content">Fig. 6: Comparison of quasi-steady state moving front model with fully dynamic WAVES model for simulations at (a) Site 1 with historical watertable and flooding regime (SIM1) (b) Site 6 with historical watertable and flooding regime (SIM4) (c) Site 1 with shallow watertable and frequent flooding regime (SIM7). Histogram in Fig. 8(a) indicates years when the watertable was close to the plane of water extraction and hence the groundwater discharge rate was canopy area limited.</note>
<note type="content">Fig. 7: Computed relationship between the salinity index and the weighted average leaf area index for simulations with varying watertable and flooding regimes (Fig. 2).</note>
<note type="content">Fig. 8: The dependence of the critical watertable depth for salinity control on the relative inundation time (i.e. days inundated/days not inundated, ts/td) for soils (Sites 1 and 6) with contrasting hydraulic properties.</note>
<note type="content">Fig. 9: Captions function curves relating dimensionless watertable depth (Z/λ) to dimensionless maximum groundwater discharge rate (q/Ks) for three values of the Broadbridge and White, 1988 soil hydraulic model parameter C.</note>
<note type="content">Fig. 10: The dependence of the coefficient (a0) of the power function relating the watertable depth and the groundwater discharge rate on the C parameter of the Broadbridge White soil hydraulic model.</note>
<note type="content">Table 1: Soil and vegetation parameter used in moving front model</note>
<note type="content">Table 2: Watertable and flooding regimes used for model comparisons</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
<author xml:id="author-1">
<persName>
<forename type="first">P.G.</forename>
<surname>Slavich</surname>
</persName>
<note type="correspondence">
<p>Corresponding author. Tel.: +61-2-66261200; fax: +61-2-66281744; e-mail: peter.slavich@agric.nsw.gov.au</p>
</note>
<affiliation>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">G.R.</forename>
<surname>Walker</surname>
</persName>
<affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">I.D.</forename>
<surname>Jolly</surname>
</persName>
<affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Agricultural Water Management</title>
<title level="j" type="abbrev">AGWAT</title>
<idno type="pISSN">0378-3774</idno>
<idno type="PII">S0378-3774(00)X0036-4</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">2–3</biblScope>
<biblScope unit="page" from="135">135</biblScope>
<biblScope unit="page" to="151">151</biblScope>
</imprint>
</monogr>
<idno type="istex">71D9613400F24964A96579591EE1356241A80EAC</idno>
<idno type="DOI">10.1016/S0378-3774(98)00075-4</idno>
<idno type="PII">S0378-3774(98)00075-4</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Native Eucalyptus woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Salinity</term>
</item>
<item>
<term>Flood</term>
</item>
<item>
<term>Model</term>
</item>
<item>
<term>Eucalyptus</term>
</item>
<item>
<term>Watertable</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/71D9613400F24964A96579591EE1356241A80EAC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>AGWAT</jid>
<aid>1401</aid>
<ce:pii>S0378-3774(98)00075-4</ce:pii>
<ce:doi>10.1016/S0378-3774(98)00075-4</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>P.G.</ce:given-name>
<ce:surname>Slavich</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G.R.</ce:given-name>
<ce:surname>Walker</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>I.D.</ce:given-name>
<ce:surname>Jolly</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +61-2-66261200; fax: +61-2-66281744; e-mail: peter.slavich@agric.nsw.gov.au</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Native
<ce:italic>Eucalyptus</ce:italic>
woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Salinity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Flood</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Model</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Eucalyptus</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Watertable</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain</title>
</titleInfo>
<name type="personal">
<namePart type="given">P.G.</namePart>
<namePart type="family">Slavich</namePart>
<affiliation>NSW Agriculture, Wollongbar Agricultural Institute, Bruxner HighwayWollongbar 2477Australia</affiliation>
<description>Corresponding author. Tel.: +61-2-66261200; fax: +61-2-66281744; e-mail: peter.slavich@agric.nsw.gov.au</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.R.</namePart>
<namePart type="family">Walker</namePart>
<affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I.D.</namePart>
<namePart type="family">Jolly</namePart>
<affiliation>CSIRO, Division of Land and Water, Private Bag No. 2, Glen OsmondAdelaide 5064Australia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Native Eucalyptus woodlands on the floodplains of the lower River Murray, Australia are dying because of increased soil salinity associated with shallower watertables and reduced flooding. There is need for a simple salinity index, related to vegetation health, which can be used within a geographic information system (GIS) to evaluate the potential impacts across the floodplain of management options which aim to decrease soil salinity. Management options include increasing the frequency and duration of floods by releasing additional environmental flows from upstream storages or lowering the watertable by groundwater pumping. This paper extends a simple root-zone salt and water balance model which represents the salinisation process as a moving salt front (MSF) [Jolly, I.D., Walker G.R., Thorburn P.J., 1993. J. Hydrol. 150, 589–614; Thorburn, P.J., Walker, G.R., Jolly, I.D., 1995. Plant and Soil 175, 1–11], to develop a flood history weighted net discharge salinity index (WINDS-Index) which relates to vegetation health. The MSF model, based on steady state groundwater discharge theory incorporating water uptake by vegetation, is evaluated against simulations made using a fully dynamic soil-vegetation-atmosphere model (WAVES). These simulations evaluated the impact of groundwater pumping and flooding options [Slavich, P.G., Walker, G.R., Jolly, I.D., Hatton, T.J., Dawes, W.R., 1999. Agric. Water Manage. 39, 241–261]. The dominant features of the WAVES simulations were adequately reproduced using the moving front model, provided the discharge rate was limited to a potential canopy transpiration rate. The WINDS-Index reflects the impact of flooding history on the long term average soil water salinity for soils with varying hydraulic properties, watertable depth and watertable salinity. The WINDS-Index is strongly dependent on the relative inundation time, defined as the ratio of the duration of inundation to the duration between floods, of successive flood events and has application as a management tool within a GIS. The watertable depth for long term control of root-zone salinity is defined using the concept of a critical salt balance criterion which incorporates the relative inundation time and soil hydraulic properties.</abstract>
<note type="content">Fig. 1: Schematic representation of salinity profile and associated symbols. Note double ended arrows indicate varying positions of watertable depth (Zw) and salt front (Zf). Single ended arrows indicate lateral groundwater flow. Cg is the groundwater salinity; C(0−zf) is the average soil water salinity above the solute front; Ct is the maximum soil water salinity which roots can extract water from; Zwmax is the maximum depth the watertable falls to during long dry periods; Ze is a critical soil depth which needs to remain salt free for vegetation survival during long dry periods and coincides with the depth from which vegetation extracts groundwater during long dry periods.</note>
<note type="content">Fig. 2: The dependence of the exponent (p) of the power function relating the watertable depth and the groundwater discharge rate on the C parameter of the Broadbridge White soil hydraulic model. ○ fitted values from Fig. A.1. ——— represents fitted curve Eq. (3).</note>
<note type="content">Fig. 3: Profiles of soil water salinity measured beneath black box trees with varying health. ECsw is electrical conductivity of soil water.</note>
<note type="content">Fig. 4: Schematic of flood history concepts used to calculate the salinity index. Soil water availability is averaged across successive RDI. tdi is the duration of the ith discharge interval, tsi is the duration of the ith recharge interval.</note>
<note type="content">Fig. 5: Dependence of tdmax on watertable depth at two sites (Sites 1 and 6).</note>
<note type="content">Fig. 6: Comparison of quasi-steady state moving front model with fully dynamic WAVES model for simulations at (a) Site 1 with historical watertable and flooding regime (SIM1) (b) Site 6 with historical watertable and flooding regime (SIM4) (c) Site 1 with shallow watertable and frequent flooding regime (SIM7). Histogram in Fig. 8(a) indicates years when the watertable was close to the plane of water extraction and hence the groundwater discharge rate was canopy area limited.</note>
<note type="content">Fig. 7: Computed relationship between the salinity index and the weighted average leaf area index for simulations with varying watertable and flooding regimes (Fig. 2).</note>
<note type="content">Fig. 8: The dependence of the critical watertable depth for salinity control on the relative inundation time (i.e. days inundated/days not inundated, ts/td) for soils (Sites 1 and 6) with contrasting hydraulic properties.</note>
<note type="content">Fig. 9: Captions function curves relating dimensionless watertable depth (Z/λ) to dimensionless maximum groundwater discharge rate (q/Ks) for three values of the Broadbridge and White, 1988 soil hydraulic model parameter C.</note>
<note type="content">Fig. 10: The dependence of the coefficient (a0) of the power function relating the watertable depth and the groundwater discharge rate on the C parameter of the Broadbridge White soil hydraulic model.</note>
<note type="content">Table 1: Soil and vegetation parameter used in moving front model</note>
<note type="content">Table 2: Watertable and flooding regimes used for model comparisons</note>
<subject>
<genre>Keywords</genre>
<topic>Salinity</topic>
<topic>Flood</topic>
<topic>Model</topic>
<topic>Eucalyptus</topic>
<topic>Watertable</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Agricultural Water Management</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>AGWAT</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19990225</dateIssued>
</originInfo>
<identifier type="ISSN">0378-3774</identifier>
<identifier type="PII">S0378-3774(00)X0036-4</identifier>
<part>
<date>19990225</date>
<detail type="volume">
<number>39</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2–3</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>89</start>
<end>320</end>
</extent>
<extent unit="pages">
<start>135</start>
<end>151</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">71D9613400F24964A96579591EE1356241A80EAC</identifier>
<identifier type="DOI">10.1016/S0378-3774(98)00075-4</identifier>
<identifier type="PII">S0378-3774(98)00075-4</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:71D9613400F24964A96579591EE1356241A80EAC
   |texte=   A flood history weighted index of average root-zone salinity for assessing flood impacts on health of vegetation on a saline floodplain
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024