Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon

Identifieur interne : 000C29 ( Istex/Corpus ); précédent : 000C28; suivant : 000C30

Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon

Auteurs : Saichon Seedang ; Alexander G. Fernald ; Richard M. Adams ; Dixon H. Landers

Source :

RBID : ISTEX:7E40E12DECA2143BEEE20BFE5B30443EB8DC9163

English descriptors

Abstract

This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rra.1112

Links to Exploration step

ISTEX:7E40E12DECA2143BEEE20BFE5B30443EB8DC9163

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
<author>
<name sortKey="Seedang, Saichon" sort="Seedang, Saichon" uniqKey="Seedang S" first="Saichon" last="Seedang">Saichon Seedang</name>
<affiliation>
<mods:affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernald, Alexander G" sort="Fernald, Alexander G" uniqKey="Fernald A" first="Alexander G." last="Fernald">Alexander G. Fernald</name>
<affiliation>
<mods:affiliation>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adams, Richard M" sort="Adams, Richard M" uniqKey="Adams R" first="Richard M." last="Adams">Richard M. Adams</name>
<affiliation>
<mods:affiliation>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landers, Dixon H" sort="Landers, Dixon H" uniqKey="Landers D" first="Dixon H." last="Landers">Dixon H. Landers</name>
<affiliation>
<mods:affiliation>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7E40E12DECA2143BEEE20BFE5B30443EB8DC9163</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/rra.1112</idno>
<idno type="url">https://api.istex.fr/document/7E40E12DECA2143BEEE20BFE5B30443EB8DC9163/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000C29</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000C29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
<author>
<name sortKey="Seedang, Saichon" sort="Seedang, Saichon" uniqKey="Seedang S" first="Saichon" last="Seedang">Saichon Seedang</name>
<affiliation>
<mods:affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernald, Alexander G" sort="Fernald, Alexander G" uniqKey="Fernald A" first="Alexander G." last="Fernald">Alexander G. Fernald</name>
<affiliation>
<mods:affiliation>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Adams, Richard M" sort="Adams, Richard M" uniqKey="Adams R" first="Richard M." last="Adams">Richard M. Adams</name>
<affiliation>
<mods:affiliation>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Landers, Dixon H" sort="Landers, Dixon H" uniqKey="Landers D" first="Dixon H." last="Landers">Dixon H. Landers</name>
<affiliation>
<mods:affiliation>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">River Research and Applications</title>
<title level="j" type="abbrev">River Res. Applic.</title>
<idno type="ISSN">1535-1459</idno>
<idno type="eISSN">1535-1467</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2008-09">2008-09</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="941">941</biblScope>
<biblScope unit="page" to="959">959</biblScope>
</imprint>
<idno type="ISSN">1535-1459</idno>
</series>
<idno type="istex">7E40E12DECA2143BEEE20BFE5B30443EB8DC9163</idno>
<idno type="DOI">10.1002/rra.1112</idno>
<idno type="ArticleID">RRA1112</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1535-1459</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Willamette River</term>
<term>cost‐effectiveness analysis</term>
<term>economic analysis</term>
<term>floodplain restoration</term>
<term>hyporheic temperature</term>
<term>water temperature models</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Saichon Seedang</name>
<affiliations>
<json:string>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</json:string>
<json:string>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alexander G. Fernald</name>
<affiliations>
<json:string>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Richard M. Adams</name>
<affiliations>
<json:string>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dixon H. Landers</name>
<affiliations>
<json:string>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>water temperature models</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hyporheic temperature</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cost‐effectiveness analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Willamette River</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>floodplain restoration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>economic analysis</value>
</json:item>
</subject>
<articleId>
<json:string>RRA1112</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.712</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>570 x 737 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1684</abstractCharCount>
<pdfWordCount>11621</pdfWordCount>
<pdfCharCount>71749</pdfCharCount>
<pdfPageCount>19</pdfPageCount>
<abstractWordCount>226</abstractWordCount>
</qualityIndicators>
<title>Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>24</volume>
<publisherId>
<json:string>RRA</json:string>
</publisherId>
<pages>
<total>19</total>
<last>959</last>
<first>941</first>
</pages>
<issn>
<json:string>1535-1459</json:string>
</issn>
<issue>7</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1535-1467</json:string>
</eissn>
<title>River Research and Applications</title>
<doi>
<json:string>10.1002/(ISSN)1535-1467</json:string>
</doi>
</host>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1002/rra.1112</json:string>
</doi>
<id>7E40E12DECA2143BEEE20BFE5B30443EB8DC9163</id>
<score>0.040134143</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7E40E12DECA2143BEEE20BFE5B30443EB8DC9163/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7E40E12DECA2143BEEE20BFE5B30443EB8DC9163/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7E40E12DECA2143BEEE20BFE5B30443EB8DC9163/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2008 John Wiley & Sons, Ltd.</p>
</availability>
<date>2008</date>
</publicationStmt>
<notesStmt>
<note type="content">*This manuscript has been subjected to the United States Environmental Protection Agency peer review process, and modified with permission from the American Society of Civil Engineers (ASCE).</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
<author xml:id="author-1">
<persName>
<forename type="first">Saichon</forename>
<surname>Seedang</surname>
</persName>
<note type="biography">Environmental Scientist.</note>
<affiliation>Environmental Scientist.</affiliation>
<affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</affiliation>
<affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Alexander G.</forename>
<surname>Fernald</surname>
</persName>
<note type="biography">Associate Professor.</note>
<affiliation>Associate Professor.</affiliation>
<affiliation>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Richard M.</forename>
<surname>Adams</surname>
</persName>
<note type="biography">Professor.</note>
<affiliation>Professor.</affiliation>
<affiliation>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Dixon H.</forename>
<surname>Landers</surname>
</persName>
<note type="biography">Senior Scientist.</note>
<affiliation>Senior Scientist.</affiliation>
<affiliation>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">River Research and Applications</title>
<title level="j" type="abbrev">River Res. Applic.</title>
<idno type="pISSN">1535-1459</idno>
<idno type="eISSN">1535-1467</idno>
<idno type="DOI">10.1002/(ISSN)1535-1467</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2008-09"></date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="941">941</biblScope>
<biblScope unit="page" to="959">959</biblScope>
</imprint>
</monogr>
<idno type="istex">7E40E12DECA2143BEEE20BFE5B30443EB8DC9163</idno>
<idno type="DOI">10.1002/rra.1112</idno>
<idno type="ArticleID">RRA1112</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>water temperature models</term>
</item>
<item>
<term>hyporheic temperature</term>
</item>
<item>
<term>cost‐effectiveness analysis</term>
</item>
<item>
<term>Willamette River</term>
</item>
<item>
<term>floodplain restoration</term>
</item>
<item>
<term>economic analysis</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2007-12-21">Received</change>
<change when="2008-01-07">Registration</change>
<change when="2008-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7E40E12DECA2143BEEE20BFE5B30443EB8DC9163/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1535-1467</doi>
<issn type="print">1535-1459</issn>
<issn type="electronic">1535-1467</issn>
<idGroup>
<id type="product" value="RRA"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="RIVER RESEARCH AND APPLICATIONS">River Research and Applications</title>
<title type="short">River Res. Applic.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Regulated Rivers: Research & Management</journalTitle>
<accessionId ref="info:x-wiley/issn/08869375">0886-9375</accessionId>
<accessionId ref="info:x-wiley/issn/10991646">1099-1646</accessionId>
<pubYear year="2001">2001</pubYear>
<vol>17</vol>
<issue>6</issue>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="70">
<doi origin="wiley" registered="yes">10.1002/rra.v24:7</doi>
<numberingGroup>
<numbering type="journalVolume" number="24">24</numbering>
<numbering type="journalIssue">7</numbering>
</numberingGroup>
<coverDate startDate="2008-09">September 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="50" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/rra.1112</doi>
<idGroup>
<id type="unit" value="RRA1112"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="19"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2008 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2007-12-21"></event>
<event type="manuscriptAccepted" date="2008-01-07"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2008-04-01"></event>
<event type="firstOnline" date="2008-04-01"></event>
<event type="publishedOnlineFinalForm" date="2008-08-22"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-08"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">941</numbering>
<numbering type="pageLast">959</numbering>
</numberingGroup>
<correspondenceTo>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:RRA.RRA1112.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="57"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon
<link href="#fn1"></link>
</title>
<title type="short" xml:lang="en">WATER TEMPERATURE REDUCTION PRACTICES</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes" noteRef="#fn2">
<personName>
<givenNames>Saichon</givenNames>
<familyName>Seedang</familyName>
</personName>
<contactDetails>
<email>seedang@msu.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2" noteRef="#fn3">
<personName>
<givenNames>Alexander G.</givenNames>
<familyName>Fernald</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3" noteRef="#fn4">
<personName>
<givenNames>Richard M.</givenNames>
<familyName>Adams</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af4" noteRef="#fn5">
<personName>
<givenNames>Dixon H.</givenNames>
<familyName>Landers</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">water temperature models</keyword>
<keyword xml:id="kwd2">hyporheic temperature</keyword>
<keyword xml:id="kwd3">cost‐effectiveness analysis</keyword>
<keyword xml:id="kwd4">Willamette River</keyword>
<keyword xml:id="kwd5">floodplain restoration</keyword>
<keyword xml:id="kwd6">economic analysis</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>This manuscript has been subjected to the United States Environmental Protection Agency peer review process, and modified with permission from the American Society of Civil Engineers (ASCE).</p>
</note>
<note xml:id="fn2">
<p>Environmental Scientist.</p>
</note>
<note xml:id="fn3">
<p>Associate Professor.</p>
</note>
<note xml:id="fn4">
<p>Professor.</p>
</note>
<note xml:id="fn5">
<p>Senior Scientist.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>WATER TEMPERATURE REDUCTION PRACTICES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saichon</namePart>
<namePart type="family">Seedang</namePart>
<affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA</affiliation>
<description>Environmental Scientist.</description>
<affiliation>Institute of Water Research, Michigan State University, Room 101A Manly Miles Building, 1405 S. Harrison Road, East Lansing, MI 48823‐5243, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander G.</namePart>
<namePart type="family">Fernald</namePart>
<affiliation>Department of Animal and Ranges Sciences, New Mexico State University, Box 30003 MSC3‐I, New Mexico State University, Las Cruces, NM 88003, USA</affiliation>
<description>Associate Professor.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard M.</namePart>
<namePart type="family">Adams</namePart>
<affiliation>Department of Agricultural and Resource Economics, Oregon State University, 200A Ballard Extension Hall, Corvallis, OR 97331‐3601, USA</affiliation>
<description>Professor.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dixon H.</namePart>
<namePart type="family">Landers</namePart>
<affiliation>U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA</affiliation>
<description>Senior Scientist.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2008-09</dateIssued>
<dateCaptured encoding="w3cdtf">2007-12-21</dateCaptured>
<dateValid encoding="w3cdtf">2008-01-07</dateValid>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">2</extent>
<extent unit="references">57</extent>
</physicalDescription>
<abstract lang="en">This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.</abstract>
<note type="content">*This manuscript has been subjected to the United States Environmental Protection Agency peer review process, and modified with permission from the American Society of Civil Engineers (ASCE).</note>
<subject lang="en">
<genre>keywords</genre>
<topic>water temperature models</topic>
<topic>hyporheic temperature</topic>
<topic>cost‐effectiveness analysis</topic>
<topic>Willamette River</topic>
<topic>floodplain restoration</topic>
<topic>economic analysis</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>River Research and Applications</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>River Res. Applic.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1535-1459</identifier>
<identifier type="eISSN">1535-1467</identifier>
<identifier type="DOI">10.1002/(ISSN)1535-1467</identifier>
<identifier type="PublisherID">RRA</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>941</start>
<end>959</end>
<total>19</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Regulated Rivers: Research & Management</title>
</titleInfo>
<identifier type="ISSN">0886-9375</identifier>
<identifier type="ISSN">1099-1646</identifier>
<part>
<date point="end">2001</date>
<detail type="volume">
<caption>last vol.</caption>
<number>17</number>
</detail>
<detail type="issue">
<caption>last no.</caption>
<number>6</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">7E40E12DECA2143BEEE20BFE5B30443EB8DC9163</identifier>
<identifier type="DOI">10.1002/rra.1112</identifier>
<identifier type="ArticleID">RRA1112</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2008 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000C29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7E40E12DECA2143BEEE20BFE5B30443EB8DC9163
   |texte=   Economic analysis of water temperature reduction practices in a large river floodplain: an exploratory study of the Willamette River, Oregon
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024