Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling nitrous oxide emissions from agriculture: A Florida case study

Identifieur interne : 000B66 ( Istex/Corpus ); précédent : 000B65; suivant : 000B67

Modeling nitrous oxide emissions from agriculture: A Florida case study

Auteurs : Changsheng Li ; Stephen E. Frolking ; Robert C. Harriss ; Richard E. Terry

Source :

RBID : ISTEX:1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD

Abstract

The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N2O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N2O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N2O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N2ON y−1. Emissions were unevenly distributed with approximately 50 percent of the N2O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N2O flux. Sensitivity studies suggest that the most effective means for mitigating N2O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N2O emissions from agricultural systems.

Url:
DOI: 10.1016/0045-6535(94)90081-7

Links to Exploration step

ISTEX:1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
<author>
<name sortKey="Li, Changsheng" sort="Li, Changsheng" uniqKey="Li C" first="Changsheng" last="Li">Changsheng Li</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frolking, Stephen E" sort="Frolking, Stephen E" uniqKey="Frolking S" first="Stephen E." last="Frolking">Stephen E. Frolking</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harriss, Robert C" sort="Harriss, Robert C" uniqKey="Harriss R" first="Robert C." last="Harriss">Robert C. Harriss</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Terry, Richard E" sort="Terry, Richard E" uniqKey="Terry R" first="Richard E." last="Terry">Richard E. Terry</name>
<affiliation>
<mods:affiliation>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1016/0045-6535(94)90081-7</idno>
<idno type="url">https://api.istex.fr/document/1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B66</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
<author>
<name sortKey="Li, Changsheng" sort="Li, Changsheng" uniqKey="Li C" first="Changsheng" last="Li">Changsheng Li</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frolking, Stephen E" sort="Frolking, Stephen E" uniqKey="Frolking S" first="Stephen E." last="Frolking">Stephen E. Frolking</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harriss, Robert C" sort="Harriss, Robert C" uniqKey="Harriss R" first="Robert C." last="Harriss">Robert C. Harriss</name>
<affiliation>
<mods:affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Terry, Richard E" sort="Terry, Richard E" uniqKey="Terry R" first="Richard E." last="Terry">Richard E. Terry</name>
<affiliation>
<mods:affiliation>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Chemosphere</title>
<title level="j" type="abbrev">CHEM</title>
<idno type="ISSN">0045-6535</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1401">1401</biblScope>
<biblScope unit="page" to="1415">1415</biblScope>
</imprint>
<idno type="ISSN">0045-6535</idno>
</series>
<idno type="istex">1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD</idno>
<idno type="DOI">10.1016/0045-6535(94)90081-7</idno>
<idno type="PII">0045-6535(94)90081-7</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0045-6535</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N2O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N2O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N2O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N2ON y−1. Emissions were unevenly distributed with approximately 50 percent of the N2O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N2O flux. Sensitivity studies suggest that the most effective means for mitigating N2O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N2O emissions from agricultural systems.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Changsheng Li</name>
<affiliations>
<json:string>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Stephen E. Frolking</name>
<affiliations>
<json:string>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert C. Harriss</name>
<affiliations>
<json:string>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Richard E. Terry</name>
<affiliations>
<json:string>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N2O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N2O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N2O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N2ON y−1. Emissions were unevenly distributed with approximately 50 percent of the N2O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N2O flux. Sensitivity studies suggest that the most effective means for mitigating N2O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N2O emissions from agricultural systems.</abstract>
<qualityIndicators>
<score>7.588</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>526 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1656</abstractCharCount>
<pdfWordCount>4672</pdfWordCount>
<pdfCharCount>28439</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>243</abstractWordCount>
</qualityIndicators>
<title>Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
<pii>
<json:string>0045-6535(94)90081-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<volume>12</volume>
<pages>
<first>657</first>
</pages>
<language>
<json:string>unknown</json:string>
</language>
<title>Intl. Hydrol. Sci. Proc.</title>
</serie>
<host>
<volume>28</volume>
<pii>
<json:string>S0045-6535(00)X0237-8</json:string>
</pii>
<pages>
<last>1415</last>
<first>1401</first>
</pages>
<issn>
<json:string>0045-6535</json:string>
</issn>
<issue>7</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Chemosphere</title>
<publicationDate>1994</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>environmental sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1016/0045-6535(94)90081-7</json:string>
</doi>
<id>1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD</id>
<score>0.03695183</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1994</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
<author xml:id="author-1">
<persName>
<forename type="first">Changsheng</forename>
<surname>Li</surname>
</persName>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Stephen E.</forename>
<surname>Frolking</surname>
</persName>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Robert C.</forename>
<surname>Harriss</surname>
</persName>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Richard E.</forename>
<surname>Terry</surname>
</persName>
<affiliation>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Chemosphere</title>
<title level="j" type="abbrev">CHEM</title>
<idno type="pISSN">0045-6535</idno>
<idno type="PII">S0045-6535(00)X0237-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994"></date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="1401">1401</biblScope>
<biblScope unit="page" to="1415">1415</biblScope>
</imprint>
</monogr>
<idno type="istex">1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD</idno>
<idno type="DOI">10.1016/0045-6535(94)90081-7</idno>
<idno type="PII">0045-6535(94)90081-7</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N2O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N2O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N2O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N2ON y−1. Emissions were unevenly distributed with approximately 50 percent of the N2O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N2O flux. Sensitivity studies suggest that the most effective means for mitigating N2O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N2O emissions from agricultural systems.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1994">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CHEM</jid>
<aid>94900817</aid>
<ce:pii>0045-6535(94)90081-7</ce:pii>
<ce:doi>10.1016/0045-6535(94)90081-7</ce:doi>
<ce:copyright type="unknown" year="1994"></ce:copyright>
</item-info>
<head>
<ce:title>Modeling nitrous oxide emissions from agriculture: A Florida case study</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Changsheng</ce:given-name>
<ce:surname>Li</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Stephen E.</ce:given-name>
<ce:surname>Frolking</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Robert C.</ce:given-name>
<ce:surname>Harriss</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Richard E.</ce:given-name>
<ce:surname>Terry</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>1</ce:label>
<ce:textfn>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>2</ce:label>
<ce:textfn>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="9" month="8" year="1993"></ce:date-received>
<ce:date-accepted day="31" month="1" year="1994"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N
<ce:inf>2</ce:inf>
O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N
<ce:inf>2</ce:inf>
O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N
<ce:inf>2</ce:inf>
O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N
<ce:inf>2</ce:inf>
ON y
<ce:sup>−1</ce:sup>
. Emissions were unevenly distributed with approximately 50 percent of the N
<ce:inf>2</ce:inf>
O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N
<ce:inf>2</ce:inf>
O flux. Sensitivity studies suggest that the most effective means for mitigating N
<ce:inf>2</ce:inf>
O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N
<ce:inf>2</ce:inf>
O emissions from agricultural systems.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Modeling nitrous oxide emissions from agriculture: A Florida case study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Changsheng</namePart>
<namePart type="family">Li</namePart>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen E.</namePart>
<namePart type="family">Frolking</namePart>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert C.</namePart>
<namePart type="family">Harriss</namePart>
<affiliation>Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham, NH 03824-3525, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard E.</namePart>
<namePart type="family">Terry</namePart>
<affiliation>Department of Agronomy and Horticulture Brigham Young University Provo, Utah USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1994</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">The DNDC (Denitrification-Decomposition) model is shown to simulate emissions of nitrous oxide (N2O), changes in soil nitrate, and nitrogen mineralization rates consistent with field measurements at three agricultural sites in Florida. As a case study of the potential policy relevance of a process-oriented biogeochemical model, we estimated N2O emissions to the atmosphere from all agricultural lands in Florida, a state with significant agriculture on both organic and mineral soils. Nine landscape classes (3 soil classes × 3 annual rainfall classes) were coupled with county-based data on crops (5 major crops + pasture + fallow), fertilization, irrigation, and representative areas, to generate 86 model scenarios. Annual simulations were run for each case, and county and state emissions were tabulated. Total N2O emissions from Florida's agricultural lands were estimated to be 0.024 Tg N2ON y−1. Emissions were unevenly distributed with approximately 50 percent of the N2O being emitted from soils in six (of 68) Florida counties. Organic soils, while occupying only 9% of the total agricultural land area and receiving no nitrogen fertilizer additions, accounted for 38% of the state's total N2O flux. Sensitivity studies suggest that the most effective means for mitigating N2O emissions would involve a combination of measures including reductions in drainage of organic soils, injection of fertilizers to soil depths of 10 cm or greater, and increased attention to precision irrigation. Biogeochemical modeling will be critical to developing an integrated framework for assessing policies for reducing N2O emissions from agricultural systems.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Chemosphere</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CHEM</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199404</dateIssued>
</originInfo>
<identifier type="ISSN">0045-6535</identifier>
<identifier type="PII">S0045-6535(00)X0237-8</identifier>
<part>
<date>199404</date>
<detail type="volume">
<number>28</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>7</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1255</start>
<end>1415</end>
</extent>
<extent unit="pages">
<start>1401</start>
<end>1415</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD</identifier>
<identifier type="DOI">10.1016/0045-6535(94)90081-7</identifier>
<identifier type="PII">0045-6535(94)90081-7</identifier>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
</recordInfo>
</mods>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1140F4A73C3EFED3AA538DCA97A187FBC0A9D7AD
   |texte=   Modeling nitrous oxide emissions from agriculture: A Florida case study
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024