Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis

Identifieur interne : 000975 ( Istex/Corpus ); précédent : 000974; suivant : 000976

Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis

Auteurs : Enrico C. Paringit ; Kazuo Nadaoka

Source :

RBID : ISTEX:FB323DE615637916443AA5CDB8934E991437529C

English descriptors

Abstract

Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.1222

Links to Exploration step

ISTEX:FB323DE615637916443AA5CDB8934E991437529C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
<author>
<name sortKey="Paringit, Enrico C" sort="Paringit, Enrico C" uniqKey="Paringit E" first="Enrico C." last="Paringit">Enrico C. Paringit</name>
<affiliation>
<mods:affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nadaoka, Kazuo" sort="Nadaoka, Kazuo" uniqKey="Nadaoka K" first="Kazuo" last="Nadaoka">Kazuo Nadaoka</name>
<affiliation>
<mods:affiliation>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:FB323DE615637916443AA5CDB8934E991437529C</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1002/hyp.1222</idno>
<idno type="url">https://api.istex.fr/document/FB323DE615637916443AA5CDB8934E991437529C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000975</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000975</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
<author>
<name sortKey="Paringit, Enrico C" sort="Paringit, Enrico C" uniqKey="Paringit E" first="Enrico C." last="Paringit">Enrico C. Paringit</name>
<affiliation>
<mods:affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nadaoka, Kazuo" sort="Nadaoka, Kazuo" uniqKey="Nadaoka K" first="Kazuo" last="Nadaoka">Kazuo Nadaoka</name>
<affiliation>
<mods:affiliation>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-06-30">2003-06-30</date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1845">1845</biblScope>
<biblScope unit="page" to="1866">1866</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">FB323DE615637916443AA5CDB8934E991437529C</idno>
<idno type="DOI">10.1002/hyp.1222</idno>
<idno type="ArticleID">HYP1222</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>erosion</term>
<term>remote sensing</term>
<term>sediment yield</term>
<term>spectral mixture model</term>
<term>vegetation indeces</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Enrico C. Paringit</name>
<affiliations>
<json:string>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</json:string>
<json:string>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kazuo Nadaoka</name>
<affiliations>
<json:string>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>erosion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sediment yield</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vegetation indeces</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>remote sensing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spectral mixture model</value>
</json:item>
</subject>
<articleId>
<json:string>HYP1222</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.304</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1328</abstractCharCount>
<pdfWordCount>9388</pdfWordCount>
<pdfCharCount>58579</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>192</abstractWordCount>
</qualityIndicators>
<title>Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>17</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>22</total>
<last>1866</last>
<first>1845</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>9</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1002/hyp.1222</json:string>
</doi>
<id>FB323DE615637916443AA5CDB8934E991437529C</id>
<score>0.041663777</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/FB323DE615637916443AA5CDB8934E991437529C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/FB323DE615637916443AA5CDB8934E991437529C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/FB323DE615637916443AA5CDB8934E991437529C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2003 John Wiley & Sons, Ltd.</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
<author xml:id="author-1">
<persName>
<forename type="first">Enrico C.</forename>
<surname>Paringit</surname>
</persName>
<affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Kazuo</forename>
<surname>Nadaoka</surname>
</persName>
<affiliation>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2003-06-30"></date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1845">1845</biblScope>
<biblScope unit="page" to="1866">1866</biblScope>
</imprint>
</monogr>
<idno type="istex">FB323DE615637916443AA5CDB8934E991437529C</idno>
<idno type="DOI">10.1002/hyp.1222</idno>
<idno type="ArticleID">HYP1222</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>erosion</term>
</item>
<item>
<term>sediment yield</term>
</item>
<item>
<term>vegetation indeces</term>
</item>
<item>
<term>remote sensing</term>
</item>
<item>
<term>spectral mixture model</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-02-11">Received</change>
<change when="2002-09-18">Registration</change>
<change when="2003-06-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/FB323DE615637916443AA5CDB8934E991437529C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/hyp.v17:9</doi>
<numberingGroup>
<numbering type="journalVolume" number="17">17</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<coverDate startDate="2003-06-30">30 June 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hyp.1222</doi>
<idGroup>
<id type="unit" value="HYP1222"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="22"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2003 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-02-11"></event>
<event type="manuscriptAccepted" date="2002-09-18"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2003-04-07"></event>
<event type="firstOnline" date="2003-04-07"></event>
<event type="publishedOnlineFinalForm" date="2003-06-19"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1845</numbering>
<numbering type="pageLast">1866</numbering>
</numberingGroup>
<correspondenceTo>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP1222.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="51"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
<title type="short" xml:lang="en">SEDIMENT YIELD MODELLING</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Enrico C.</givenNames>
<familyName>Paringit</familyName>
</personName>
<contactDetails>
<email>ecp@wv.mei.titech.ac.jp</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Kazuo</givenNames>
<familyName>Nadaoka</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="JP" type="organization">
<unparsedAffiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="JP" type="organization">
<unparsedAffiliation>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">erosion</keyword>
<keyword xml:id="kwd2">sediment yield</keyword>
<keyword xml:id="kwd3">vegetation indeces</keyword>
<keyword xml:id="kwd4">remote sensing</keyword>
<keyword xml:id="kwd5">spectral mixture model</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SEDIMENT YIELD MODELLING</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enrico C.</namePart>
<namePart type="family">Paringit</namePart>
<affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Graduate School of Science and Engineering, Department of Civil Engineering, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuo</namePart>
<namePart type="family">Nadaoka</namePart>
<affiliation>Graduate School of Information Science and Engineering, Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, West 8 Building, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-06-30</dateIssued>
<dateCaptured encoding="w3cdtf">2001-02-11</dateCaptured>
<dateValid encoding="w3cdtf">2002-09-18</dateValid>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">4</extent>
<extent unit="references">51</extent>
</physicalDescription>
<abstract lang="en">Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>erosion</topic>
<topic>sediment yield</topic>
<topic>vegetation indeces</topic>
<topic>remote sensing</topic>
<topic>spectral mixture model</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1845</start>
<end>1866</end>
<total>22</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">FB323DE615637916443AA5CDB8934E991437529C</identifier>
<identifier type="DOI">10.1002/hyp.1222</identifier>
<identifier type="ArticleID">HYP1222</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2003 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000975 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000975 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:FB323DE615637916443AA5CDB8934E991437529C
   |texte=   Sediment yield modelling for small agricultural catchments: land‐cover parameterization based on remote sensing data analysis
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024