Serveur d'exploration sur la méthode scrum

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons

Identifieur interne : 000338 ( Istex/Corpus ); précédent : 000337; suivant : 000339

On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons

Auteurs : S. E. Allen ; M. S. Dinniman ; J. M. Klinck ; D. D. Gorby ; A. J. Hewett ; B. M. Hickey

Source :

RBID : ISTEX:56C1D0BEC02A89E06BE166B13DB920EBA954F3F7

Abstract

Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.

Url:
DOI: 10.1029/2001JC000978

Links to Exploration step

ISTEX:56C1D0BEC02A89E06BE166B13DB920EBA954F3F7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
<author>
<name sortKey="Allen, S E" sort="Allen, S E" uniqKey="Allen S" first="S. E." last="Allen">S. E. Allen</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dinniman, M S" sort="Dinniman, M S" uniqKey="Dinniman M" first="M. S." last="Dinniman">M. S. Dinniman</name>
<affiliation>
<mods:affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klinck, J M" sort="Klinck, J M" uniqKey="Klinck J" first="J. M." last="Klinck">J. M. Klinck</name>
<affiliation>
<mods:affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorby, D D" sort="Gorby, D D" uniqKey="Gorby D" first="D. D." last="Gorby">D. D. Gorby</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hewett, A J" sort="Hewett, A J" uniqKey="Hewett A" first="A. J." last="Hewett">A. J. Hewett</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hickey, B M" sort="Hickey, B M" uniqKey="Hickey B" first="B. M." last="Hickey">B. M. Hickey</name>
<affiliation>
<mods:affiliation>School of Oceanography, University of Washington, Washington, Seattle, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:56C1D0BEC02A89E06BE166B13DB920EBA954F3F7</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1029/2001JC000978</idno>
<idno type="url">https://api.istex.fr/document/56C1D0BEC02A89E06BE166B13DB920EBA954F3F7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000338</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
<author>
<name sortKey="Allen, S E" sort="Allen, S E" uniqKey="Allen S" first="S. E." last="Allen">S. E. Allen</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dinniman, M S" sort="Dinniman, M S" uniqKey="Dinniman M" first="M. S." last="Dinniman">M. S. Dinniman</name>
<affiliation>
<mods:affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klinck, J M" sort="Klinck, J M" uniqKey="Klinck J" first="J. M." last="Klinck">J. M. Klinck</name>
<affiliation>
<mods:affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gorby, D D" sort="Gorby, D D" uniqKey="Gorby D" first="D. D." last="Gorby">D. D. Gorby</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hewett, A J" sort="Hewett, A J" uniqKey="Hewett A" first="A. J." last="Hewett">A. J. Hewett</name>
<affiliation>
<mods:affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hickey, B M" sort="Hickey, B M" uniqKey="Hickey B" first="B. M." last="Hickey">B. M. Hickey</name>
<affiliation>
<mods:affiliation>School of Oceanography, University of Washington, Washington, Seattle, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2003-01">2003-01</date>
<biblScope unit="volume">108</biblScope>
<biblScope unit="issue">C1</biblScope>
<biblScope unit="page" from="3-1">3-1</biblScope>
<biblScope unit="page" to="3-16">3-16</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">56C1D0BEC02A89E06BE166B13DB920EBA954F3F7</idno>
<idno type="DOI">10.1029/2001JC000978</idno>
<idno type="ArticleID">2001JC000978</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>S. E. Allen</name>
<affiliations>
<json:string>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. S. Dinniman</name>
<affiliations>
<json:string>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. M. Klinck</name>
<affiliations>
<json:string>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. D. Gorby</name>
<affiliations>
<json:string>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. J. Hewett</name>
<affiliations>
<json:string>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</json:string>
</affiliations>
</json:item>
<json:item>
<name>B. M. Hickey</name>
<affiliations>
<json:string>School of Oceanography, University of Washington, Washington, Seattle, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sigma</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>error</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>topography</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>upwelling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>canyon</value>
</json:item>
</subject>
<articleId>
<json:string>2001JC000978</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.</abstract>
<qualityIndicators>
<score>7.28</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1307</abstractCharCount>
<pdfWordCount>8844</pdfWordCount>
<pdfCharCount>49896</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>190</abstractWordCount>
</qualityIndicators>
<title>On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>108</volume>
<publisherId>
<json:string>JGRC</json:string>
</publisherId>
<pages>
<total>16</total>
<last>3-16</last>
<first>3-1</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>C1</issue>
<subject>
<json:item>
<value>COMPUTATIONAL GEOPHYSICS</value>
</json:item>
<json:item>
<value>Modeling</value>
</json:item>
<json:item>
<value>Numerical solutions</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Numerical modeling</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Eddies and mesoscale processes</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Oceans</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202c</json:string>
</doi>
</host>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1029/2001JC000978</json:string>
</doi>
<id>56C1D0BEC02A89E06BE166B13DB920EBA954F3F7</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/56C1D0BEC02A89E06BE166B13DB920EBA954F3F7/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/56C1D0BEC02A89E06BE166B13DB920EBA954F3F7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/56C1D0BEC02A89E06BE166B13DB920EBA954F3F7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
<author>
<persName>
<forename type="first">S. E.</forename>
<surname>Allen</surname>
</persName>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
</author>
<author>
<persName>
<forename type="first">M. S.</forename>
<surname>Dinniman</surname>
</persName>
<affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">J. M.</forename>
<surname>Klinck</surname>
</persName>
<affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">D. D.</forename>
<surname>Gorby</surname>
</persName>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
</author>
<author>
<persName>
<forename type="first">A. J.</forename>
<surname>Hewett</surname>
</persName>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
</author>
<author>
<persName>
<forename type="first">B. M.</forename>
<surname>Hickey</surname>
</persName>
<affiliation>School of Oceanography, University of Washington, Washington, Seattle, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202c</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2003-01"></date>
<biblScope unit="volume">108</biblScope>
<biblScope unit="issue">C1</biblScope>
<biblScope unit="page" from="3-1">3-1</biblScope>
<biblScope unit="page" to="3-16">3-16</biblScope>
</imprint>
</monogr>
<idno type="istex">56C1D0BEC02A89E06BE166B13DB920EBA954F3F7</idno>
<idno type="DOI">10.1029/2001JC000978</idno>
<idno type="ArticleID">2001JC000978</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>model</term>
</item>
<item>
<term>sigma</term>
</item>
<item>
<term>error</term>
</item>
<item>
<term>topography</term>
</item>
<item>
<term>upwelling</term>
</item>
<item>
<term>canyon</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>COMPUTATIONAL GEOPHYSICS</term>
</item>
<item>
<term>Modeling</term>
</item>
<item>
<term>Numerical solutions</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation</term>
</item>
<item>
<term>OCEANOGRAPHY: GENERAL</term>
</item>
<item>
<term>Numerical modeling</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Eddies and mesoscale processes</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-05-14">Received</change>
<change when="2002-04-10">Registration</change>
<change when="2003-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/56C1D0BEC02A89E06BE166B13DB920EBA954F3F7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrc8793">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202c</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRC"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS">Journal of Geophysical Research: Oceans</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi>10.1002/jgrc.v108.C1</doi>
<idGroup>
<id type="focusSection" value="3"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Oceans</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="108">108</numbering>
<numbering type="journalIssue">C1</numbering>
</numberingGroup>
<coverDate startDate="2003-01">January 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="160" type="article" status="forIssue">
<doi>10.1029/2001JC000978</doi>
<idGroup>
<id type="editorialOffice" value="2001JC000978"></id>
<id type="society" value="3003"></id>
<id type="unit" value="JGRC8793"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2003 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-05-14"></event>
<event type="manuscriptRevised" date="2001-12-27"></event>
<event type="manuscriptAccepted" date="2002-04-10"></event>
<event type="firstOnline" date="2003-01-03"></event>
<event type="publishedOnlineFinalForm" date="2003-01-03"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.21_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">3-1</numbering>
<numbering type="pageLast">3-16</numbering>
</numberingGroup>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0545">Modeling</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0560">Numerical solutions</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3337">Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4255">Numerical modeling</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4520">Eddies and mesoscale processes</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrc8793-cit-0000" type="self">
<author>
<familyName>Allen</familyName>
,
<givenNames>S. E.</givenNames>
</author>
,
<author>
<givenNames>M. S.</givenNames>
<familyName>Dinniman</familyName>
</author>
,
<author>
<givenNames>J. M.</givenNames>
<familyName>Klinck</familyName>
</author>
,
<author>
<givenNames>D. D.</givenNames>
<familyName>Gorby</familyName>
</author>
,
<author>
<givenNames>A. J.</givenNames>
<familyName>Hewett</familyName>
</author>
, and
<author>
<givenNames>B. M.</givenNames>
<familyName>Hickey</familyName>
</author>
,
<articleTitle>On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>108</vol>
(
<issue>C1</issue>
), 3003, doi:
<accessionId ref="info:doi/10.1029/2001JC000978">10.1029/2001JC000978</accessionId>
,
<pubYear year="2003">2003</pubYear>
.</citation>
</selfCitationGroup>
<objectNameGroup>
<objectName elementName="appendix">Appendix</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRC.JGRC8793.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
<title type="short">COMPARISON OF A NUMERICAL AND A PHYSICAL MODEL</title>
<title type="shortAuthors">Allen
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrc8793-cr-0001" affiliationRef="#jgrc8793-aff-0001">
<personName>
<givenNames>S. E.</givenNames>
<familyName>Allen</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc8793-cr-0002" affiliationRef="#jgrc8793-aff-0002">
<personName>
<givenNames>M. S.</givenNames>
<familyName>Dinniman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc8793-cr-0003" affiliationRef="#jgrc8793-aff-0002">
<personName>
<givenNames>J. M.</givenNames>
<familyName>Klinck</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc8793-cr-0004" affiliationRef="#jgrc8793-aff-0001">
<personName>
<givenNames>D. D.</givenNames>
<familyName>Gorby</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc8793-cr-0005" affiliationRef="#jgrc8793-aff-0001">
<personName>
<givenNames>A. J.</givenNames>
<familyName>Hewett</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc8793-cr-0006" affiliationRef="#jgrc8793-aff-0003">
<personName>
<givenNames>B. M.</givenNames>
<familyName>Hickey</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="CA" type="organization" xml:id="jgrc8793-aff-0001">
<orgDiv>Oceanography, Department of Earth and Ocean Sciences</orgDiv>
<orgName>University of British Columbia</orgName>
<address>
<city>Vancouver</city>
<countryPart>British Columbia</countryPart>
<country>Canada</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrc8793-aff-0002">
<orgDiv>Center for Coastal Physical Oceanography</orgDiv>
<orgName>Old Dominion University</orgName>
<address>
<city>Norfolk</city>
<countryPart>Virginia</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrc8793-aff-0003">
<orgDiv>School of Oceanography</orgDiv>
<orgName>University of Washington</orgName>
<address>
<city>Seattle</city>
<countryPart>Washington</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrc8793-kwd-0001">model</keyword>
<keyword xml:id="jgrc8793-kwd-0002">sigma</keyword>
<keyword xml:id="jgrc8793-kwd-0003">error</keyword>
<keyword xml:id="jgrc8793-kwd-0004">topography</keyword>
<keyword xml:id="jgrc8793-kwd-0005">upwelling</keyword>
<keyword xml:id="jgrc8793-kwd-0006">canyon</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrc8793-para-0001" label="1">Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>COMPARISON OF A NUMERICAL AND A PHYSICAL MODEL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons</title>
</titleInfo>
<name type="personal">
<namePart type="given">S. E.</namePart>
<namePart type="family">Allen</namePart>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. S.</namePart>
<namePart type="family">Dinniman</namePart>
<affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. M.</namePart>
<namePart type="family">Klinck</namePart>
<affiliation>Center for Coastal Physical Oceanography, Old Dominion University, Virginia, Norfolk, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. D.</namePart>
<namePart type="family">Gorby</namePart>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A. J.</namePart>
<namePart type="family">Hewett</namePart>
<affiliation>Oceanography, Department of Earth and Ocean Sciences, University of British Columbia, British Columbia, Vancouver, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B. M.</namePart>
<namePart type="family">Hickey</namePart>
<affiliation>School of Oceanography, University of Washington, Washington, Seattle, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2003-01</dateIssued>
<dateCaptured encoding="w3cdtf">2001-05-14</dateCaptured>
<dateValid encoding="w3cdtf">2002-04-10</dateValid>
<edition>Allen, S. E., M. S. Dinniman, J. M. Klinck, D. D. Gorby, A. J. Hewett, and B. M. Hickey, On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons, J. Geophys. Res., 108(C1), 3003, doi:10.1029/2001JC000978, 2003.</edition>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract>Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three‐dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2–4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S‐Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain‐following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.</abstract>
<subject>
<genre>Keywords</genre>
<topic>model</topic>
<topic>sigma</topic>
<topic>error</topic>
<topic>topography</topic>
<topic>upwelling</topic>
<topic>canyon</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Oceans</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0545">Modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0560">Numerical solutions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3337">Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4255">Numerical modeling</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4520">Eddies and mesoscale processes</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202c</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRC</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>108</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>C1</number>
</detail>
<extent unit="pages">
<start>3-1</start>
<end>3-16</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">56C1D0BEC02A89E06BE166B13DB920EBA954F3F7</identifier>
<identifier type="DOI">10.1029/2001JC000978</identifier>
<identifier type="ArticleID">2001JC000978</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2003 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Informatique/explor/ScrumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000338 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000338 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Informatique
   |area=    ScrumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:56C1D0BEC02A89E06BE166B13DB920EBA954F3F7
   |texte=   On vertical advection truncation errors in terrain‐following numerical models: Comparison to a laboratory model for upwelling over submarine canyons
}}

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Tue Mar 5 18:28:08 2024. Site generation: Tue Mar 5 18:45:01 2024