Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Restoring warped document images through 3D shape modeling.

Identifieur interne : 000064 ( PubMed/Corpus ); précédent : 000063; suivant : 000065

Restoring warped document images through 3D shape modeling.

Auteurs : Chew Lim Tan ; Li Zhang ; Zheng Zhang ; Tao Xia

Source :

RBID : pubmed:16468617

English descriptors

Abstract

Scanning a document page from a thick bound volume often results in two kinds of distortions in the scanned image, i.e., shade along the "spine" of the book and warping in the shade area. In this paper, we propose an efficient restoration method based on the discovery of the 3D shape of a book surface from the shading information in a scanned document image. From a technical point of view, this shape from shading (SFS) problem in real-world environments is characterized by 1) a proximal and moving light source, 2) Lambertian reflection, 3) nonuniform albedo distribution, and 4) document skew. Taking all these factors into account, we first build practical models (consisting of a 3D geometric model and a 3D optical model) for the practical scanning conditions to reconstruct the 3D shape of the book surface. We next restore the scanned document image using this shape based on deshading and dewarping models. Finally, we evaluate the restoration results by comparing our estimated surface shape with the real shape as well as the OCR performance on original and restored document images. The results show that the geometric and photometric distortions are mostly removed and the OCR results are improved markedly.

DOI: 10.1109/TPAMI.2006.40
PubMed: 16468617

Links to Exploration step

pubmed:16468617

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Restoring warped document images through 3D shape modeling.</title>
<author>
<name sortKey="Tan, Chew Lim" sort="Tan, Chew Lim" uniqKey="Tan C" first="Chew Lim" last="Tan">Chew Lim Tan</name>
<affiliation>
<nlm:affiliation>School of Computing, National University of Singapore 3, Science Drive 2, Singapore. tancl@comp.nus.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Li" sort="Zhang, Li" uniqKey="Zhang L" first="Li" last="Zhang">Li Zhang</name>
</author>
<author>
<name sortKey="Zhang, Zheng" sort="Zhang, Zheng" uniqKey="Zhang Z" first="Zheng" last="Zhang">Zheng Zhang</name>
</author>
<author>
<name sortKey="Xia, Tao" sort="Xia, Tao" uniqKey="Xia T" first="Tao" last="Xia">Tao Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16468617</idno>
<idno type="pmid">16468617</idno>
<idno type="doi">10.1109/TPAMI.2006.40</idno>
<idno type="wicri:Area/PubMed/Corpus">000064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Restoring warped document images through 3D shape modeling.</title>
<author>
<name sortKey="Tan, Chew Lim" sort="Tan, Chew Lim" uniqKey="Tan C" first="Chew Lim" last="Tan">Chew Lim Tan</name>
<affiliation>
<nlm:affiliation>School of Computing, National University of Singapore 3, Science Drive 2, Singapore. tancl@comp.nus.edu.sg</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Li" sort="Zhang, Li" uniqKey="Zhang L" first="Li" last="Zhang">Li Zhang</name>
</author>
<author>
<name sortKey="Zhang, Zheng" sort="Zhang, Zheng" uniqKey="Zhang Z" first="Zheng" last="Zhang">Zheng Zhang</name>
</author>
<author>
<name sortKey="Xia, Tao" sort="Xia, Tao" uniqKey="Xia T" first="Tao" last="Xia">Tao Xia</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on pattern analysis and machine intelligence</title>
<idno type="ISSN">0162-8828</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Artifacts</term>
<term>Artificial Intelligence</term>
<term>Automatic Data Processing (methods)</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Documentation (methods)</term>
<term>Image Enhancement (methods)</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Information Storage and Retrieval (methods)</term>
<term>Models, Theoretical</term>
<term>Pattern Recognition, Automated (methods)</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Automatic Data Processing</term>
<term>Documentation</term>
<term>Image Enhancement</term>
<term>Image Interpretation, Computer-Assisted</term>
<term>Imaging, Three-Dimensional</term>
<term>Information Storage and Retrieval</term>
<term>Pattern Recognition, Automated</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Artifacts</term>
<term>Artificial Intelligence</term>
<term>Computer Graphics</term>
<term>Computer Simulation</term>
<term>Models, Theoretical</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Scanning a document page from a thick bound volume often results in two kinds of distortions in the scanned image, i.e., shade along the "spine" of the book and warping in the shade area. In this paper, we propose an efficient restoration method based on the discovery of the 3D shape of a book surface from the shading information in a scanned document image. From a technical point of view, this shape from shading (SFS) problem in real-world environments is characterized by 1) a proximal and moving light source, 2) Lambertian reflection, 3) nonuniform albedo distribution, and 4) document skew. Taking all these factors into account, we first build practical models (consisting of a 3D geometric model and a 3D optical model) for the practical scanning conditions to reconstruct the 3D shape of the book surface. We next restore the scanned document image using this shape based on deshading and dewarping models. Finally, we evaluate the restoration results by comparing our estimated surface shape with the real shape as well as the OCR performance on original and restored document images. The results show that the geometric and photometric distortions are mostly removed and the OCR results are improved markedly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">16468617</PMID>
<DateCreated>
<Year>2006</Year>
<Month>02</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0162-8828</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>28</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on pattern analysis and machine intelligence</Title>
<ISOAbbreviation>IEEE Trans Pattern Anal Mach Intell</ISOAbbreviation>
</Journal>
<ArticleTitle>Restoring warped document images through 3D shape modeling.</ArticleTitle>
<Pagination>
<MedlinePgn>195-208</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Scanning a document page from a thick bound volume often results in two kinds of distortions in the scanned image, i.e., shade along the "spine" of the book and warping in the shade area. In this paper, we propose an efficient restoration method based on the discovery of the 3D shape of a book surface from the shading information in a scanned document image. From a technical point of view, this shape from shading (SFS) problem in real-world environments is characterized by 1) a proximal and moving light source, 2) Lambertian reflection, 3) nonuniform albedo distribution, and 4) document skew. Taking all these factors into account, we first build practical models (consisting of a 3D geometric model and a 3D optical model) for the practical scanning conditions to reconstruct the 3D shape of the book surface. We next restore the scanned document image using this shape based on deshading and dewarping models. Finally, we evaluate the restoration results by comparing our estimated surface shape with the real shape as well as the OCR performance on original and restored document images. The results show that the geometric and photometric distortions are mostly removed and the OCR results are improved markedly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Chew Lim</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>School of Computing, National University of Singapore 3, Science Drive 2, Singapore. tancl@comp.nus.edu.sg</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zheng</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Studies</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Pattern Anal Mach Intell</MedlineTA>
<NlmUniqueID>9885960</NlmUniqueID>
<ISSNLinking>0098-5589</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016477">Artifacts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001185">Artificial Intelligence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001330">Automatic Data Processing</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003196">Computer Graphics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004282">Documentation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007089">Image Enhancement</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007090">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016247">Information Storage and Retrieval</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010363">Pattern Recognition, Automated</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16468617</ArticleId>
<ArticleId IdType="doi">10.1109/TPAMI.2006.40</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16468617
   |texte=   Restoring warped document images through 3D shape modeling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16468617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OcrV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024