Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lateral entorhinal cortex is critical for novel object-context recognition.

Identifieur interne : 000024 ( PubMed/Corpus ); précédent : 000023; suivant : 000025

Lateral entorhinal cortex is critical for novel object-context recognition.

Auteurs : David I G. Wilson ; Rosamund F. Langston ; Magdalene I. Schlesiger ; Monica Wagner ; Sakurako Watanabe ; James A. Ainge

Source :

RBID : pubmed:23389958

English descriptors

Abstract

Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus.

DOI: 10.1002/hipo.22095
PubMed: 23389958

Links to Exploration step

pubmed:23389958

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lateral entorhinal cortex is critical for novel object-context recognition.</title>
<author>
<name sortKey="Wilson, David I G" sort="Wilson, David I G" uniqKey="Wilson D" first="David I G" last="Wilson">David I G. Wilson</name>
<affiliation>
<nlm:affiliation>School of Psychology, University of St Andrews, St Mary's Quad, St Andrews, Fife, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langston, Rosamund F" sort="Langston, Rosamund F" uniqKey="Langston R" first="Rosamund F" last="Langston">Rosamund F. Langston</name>
</author>
<author>
<name sortKey="Schlesiger, Magdalene I" sort="Schlesiger, Magdalene I" uniqKey="Schlesiger M" first="Magdalene I" last="Schlesiger">Magdalene I. Schlesiger</name>
</author>
<author>
<name sortKey="Wagner, Monica" sort="Wagner, Monica" uniqKey="Wagner M" first="Monica" last="Wagner">Monica Wagner</name>
</author>
<author>
<name sortKey="Watanabe, Sakurako" sort="Watanabe, Sakurako" uniqKey="Watanabe S" first="Sakurako" last="Watanabe">Sakurako Watanabe</name>
</author>
<author>
<name sortKey="Ainge, James A" sort="Ainge, James A" uniqKey="Ainge J" first="James A" last="Ainge">James A. Ainge</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/hipo.22095</idno>
<idno type="RBID">pubmed:23389958</idno>
<idno type="pmid">23389958</idno>
<idno type="wicri:Area/PubMed/Corpus">000024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lateral entorhinal cortex is critical for novel object-context recognition.</title>
<author>
<name sortKey="Wilson, David I G" sort="Wilson, David I G" uniqKey="Wilson D" first="David I G" last="Wilson">David I G. Wilson</name>
<affiliation>
<nlm:affiliation>School of Psychology, University of St Andrews, St Mary's Quad, St Andrews, Fife, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Langston, Rosamund F" sort="Langston, Rosamund F" uniqKey="Langston R" first="Rosamund F" last="Langston">Rosamund F. Langston</name>
</author>
<author>
<name sortKey="Schlesiger, Magdalene I" sort="Schlesiger, Magdalene I" uniqKey="Schlesiger M" first="Magdalene I" last="Schlesiger">Magdalene I. Schlesiger</name>
</author>
<author>
<name sortKey="Wagner, Monica" sort="Wagner, Monica" uniqKey="Wagner M" first="Monica" last="Wagner">Monica Wagner</name>
</author>
<author>
<name sortKey="Watanabe, Sakurako" sort="Watanabe, Sakurako" uniqKey="Watanabe S" first="Sakurako" last="Watanabe">Sakurako Watanabe</name>
</author>
<author>
<name sortKey="Ainge, James A" sort="Ainge, James A" uniqKey="Ainge J" first="James A" last="Ainge">James A. Ainge</name>
</author>
</analytic>
<series>
<title level="j">Hippocampus</title>
<idno type="eISSN">1098-1063</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Discrimination (Psychology)</term>
<term>Entorhinal Cortex (injuries)</term>
<term>Entorhinal Cortex (physiology)</term>
<term>Exploratory Behavior (physiology)</term>
<term>Functional Laterality (physiology)</term>
<term>Male</term>
<term>Proto-Oncogene Proteins c-fos (metabolism)</term>
<term>Rats</term>
<term>Recognition (Psychology) (physiology)</term>
<term>Spatial Behavior (physiology)</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Proto-Oncogene Proteins c-fos</term>
</keywords>
<keywords scheme="MESH" qualifier="injuries" xml:lang="en">
<term>Entorhinal Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Entorhinal Cortex</term>
<term>Exploratory Behavior</term>
<term>Functional Laterality</term>
<term>Recognition (Psychology)</term>
<term>Spatial Behavior</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Discrimination (Psychology)</term>
<term>Male</term>
<term>Rats</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23389958</PMID>
<DateCreated>
<Year>2013</Year>
<Month>04</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-1063</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Hippocampus</Title>
<ISOAbbreviation>Hippocampus</ISOAbbreviation>
</Journal>
<ArticleTitle>Lateral entorhinal cortex is critical for novel object-context recognition.</ArticleTitle>
<Pagination>
<MedlinePgn>352-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/hipo.22095</ELocationID>
<Abstract>
<AbstractText>Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus.</AbstractText>
<CopyrightInformation>Copyright © 2013 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>David I G</ForeName>
<Initials>DI</Initials>
<AffiliationInfo>
<Affiliation>School of Psychology, University of St Andrews, St Mary's Quad, St Andrews, Fife, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Langston</LastName>
<ForeName>Rosamund F</ForeName>
<Initials>RF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schlesiger</LastName>
<ForeName>Magdalene I</ForeName>
<Initials>MI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Monica</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Sakurako</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ainge</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/I019367/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Hippocampus</MedlineTA>
<NlmUniqueID>9108167</NlmUniqueID>
<ISSNLinking>1050-9631</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016760">Proto-Oncogene Proteins c-fos</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Sep 5;27(36):9769-79</RefSource>
<PMID Version="1">17804637</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Feb 28;27(9):2416-23</RefSource>
<PMID Version="1">17329440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Neurosci. 2008 May;118(5):619-26</RefSource>
<PMID Version="1">18446578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Apr 30;28(18):4679-89</RefSource>
<PMID Version="1">18448645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Plast. 2008;2008:381243</RefSource>
<PMID Version="1">18769556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2008 Oct 3;322(5898):96-101</RefSource>
<PMID Version="1">18772395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1948 Jul;55(4):189-208</RefSource>
<PMID Version="1">18870876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 Oct;28(8):1661-6</RefSource>
<PMID Version="1">18973583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Sep;27(3):623-33</RefSource>
<PMID Version="1">11055443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2001 Jan;2(1):51-61</RefSource>
<PMID Version="1">11253359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2001 Apr;11(2):188-93</RefSource>
<PMID Version="1">11301238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2001 Sep;58(9):1395-402</RefSource>
<PMID Version="1">11559310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2002 Mar-Apr;9(2):49-57</RefSource>
<PMID Version="1">11992015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2002 May 14;132(2):215-26</RefSource>
<PMID Version="1">11997151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10825-30</RefSource>
<PMID Version="1">12149439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2008;18(12):1301-13</RefSource>
<PMID Version="1">19021264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2009 Feb;1155:316-23</RefSource>
<PMID Version="1">19250223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10805-10</RefSource>
<PMID Version="1">19528659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2009 Aug;30(3):504-13</RefSource>
<PMID Version="1">19614747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Learn Mem. 2009 Nov;92(4):559-73</RefSource>
<PMID Version="1">19615456</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2009 Oct;16(10):573-85</RefSource>
<PMID Version="1">19794181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2010 Oct;20(10):1139-53</RefSource>
<PMID Version="1">19847786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neural Plast. 2010;2010:108190</RefSource>
<PMID Version="1">21331296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2011 Dec;21(12):1363-74</RefSource>
<PMID Version="1">20857485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2012 Feb;22(2):299-308</RefSource>
<PMID Version="1">21080411</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2012 Mar;22(3):534-43</RefSource>
<PMID Version="1">21365712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2012 Jun;19(6):256-63</RefSource>
<PMID Version="1">22615481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2012 Jun;22(6):1256-76</RefSource>
<PMID Version="1">22162008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Neurosci. 2012 Aug;126(4):588-92</RefSource>
<PMID Version="1">22687149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2012 Aug;36(7):1597-608</RefSource>
<PMID Version="1">21810443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2012 Oct;22(10):2045-58</RefSource>
<PMID Version="1">22987681</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2012 Dec;22(12):2290-302</RefSource>
<PMID Version="1">22736526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2013 Feb;23(2):451-9</RefSource>
<PMID Version="1">22357665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Nov;3(11):1149-52</RefSource>
<PMID Version="1">11036273</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Neurosci. 2002 Oct;116(5):884-901</RefSource>
<PMID Version="1">12369808</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Jun 19;38(6):987-96</RefSource>
<PMID Version="1">12818183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2003 Jul 10;424(6945):205-9</RefSource>
<PMID Version="1">12853960</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2003;13(5):587-603</RefSource>
<PMID Version="1">12921349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 1;23(26):8827-35</RefSource>
<PMID Version="1">14523083</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2003 Dec 18;40(6):1227-39</RefSource>
<PMID Version="1">14687555</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Feb 25;24(8):1948-53</RefSource>
<PMID Version="1">14985436</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2004 Sep 9;431(7005):188-91</RefSource>
<PMID Version="1">15356631</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2004 Oct;20(7):1827-37</RefSource>
<PMID Version="1">15380004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1971 Nov;34(1):171-5</RefSource>
<PMID Version="1">5124915</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1986 Oct;20(4):472-81</RefSource>
<PMID Version="1">3789663</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 1991;81(3):261-8</RefSource>
<PMID Version="1">1711755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Sep;13(9):3916-25</RefSource>
<PMID Version="1">8366351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Jul 15;16(14):4491-500</RefSource>
<PMID Version="1">8699259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1997 Jul 18;277(5324):376-80</RefSource>
<PMID Version="1">9219696</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1998 Sep 15;18(18):7535-42</RefSource>
<PMID Version="1">9736671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1998 Sep 17;395(6699):272-4</RefSource>
<PMID Version="1">9751053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 Jan 1;19(1):495-502</RefSource>
<PMID Version="1">9870977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Feb 18;397(6720):613-6</RefSource>
<PMID Version="1">10050854</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1999;92(2):515-32</RefSource>
<PMID Version="1">10408601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 1999 Sep;2(9):844-7</RefSource>
<PMID Version="1">10461225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1999 Mar;99(2):191-200</RefSource>
<PMID Version="1">10512585</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Neurosci. 2005 Apr;119(2):557-66</RefSource>
<PMID Version="1">15839802</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jun 17;308(5729):1792-4</RefSource>
<PMID Version="1">15961670</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2005 Jul 22;309(5734):619-23</RefSource>
<PMID Version="1">16040709</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Aug 11;436(7052):801-6</RefSource>
<PMID Version="1">15965463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2006 Feb 15;167(1):183-95</RefSource>
<PMID Version="1">16214239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2006 Jul 11;16(13):1317-21</RefSource>
<PMID Version="1">16824919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hippocampus. 2006;16(9):755-64</RefSource>
<PMID Version="1">16883558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2007 Nov;14(11):758-70</RefSource>
<PMID Version="1">18007019</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004192">Discrimination (Psychology)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018728">Entorhinal Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000293">injuries</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005106">Exploratory Behavior</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007839">Functional Laterality</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016760">Proto-Oncogene Proteins c-fos</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021641">Recognition (Psychology)</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013037">Spatial Behavior</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3648979</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>1</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>2</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/hipo.22095</ArticleId>
<ArticleId IdType="pubmed">23389958</ArticleId>
<ArticleId IdType="pmc">PMC3648979</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23389958
   |texte=   Lateral entorhinal cortex is critical for novel object-context recognition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23389958" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OcrV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024