Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of radon transport in unsaturated soil

Identifieur interne : 002D81 ( Istex/Corpus ); précédent : 002D80; suivant : 002D82

Modeling of radon transport in unsaturated soil

Auteurs : Chuan Chen ; Donald M. Thomas ; Richard E. Green

Source :

RBID : ISTEX:3E8E8F2C788C7167AE4D6A8970B0A610F2814C17

Abstract

This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.

Url:
DOI: 10.1029/95JB01290

Links to Exploration step

ISTEX:3E8E8F2C788C7167AE4D6A8970B0A610F2814C17

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of radon transport in unsaturated soil</title>
<author wicri:is="90%">
<name sortKey="Chen, Chuan" sort="Chen, Chuan" uniqKey="Chen C" first="Chuan" last="Chen">Chuan Chen</name>
</author>
<author wicri:is="90%">
<name sortKey="Thomas, Donald M" sort="Thomas, Donald M" uniqKey="Thomas D" first="Donald M." last="Thomas">Donald M. Thomas</name>
</author>
<author wicri:is="90%">
<name sortKey="Green, Richard E" sort="Green, Richard E" uniqKey="Green R" first="Richard E." last="Green">Richard E. Green</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3E8E8F2C788C7167AE4D6A8970B0A610F2814C17</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1029/95JB01290</idno>
<idno type="url">https://api.istex.fr/document/3E8E8F2C788C7167AE4D6A8970B0A610F2814C17/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002D81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of radon transport in unsaturated soil</title>
<author wicri:is="90%">
<name sortKey="Chen, Chuan" sort="Chen, Chuan" uniqKey="Chen C" first="Chuan" last="Chen">Chuan Chen</name>
</author>
<author wicri:is="90%">
<name sortKey="Thomas, Donald M" sort="Thomas, Donald M" uniqKey="Thomas D" first="Donald M." last="Thomas">Donald M. Thomas</name>
</author>
<author wicri:is="90%">
<name sortKey="Green, Richard E" sort="Green, Richard E" uniqKey="Green R" first="Richard E." last="Green">Richard E. Green</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1995-08-10">1995-08-10</date>
<biblScope unit="volume">100</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="15517">15517</biblScope>
<biblScope unit="page" to="15525">15525</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">3E8E8F2C788C7167AE4D6A8970B0A610F2814C17</idno>
<idno type="DOI">10.1029/95JB01290</idno>
<idno type="ArticleID">95JB01290</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Chuan Chen</name>
</json:item>
<json:item>
<name>Donald M. Thomas</name>
</json:item>
<json:item>
<name>Richard E. Green</name>
</json:item>
</author>
<articleId>
<json:string>95JB01290</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.</abstract>
<qualityIndicators>
<score>6.959</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>626 x 815 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1478</abstractCharCount>
<pdfWordCount>4451</pdfWordCount>
<pdfCharCount>40968</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>209</abstractWordCount>
</qualityIndicators>
<title>Modeling of radon transport in unsaturated soil</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>100</volume>
<publisherId>
<json:string>JGRB</json:string>
</publisherId>
<pages>
<total>9</total>
<last>15525</last>
<first>15517</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>B8</issue>
<subject>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Vadose zone</value>
</json:item>
<json:item>
<value>Evapotranspiration</value>
</json:item>
<json:item>
<value>Soil moisture</value>
</json:item>
<json:item>
<value>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Solid Earth</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202b</json:string>
</doi>
</host>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1029/95JB01290</json:string>
</doi>
<id>3E8E8F2C788C7167AE4D6A8970B0A610F2814C17</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/3E8E8F2C788C7167AE4D6A8970B0A610F2814C17/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/3E8E8F2C788C7167AE4D6A8970B0A610F2814C17/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3E8E8F2C788C7167AE4D6A8970B0A610F2814C17/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modeling of radon transport in unsaturated soil</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Modeling of radon transport in unsaturated soil</title>
<author>
<persName>
<forename type="first">Chuan</forename>
<surname>Chen</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Donald M.</forename>
<surname>Thomas</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Richard E.</forename>
<surname>Green</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202b</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1995-08-10"></date>
<biblScope unit="volume">100</biblScope>
<biblScope unit="issue">B8</biblScope>
<biblScope unit="page" from="15517">15517</biblScope>
<biblScope unit="page" to="15525">15525</biblScope>
</imprint>
</monogr>
<idno type="istex">3E8E8F2C788C7167AE4D6A8970B0A610F2814C17</idno>
<idno type="DOI">10.1029/95JB01290</idno>
<idno type="ArticleID">95JB01290</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Vadose zone</term>
</item>
<item>
<term>Evapotranspiration</term>
</item>
<item>
<term>Soil moisture</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-05-25">Received</change>
<change when="1995-04-18">Registration</change>
<change when="1995-08-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/3E8E8F2C788C7167AE4D6A8970B0A610F2814C17/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrb10125">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202b</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRB"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH">Journal of Geophysical Research: Solid Earth</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi>10.1002/jgrb.v100.B8</doi>
<idGroup>
<id type="focusSection" value="2"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Solid Earth</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="100">100</numbering>
<numbering type="journalIssue">B8</numbering>
</numberingGroup>
<coverDate startDate="1995-08-10">10 August 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="400" status="forIssue">
<doi>10.1029/95JB01290</doi>
<idGroup>
<id type="editorialOffice" value="95JB01290"></id>
<id type="unit" value="JGRB10125"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Papers on Chemistry and Physics of Minerals and Rocks Volcanology</title>
<title type="tocHeading1">Papers on Chemistry and Physics of Minerals and Rocks Volcanology</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 1995 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-05-25"></event>
<event type="manuscriptAccepted" date="1995-04-18"></event>
<event type="publishedPrint" date="1995-08-10"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-31"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">15517</numbering>
<numbering type="pageLast">15525</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1875">Vadose zone</subject>
<subject href="http://psi.agu.org/taxonomy5/1818">Evapotranspiration</subject>
<subject href="http://psi.agu.org/taxonomy5/1866">Soil moisture</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrb10125-cit-0000" type="self">
<author>
<familyName>Chen</familyName>
,
<givenNames>C.</givenNames>
</author>
,
<author>
<givenNames>D. M.</givenNames>
<familyName>Thomas</familyName>
</author>
, and
<author>
<givenNames>R. E.</givenNames>
<familyName>Green</familyName>
</author>
(
<pubYear year="1995">1995</pubYear>
),
<articleTitle>Modeling of radon transport in unsaturated soil</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>100</vol>
(
<issue>B8</issue>
),
<pageFirst>15517</pageFirst>
<pageLast>15525</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/95JB01290">10.1029/95JB01290</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRB.JGRB10125.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Modeling of radon transport in unsaturated soil</title>
<title type="shortAuthors">Chen ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="jgrb10125-cr-0001">
<personName>
<givenNames>Chuan</givenNames>
<familyName>Chen</familyName>
</personName>
</creator>
<creator xml:id="jgrb10125-cr-0002">
<personName>
<givenNames>Donald M.</givenNames>
<familyName>Thomas</familyName>
</personName>
</creator>
<creator xml:id="jgrb10125-cr-0003">
<personName>
<givenNames>Richard E.</givenNames>
<familyName>Green</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrb10125-para-0001">This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modeling of radon transport in unsaturated soil</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modeling of radon transport in unsaturated soil</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chuan</namePart>
<namePart type="family">Chen</namePart>
</name>
<name type="personal">
<namePart type="given">Donald M.</namePart>
<namePart type="family">Thomas</namePart>
</name>
<name type="personal">
<namePart type="given">Richard E.</namePart>
<namePart type="family">Green</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1995-08-10</dateIssued>
<dateCaptured encoding="w3cdtf">1994-05-25</dateCaptured>
<dateValid encoding="w3cdtf">1995-04-18</dateValid>
<edition>Chen, C., D. M. Thomas, and R. E. Green (1995), Modeling of radon transport in unsaturated soil, J. Geophys. Res., 100(B8), 15517–15525, doi:10.1029/95JB01290.</edition>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>This study applies a recently developed model, LEACHV, to simulate transport of radon through unsaturated soil and compares calculated soil radon activities against field‐measured values. For volatile and gas phase transport, LEACHV is modified from LEACHP, a pesticide version of LEACHM, a well‐documented one‐dimensional model for water and chemical movement through unsaturated soil. LEACHV adds consideration of air temperature changes and air flow driven by barometric pressure change to the other soil variables currently used in LEACHP. It applies diurnal barometric pressure and air temperature changes to reflect more accurately the typical field conditions. Sensitivity analysis and simulated results have clearly demonstrated the relative importance of barometric pressure change, rainfall events, changes in water content, gas advection, and radon source term in radon transport process. Comparisons among simulated results illustrated that the importance of barometric pressure change and its pumping phenomenon produces both fluctuation in soil gas radon activities and an elevation of the long‐term average radon activity in the shallow soil. Barometric pressure pumping was found to produce an effect on radon activity in shallow soils of an equal magnitude to the distributed source parameter. Comparison between measured and simulated soil radon activities showed that LEACHV can provide realistic estimates of radon activity concentration in the soil profile.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Solid Earth</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1875">Vadose zone</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1818">Evapotranspiration</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1866">Soil moisture</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Papers on Chemistry and Physics of Minerals and Rocks Volcanology</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202b</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRB</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>B8</number>
</detail>
<extent unit="pages">
<start>15517</start>
<end>15525</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3E8E8F2C788C7167AE4D6A8970B0A610F2814C17</identifier>
<identifier type="DOI">10.1029/95JB01290</identifier>
<identifier type="ArticleID">95JB01290</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1995 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002D81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3E8E8F2C788C7167AE4D6A8970B0A610F2814C17
   |texte=   Modeling of radon transport in unsaturated soil
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024