Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations

Identifieur interne : 002C44 ( Istex/Corpus ); précédent : 002C43; suivant : 002C45

Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations

Auteurs : Wolfgang F. Rogge ; Lynn M. Hildemann ; Monica A. Mazurek ; Glen R. Cass ; Bernd R. T. Simoneit

Source :

RBID : ISTEX:7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB

Abstract

An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.

Url:
DOI: 10.1029/95JD02050

Links to Exploration step

ISTEX:7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
<author wicri:is="90%">
<name sortKey="Rogge, Wolfgang F" sort="Rogge, Wolfgang F" uniqKey="Rogge W" first="Wolfgang F." last="Rogge">Wolfgang F. Rogge</name>
</author>
<author wicri:is="90%">
<name sortKey="Hildemann, Lynn M" sort="Hildemann, Lynn M" uniqKey="Hildemann L" first="Lynn M." last="Hildemann">Lynn M. Hildemann</name>
</author>
<author wicri:is="90%">
<name sortKey="Mazurek, Monica A" sort="Mazurek, Monica A" uniqKey="Mazurek M" first="Monica A." last="Mazurek">Monica A. Mazurek</name>
</author>
<author wicri:is="90%">
<name sortKey="Cass, Glen R" sort="Cass, Glen R" uniqKey="Cass G" first="Glen R." last="Cass">Glen R. Cass</name>
</author>
<author wicri:is="90%">
<name sortKey="Simoneit, Bernd R T" sort="Simoneit, Bernd R T" uniqKey="Simoneit B" first="Bernd R. T." last="Simoneit">Bernd R. T. Simoneit</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1029/95JD02050</idno>
<idno type="url">https://api.istex.fr/document/7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
<author wicri:is="90%">
<name sortKey="Rogge, Wolfgang F" sort="Rogge, Wolfgang F" uniqKey="Rogge W" first="Wolfgang F." last="Rogge">Wolfgang F. Rogge</name>
</author>
<author wicri:is="90%">
<name sortKey="Hildemann, Lynn M" sort="Hildemann, Lynn M" uniqKey="Hildemann L" first="Lynn M." last="Hildemann">Lynn M. Hildemann</name>
</author>
<author wicri:is="90%">
<name sortKey="Mazurek, Monica A" sort="Mazurek, Monica A" uniqKey="Mazurek M" first="Monica A." last="Mazurek">Monica A. Mazurek</name>
</author>
<author wicri:is="90%">
<name sortKey="Cass, Glen R" sort="Cass, Glen R" uniqKey="Cass G" first="Glen R." last="Cass">Glen R. Cass</name>
</author>
<author wicri:is="90%">
<name sortKey="Simoneit, Bernd R T" sort="Simoneit, Bernd R T" uniqKey="Simoneit B" first="Bernd R. T." last="Simoneit">Bernd R. T. Simoneit</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1996-08-27">1996-08-27</date>
<biblScope unit="volume">101</biblScope>
<biblScope unit="issue">D14</biblScope>
<biblScope unit="page" from="19379">19379</biblScope>
<biblScope unit="page" to="19394">19394</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB</idno>
<idno type="DOI">10.1029/95JD02050</idno>
<idno type="ArticleID">95JD02050</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Wolfgang F. Rogge</name>
</json:item>
<json:item>
<name>Lynn M. Hildemann</name>
</json:item>
<json:item>
<name>Monica A. Mazurek</name>
</json:item>
<json:item>
<name>Glen R. Cass</name>
</json:item>
<json:item>
<name>Bernd R. T. Simoneit</name>
</json:item>
</author>
<articleId>
<json:string>95JD02050</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>608 x 812 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2136</abstractCharCount>
<pdfWordCount>7143</pdfWordCount>
<pdfCharCount>70543</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>298</abstractWordCount>
</qualityIndicators>
<title>Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>101</volume>
<publisherId>
<json:string>JGRD</json:string>
</publisherId>
<pages>
<total>16</total>
<last>19394</last>
<first>19379</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>D14</issue>
<subject>
<json:item>
<value>Carbonaceous Particles in the Atmosphere</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Aerosols and particles</value>
</json:item>
<json:item>
<value>Pollution: urban and regional</value>
</json:item>
<json:item>
<value>Troposphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Troposphere: constituent transport and chemistry</value>
</json:item>
<json:item>
<value>Pollution: urban and regional</value>
</json:item>
<json:item>
<value>Aerosols and particles</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Pollution: urban, regional and global</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Marine pollution</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Megacities and urban environment</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</value>
</json:item>
<json:item>
<value>Aerosols</value>
</json:item>
<json:item>
<value>PALEOCEANOGRAPHY</value>
</json:item>
<json:item>
<value>Aerosols</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Atmospheres</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
</host>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1029/95JD02050</json:string>
</doi>
<id>7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>1996</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
<author>
<persName>
<forename type="first">Wolfgang F.</forename>
<surname>Rogge</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Lynn M.</forename>
<surname>Hildemann</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Monica A.</forename>
<surname>Mazurek</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Glen R.</forename>
<surname>Cass</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">Bernd R. T.</forename>
<surname>Simoneit</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1996-08-27"></date>
<biblScope unit="volume">101</biblScope>
<biblScope unit="issue">D14</biblScope>
<biblScope unit="page" from="19379">19379</biblScope>
<biblScope unit="page" to="19394">19394</biblScope>
</imprint>
</monogr>
<idno type="istex">7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB</idno>
<idno type="DOI">10.1029/95JD02050</idno>
<idno type="ArticleID">95JD02050</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1996</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Carbonaceous Particles in the Atmosphere</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Aerosols and particles</term>
</item>
<item>
<term>Pollution: urban and regional</term>
</item>
<item>
<term>Troposphere: composition and chemistry</term>
</item>
<item>
<term>Troposphere: constituent transport and chemistry</term>
</item>
<item>
<term>Pollution: urban and regional</term>
</item>
<item>
<term>Aerosols and particles</term>
</item>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Pollution: urban, regional and global</term>
</item>
<item>
<term>OCEANOGRAPHY: GENERAL</term>
</item>
<item>
<term>Marine pollution</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Megacities and urban environment</term>
</item>
<item>
<term>OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</term>
</item>
<item>
<term>Aerosols</term>
</item>
<item>
<term>PALEOCEANOGRAPHY</term>
</item>
<item>
<term>Aerosols</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-10-25">Received</change>
<change when="1995-06-08">Registration</change>
<change when="1996-08-27">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd3883">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="140">
<doi>10.1002/jgrd.v101.D14</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="101">101</numbering>
<numbering type="journalIssue">D14</numbering>
</numberingGroup>
<coverDate startDate="1996-08-27">27 August 1996</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="400" status="forIssue">
<doi>10.1029/95JD02050</doi>
<idGroup>
<id type="editorialOffice" value="95JD02050"></id>
<id type="unit" value="JGRD3883"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 1996 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1994-10-25"></event>
<event type="manuscriptAccepted" date="1995-06-08"></event>
<event type="publishedPrint" date="1996-08-27"></event>
<event type="firstOnline" date="2012-09-21"></event>
<event type="publishedOnlineFinalForm" date="2012-09-21"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">19379</numbering>
<numbering type="pageLast">19394</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/CARBP1">Carbonaceous Particles in the Atmosphere</subject>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</subject>
<subject href="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</subject>
<subject href="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0478">Pollution: urban, regional and global</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4251">Marine pollution</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4325">Megacities and urban environment</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4801">Aerosols</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4906">Aerosols</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd3883-cit-0000" type="self">
<author>
<familyName>Rogge</familyName>
,
<givenNames>W. F.</givenNames>
</author>
,
<author>
<givenNames>L. M.</givenNames>
<familyName>Hildemann</familyName>
</author>
,
<author>
<givenNames>M. A.</givenNames>
<familyName>Mazurek</familyName>
</author>
,
<author>
<givenNames>G. R.</givenNames>
<familyName>Cass</familyName>
</author>
, and
<author>
<givenNames>B. R. T.</givenNames>
<familyName>Simoneit</familyName>
</author>
(
<pubYear year="1996">1996</pubYear>
),
<articleTitle>Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>101</vol>
(
<issue>D14</issue>
),
<pageFirst>19379</pageFirst>
<pageLast>19394</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/95JD02050">10.1029/95JD02050</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD3883.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
<title type="shortAuthors">Rogge ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="jgrd3883-cr-0001">
<personName>
<givenNames>Wolfgang F.</givenNames>
<familyName>Rogge</familyName>
</personName>
</creator>
<creator xml:id="jgrd3883-cr-0002">
<personName>
<givenNames>Lynn M.</givenNames>
<familyName>Hildemann</familyName>
</personName>
</creator>
<creator xml:id="jgrd3883-cr-0003">
<personName>
<givenNames>Monica A.</givenNames>
<familyName>Mazurek</familyName>
</personName>
</creator>
<creator xml:id="jgrd3883-cr-0004">
<personName>
<givenNames>Glen R.</givenNames>
<familyName>Cass</familyName>
</personName>
</creator>
<creator xml:id="jgrd3883-cr-0005">
<personName>
<givenNames>Bernd R. T.</givenNames>
<familyName>Simoneit</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd3883-para-0001">An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wolfgang F.</namePart>
<namePart type="family">Rogge</namePart>
</name>
<name type="personal">
<namePart type="given">Lynn M.</namePart>
<namePart type="family">Hildemann</namePart>
</name>
<name type="personal">
<namePart type="given">Monica A.</namePart>
<namePart type="family">Mazurek</namePart>
</name>
<name type="personal">
<namePart type="given">Glen R.</namePart>
<namePart type="family">Cass</namePart>
</name>
<name type="personal">
<namePart type="given">Bernd R. T.</namePart>
<namePart type="family">Simoneit</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1996-08-27</dateIssued>
<dateCaptured encoding="w3cdtf">1994-10-25</dateCaptured>
<dateValid encoding="w3cdtf">1995-06-08</dateValid>
<edition>Rogge, W. F., L. M. Hildemann, M. A. Mazurek, G. R. Cass, and B. R. T. Simoneit (1996), Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations, J. Geophys. Res., 101(D14), 19379–19394, doi:10.1029/95JD02050.</edition>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst‐ and catalyst‐equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil‐fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer‐based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/CARBP1">Carbonaceous Particles in the Atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0478">Pollution: urban, regional and global</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4251">Marine pollution</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4325">Megacities and urban environment</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4800">OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4801">Aerosols</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4900">PALEOCEANOGRAPHY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4906">Aerosols</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D14</number>
</detail>
<extent unit="pages">
<start>19379</start>
<end>19394</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB</identifier>
<identifier type="DOI">10.1029/95JD02050</identifier>
<identifier type="ArticleID">95JD02050</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 1996 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002C44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7351DE1F67BC6CC0258271BC2D2A919E1A87E5EB
   |texte=   Mathematical modeling of atmospheric fine particle‐associated primary organic compound concentrations
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024