Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of paste flows subject to liquid phase migration

Identifieur interne : 002817 ( Istex/Corpus ); précédent : 002816; suivant : 002818

Modelling of paste flows subject to liquid phase migration

Auteurs : M. J. Patel ; S. Blackburn ; D. I. Wilson

Source :

RBID : ISTEX:928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C

English descriptors

Abstract

Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nme.2040

Links to Exploration step

ISTEX:928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling of paste flows subject to liquid phase migration</title>
<author>
<name sortKey="Patel, M J" sort="Patel, M J" uniqKey="Patel M" first="M. J." last="Patel">M. J. Patel</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blackburn, S" sort="Blackburn, S" uniqKey="Blackburn S" first="S." last="Blackburn">S. Blackburn</name>
<affiliation>
<mods:affiliation>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, D I" sort="Wilson, D I" uniqKey="Wilson D" first="D. I." last="Wilson">D. I. Wilson</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/nme.2040</idno>
<idno type="url">https://api.istex.fr/document/928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002817</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modelling of paste flows subject to liquid phase migration</title>
<author>
<name sortKey="Patel, M J" sort="Patel, M J" uniqKey="Patel M" first="M. J." last="Patel">M. J. Patel</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blackburn, S" sort="Blackburn, S" uniqKey="Blackburn S" first="S." last="Blackburn">S. Blackburn</name>
<affiliation>
<mods:affiliation>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wilson, D I" sort="Wilson, D I" uniqKey="Wilson D" first="D. I." last="Wilson">D. I. Wilson</name>
<affiliation>
<mods:affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal for Numerical Methods in Engineering</title>
<title level="j" type="abbrev">Int. J. Numer. Meth. Engng.</title>
<idno type="ISSN">0029-5981</idno>
<idno type="eISSN">1097-0207</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2007-12-03">2007-12-03</date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1157">1157</biblScope>
<biblScope unit="page" to="1180">1180</biblScope>
</imprint>
<idno type="ISSN">0029-5981</idno>
</series>
<idno type="istex">928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C</idno>
<idno type="DOI">10.1002/nme.2040</idno>
<idno type="ArticleID">NME2040</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0029-5981</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>FEM</term>
<term>modified Cam‐Clay</term>
<term>paste</term>
<term>phase maldistribution</term>
<term>phase migration</term>
<term>ram extrusion</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>M. J. Patel</name>
<affiliations>
<json:string>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Blackburn</name>
<affiliations>
<json:string>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. I. Wilson</name>
<affiliations>
<json:string>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FEM</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>modified Cam‐Clay</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>paste</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phase maldistribution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phase migration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ram extrusion</value>
</json:item>
</subject>
<articleId>
<json:string>NME2040</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.496</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>566.929 x 737.008 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1462</abstractCharCount>
<pdfWordCount>8816</pdfWordCount>
<pdfCharCount>49232</pdfCharCount>
<pdfPageCount>24</pdfPageCount>
<abstractWordCount>208</abstractWordCount>
</qualityIndicators>
<title>Modelling of paste flows subject to liquid phase migration</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>72</volume>
<publisherId>
<json:string>NME</json:string>
</publisherId>
<pages>
<total>24</total>
<last>1180</last>
<first>1157</first>
</pages>
<issn>
<json:string>0029-5981</json:string>
</issn>
<issue>10</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-0207</json:string>
</eissn>
<title>International Journal for Numerical Methods in Engineering</title>
<doi>
<json:string>10.1002/(ISSN)1097-0207</json:string>
</doi>
</host>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1002/nme.2040</json:string>
</doi>
<id>928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modelling of paste flows subject to liquid phase migration</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2007</date>
</publicationStmt>
<notesStmt>
<note>EPSRC/PowdermatriX Faraday Partnership - No. GR/S/70340;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Modelling of paste flows subject to liquid phase migration</title>
<author>
<persName>
<forename type="first">M. J.</forename>
<surname>Patel</surname>
</persName>
<affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</affiliation>
</author>
<author>
<persName>
<forename type="first">S.</forename>
<surname>Blackburn</surname>
</persName>
<affiliation>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</affiliation>
</author>
<author>
<persName>
<forename type="first">D. I.</forename>
<surname>Wilson</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</p>
</note>
<affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">International Journal for Numerical Methods in Engineering</title>
<title level="j" type="abbrev">Int. J. Numer. Meth. Engng.</title>
<idno type="pISSN">0029-5981</idno>
<idno type="eISSN">1097-0207</idno>
<idno type="DOI">10.1002/(ISSN)1097-0207</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2007-12-03"></date>
<biblScope unit="volume">72</biblScope>
<biblScope unit="issue">10</biblScope>
<biblScope unit="page" from="1157">1157</biblScope>
<biblScope unit="page" to="1180">1180</biblScope>
</imprint>
</monogr>
<idno type="istex">928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C</idno>
<idno type="DOI">10.1002/nme.2040</idno>
<idno type="ArticleID">NME2040</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>FEM</term>
</item>
<item>
<term>modified Cam‐Clay</term>
</item>
<item>
<term>paste</term>
</item>
<item>
<term>phase maldistribution</term>
</item>
<item>
<term>phase migration</term>
</item>
<item>
<term>ram extrusion</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-04-06">Received</change>
<change when="2007-02-10">Registration</change>
<change when="2007-12-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0207</doi>
<issn type="print">0029-5981</issn>
<issn type="electronic">1097-0207</issn>
<idGroup>
<id type="product" value="NME"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING">International Journal for Numerical Methods in Engineering</title>
<title type="short">Int. J. Numer. Meth. Engng.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="100">
<doi origin="wiley" registered="yes">10.1002/nme.v72:10</doi>
<numberingGroup>
<numbering type="journalVolume" number="72">72</numbering>
<numbering type="journalIssue">10</numbering>
</numberingGroup>
<coverDate startDate="2007-12-03">3 December 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="20" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/nme.2040</doi>
<idGroup>
<id type="unit" value="NME2040"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2007 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-04-06"></event>
<event type="manuscriptRevised" date="2007-01-28"></event>
<event type="manuscriptAccepted" date="2007-02-10"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2007-04-02"></event>
<event type="firstOnline" date="2007-04-02"></event>
<event type="publishedOnlineFinalForm" date="2007-10-29"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1157</numbering>
<numbering type="pageLast">1180</numbering>
</numberingGroup>
<correspondenceTo>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NME.NME2040.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="36"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Modelling of paste flows subject to liquid phase migration</title>
<title type="short" xml:lang="en">MODELLING OF PASTE FLOWS SUBJECT TO LIQUID PHASE MIGRATION</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>M. J.</givenNames>
<familyName>Patel</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>S.</givenNames>
<familyName>Blackburn</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>D. I.</givenNames>
<familyName>Wilson</familyName>
</personName>
<contactDetails>
<email>diw11@cam.ac.uk</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="GB" type="organization">
<unparsedAffiliation>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">FEM</keyword>
<keyword xml:id="kwd2">modified Cam‐Clay</keyword>
<keyword xml:id="kwd3">paste</keyword>
<keyword xml:id="kwd4">phase maldistribution</keyword>
<keyword xml:id="kwd5">phase migration</keyword>
<keyword xml:id="kwd6">ram extrusion</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>EPSRC/PowdermatriX Faraday Partnership</fundingAgency>
<fundingNumber>GR/S/70340</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion.</p>
<p>Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found.</p>
<p>Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure.</p>
<p>The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modelling of paste flows subject to liquid phase migration</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MODELLING OF PASTE FLOWS SUBJECT TO LIQUID PHASE MIGRATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modelling of paste flows subject to liquid phase migration</title>
</titleInfo>
<name type="personal">
<namePart type="given">M. J.</namePart>
<namePart type="family">Patel</namePart>
<affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Blackburn</namePart>
<affiliation>IRC in High Performance Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. I.</namePart>
<namePart type="family">Wilson</namePart>
<affiliation>Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</affiliation>
<description>Correspondence: Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, U.K.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-12-03</dateIssued>
<dateCaptured encoding="w3cdtf">2006-04-06</dateCaptured>
<dateValid encoding="w3cdtf">2007-02-10</dateValid>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
<extent unit="references">36</extent>
</physicalDescription>
<abstract lang="en">Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one‐dimensional analyses. Here, a two‐dimensional finite element model based on soil mechanics approaches (modified Cam‐Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<note type="funding">EPSRC/PowdermatriX Faraday Partnership - No. GR/S/70340; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>FEM</topic>
<topic>modified Cam‐Clay</topic>
<topic>paste</topic>
<topic>phase maldistribution</topic>
<topic>phase migration</topic>
<topic>ram extrusion</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal for Numerical Methods in Engineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Numer. Meth. Engng.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0029-5981</identifier>
<identifier type="eISSN">1097-0207</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0207</identifier>
<identifier type="PublisherID">NME</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>72</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1157</start>
<end>1180</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C</identifier>
<identifier type="DOI">10.1002/nme.2040</identifier>
<identifier type="ArticleID">NME2040</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2007 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002817 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002817 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:928EFF3160FB6117F1FB5447A01FEAF7C9ADBC6C
   |texte=   Modelling of paste flows subject to liquid phase migration
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024