Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground

Identifieur interne : 002621 ( Istex/Corpus ); précédent : 002620; suivant : 002622

A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground

Auteurs : Fusao Oka ; Takeshi Kodaka ; Yong Eong Kim

Source :

RBID : ISTEX:A544547AE3E1EF8352277FB7FF05F6C190099B45

English descriptors

Abstract

In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nag.329

Links to Exploration step

ISTEX:A544547AE3E1EF8352277FB7FF05F6C190099B45

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
<author>
<name sortKey="Oka, Fusao" sort="Oka, Fusao" uniqKey="Oka F" first="Fusao" last="Oka">Fusao Oka</name>
<affiliation>
<mods:affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kodaka, Takeshi" sort="Kodaka, Takeshi" uniqKey="Kodaka T" first="Takeshi" last="Kodaka">Takeshi Kodaka</name>
<affiliation>
<mods:affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Eong" sort="Kim, Yong Eong" uniqKey="Kim Y" first="Yong Eong" last="Kim">Yong Eong Kim</name>
<affiliation>
<mods:affiliation>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A544547AE3E1EF8352277FB7FF05F6C190099B45</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/nag.329</idno>
<idno type="url">https://api.istex.fr/document/A544547AE3E1EF8352277FB7FF05F6C190099B45/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002621</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
<author>
<name sortKey="Oka, Fusao" sort="Oka, Fusao" uniqKey="Oka F" first="Fusao" last="Oka">Fusao Oka</name>
<affiliation>
<mods:affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kodaka, Takeshi" sort="Kodaka, Takeshi" uniqKey="Kodaka T" first="Takeshi" last="Kodaka">Takeshi Kodaka</name>
<affiliation>
<mods:affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yong Eong" sort="Kim, Yong Eong" uniqKey="Kim Y" first="Yong Eong" last="Kim">Yong Eong Kim</name>
<affiliation>
<mods:affiliation>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title level="j" type="abbrev">Int. J. Numer. Anal. Meth. Geomech.</title>
<idno type="ISSN">0363-9061</idno>
<idno type="eISSN">1096-9853</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2004-02">2004-02</date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="131">131</biblScope>
<biblScope unit="page" to="179">179</biblScope>
</imprint>
<idno type="ISSN">0363-9061</idno>
</series>
<idno type="istex">A544547AE3E1EF8352277FB7FF05F6C190099B45</idno>
<idno type="DOI">10.1002/nag.329</idno>
<idno type="ArticleID">NAG329</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0363-9061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>clay</term>
<term>constitutive model</term>
<term>finite element analysis</term>
<term>layered ground</term>
<term>liquefaction</term>
<term>viscoelastic</term>
<term>viscoplastic</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Fusao Oka</name>
<affiliations>
<json:string>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Takeshi Kodaka</name>
<affiliations>
<json:string>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yong‐Seong Kim</name>
<affiliations>
<json:string>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>viscoelastic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>viscoplastic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>constitutive model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>clay</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>layered ground</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>liquefaction</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>finite element analysis</value>
</json:item>
</subject>
<articleId>
<json:string>NAG329</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>567 x 737 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1708</abstractCharCount>
<pdfWordCount>11261</pdfWordCount>
<pdfCharCount>66267</pdfCharCount>
<pdfPageCount>49</pdfPageCount>
<abstractWordCount>267</abstractWordCount>
</qualityIndicators>
<title>A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>28</volume>
<publisherId>
<json:string>NAG</json:string>
</publisherId>
<pages>
<total>49</total>
<last>179</last>
<first>131</first>
</pages>
<issn>
<json:string>0363-9061</json:string>
</issn>
<issue>2</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9853</json:string>
</eissn>
<title>International Journal for Numerical and Analytical Methods in Geomechanics</title>
<doi>
<json:string>10.1002/(ISSN)1096-9853</json:string>
</doi>
</host>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/nag.329</json:string>
</doi>
<id>A544547AE3E1EF8352277FB7FF05F6C190099B45</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/A544547AE3E1EF8352277FB7FF05F6C190099B45/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/A544547AE3E1EF8352277FB7FF05F6C190099B45/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A544547AE3E1EF8352277FB7FF05F6C190099B45/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
<author>
<persName>
<forename type="first">Fusao</forename>
<surname>Oka</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Department of Civil and Earth Resources Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</p>
</note>
<affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</affiliation>
</author>
<author>
<persName>
<forename type="first">Takeshi</forename>
<surname>Kodaka</surname>
</persName>
<affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</affiliation>
</author>
<author>
<persName>
<forename type="first">Yong‐Seong</forename>
<surname>Kim</surname>
</persName>
<affiliation>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</affiliation>
</author>
</analytic>
<monogr>
<title level="j">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title level="j" type="abbrev">Int. J. Numer. Anal. Meth. Geomech.</title>
<idno type="pISSN">0363-9061</idno>
<idno type="eISSN">1096-9853</idno>
<idno type="DOI">10.1002/(ISSN)1096-9853</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2004-02"></date>
<biblScope unit="volume">28</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="131">131</biblScope>
<biblScope unit="page" to="179">179</biblScope>
</imprint>
</monogr>
<idno type="istex">A544547AE3E1EF8352277FB7FF05F6C190099B45</idno>
<idno type="DOI">10.1002/nag.329</idno>
<idno type="ArticleID">NAG329</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>viscoelastic</term>
</item>
<item>
<term>viscoplastic</term>
</item>
<item>
<term>constitutive model</term>
</item>
<item>
<term>clay</term>
</item>
<item>
<term>layered ground</term>
</item>
<item>
<term>liquefaction</term>
</item>
<item>
<term>finite element analysis</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-03-14">Received</change>
<change when="2003-09-08">Registration</change>
<change when="2004-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/A544547AE3E1EF8352277FB7FF05F6C190099B45/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9853</doi>
<issn type="print">0363-9061</issn>
<issn type="electronic">1096-9853</issn>
<idGroup>
<id type="product" value="NAG"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title type="short">Int. J. Numer. Anal. Meth. Geomech.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Mechanics of Cohesive‐frictional Materials</journalTitle>
<accessionId ref="info:x-wiley/issn/10825010">1082-5010</accessionId>
<accessionId ref="info:x-wiley/issn/10991484">1099-1484</accessionId>
<pubYear year="2000">2000</pubYear>
<vol>5</vol>
<issue>8</issue>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/nag.v28:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="28">28</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2004-02">February 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/nag.329</doi>
<idGroup>
<id type="unit" value="NAG329"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="49"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2004 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-03-14"></event>
<event type="manuscriptRevised" date="2003-09-08"></event>
<event type="manuscriptAccepted" date="2003-09-08"></event>
<event type="firstOnline" date="2003-12-18"></event>
<event type="publishedOnlineFinalForm" date="2003-12-18"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">131</numbering>
<numbering type="pageLast">179</numbering>
</numberingGroup>
<correspondenceTo>Department of Civil and Earth Resources Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NAG.NAG329.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="35"></count>
<count type="tableTotal" number="9"></count>
<count type="referenceTotal" number="26"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
<title type="short" xml:lang="en">A CYCLIC VISCOELASTIC–VISCOPLASTIC MODEL FOR CLAY</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Fusao</givenNames>
<familyName>Oka</familyName>
</personName>
<contactDetails>
<email normalForm="foka@nakisuna.kuciv.kyoto-u.ac.jp">foka@nakisuna.kuciv.kyoto‐u.ac.jp</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Takeshi</givenNames>
<familyName>Kodaka</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Yong‐Seong</givenNames>
<familyName>Kim</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="JP" type="organization">
<unparsedAffiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="KR" type="organization">
<unparsedAffiliation>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">viscoelastic</keyword>
<keyword xml:id="kwd2">viscoplastic</keyword>
<keyword xml:id="kwd3">constitutive model</keyword>
<keyword xml:id="kwd4">clay</keyword>
<keyword xml:id="kwd5">layered ground</keyword>
<keyword xml:id="kwd6">liquefaction</keyword>
<keyword xml:id="kwd7">finite element analysis</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers.</p>
<p>The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>A CYCLIC VISCOELASTIC–VISCOPLASTIC MODEL FOR CLAY</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fusao</namePart>
<namePart type="family">Oka</namePart>
<affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</affiliation>
<description>Correspondence: Department of Civil and Earth Resources Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takeshi</namePart>
<namePart type="family">Kodaka</namePart>
<affiliation>Department of Civil and Earth Resources Engineering, Graduate School of Engineering, Kyoto University, Yoshida Hon‐machi, Sakyo‐ku, Kyoto 606‐8501, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong‐Seong</namePart>
<namePart type="family">Kim</namePart>
<affiliation>Dam Safety Research Team, Water Resources Research Institute, Yuseong‐gu, Daejeon, South Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-02</dateIssued>
<dateCaptured encoding="w3cdtf">2003-03-14</dateCaptured>
<dateValid encoding="w3cdtf">2003-09-08</dateValid>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">35</extent>
<extent unit="tables">9</extent>
<extent unit="references">26</extent>
</physicalDescription>
<abstract lang="en">In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic–viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de‐amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic–viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>viscoelastic</topic>
<topic>viscoplastic</topic>
<topic>constitutive model</topic>
<topic>clay</topic>
<topic>layered ground</topic>
<topic>liquefaction</topic>
<topic>finite element analysis</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>International Journal for Numerical and Analytical Methods in Geomechanics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Numer. Anal. Meth. Geomech.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0363-9061</identifier>
<identifier type="eISSN">1096-9853</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9853</identifier>
<identifier type="PublisherID">NAG</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>131</start>
<end>179</end>
<total>49</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Mechanics of Cohesive‐frictional Materials</title>
</titleInfo>
<identifier type="ISSN">1082-5010</identifier>
<identifier type="ISSN">1099-1484</identifier>
<part>
<date point="end">2000</date>
<detail type="volume">
<caption>last vol.</caption>
<number>5</number>
</detail>
<detail type="issue">
<caption>last no.</caption>
<number>8</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">A544547AE3E1EF8352277FB7FF05F6C190099B45</identifier>
<identifier type="DOI">10.1002/nag.329</identifier>
<identifier type="ArticleID">NAG329</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002621 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002621 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A544547AE3E1EF8352277FB7FF05F6C190099B45
   |texte=   A cyclic viscoelastic–viscoplastic constitutive model for clay and liquefaction analysis of multi‐layered ground
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024