Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visual-haptic adaptation is determined by relative reliability.

Identifieur interne : 001087 ( PubMed/Curation ); précédent : 001086; suivant : 001088

Visual-haptic adaptation is determined by relative reliability.

Auteurs : Johannes Burge [États-Unis] ; Ahna R. Girshick ; Martin S. Banks

Source :

RBID : pubmed:20519546

English descriptors

Abstract

Accurate calibration of sensory estimators is critical for maintaining accurate estimates of the environment. Classically, it was assumed that sensory calibration occurs by one sense changing to become consistent with vision; this is visual dominance. Recently, it has been proposed that changes in estimators occur according to their relative reliabilities; this is the reliability-based model. We show that if cue combination occurs according to relative reliability, then reliability-based calibration assures minimum-variance sensory estimates over time. Recent studies are qualitatively consistent with the reliability-based model, but none have shown that the predictions are quantitatively accurate. We conducted an experiment in which the model could be assessed quantitatively. Subjects indicated whether visual, haptic, and visual-haptic planar surfaces appeared slanted positively or negatively from frontoparallel. In preadaptation, we determined the visual and haptic slants of perceived frontoparallel, and measured visual and haptic reliabilities. We varied visual reliability by adjusting the size of the viewable stimulus. Haptic reliability was fixed. During adaptation, subjects were exposed to visual-haptic surfaces with a discrepancy between the visual and haptic slants. After adaptation, we remeasured the visual and haptic slants of perceived frontoparallel. When vision was more reliable, haptics adapted to match vision. When vision was less reliable, vision adapted to match haptics. Most importantly, the ratio of visual and haptic adaptation was quantitatively predicted by relative reliability. The amount of adaptation of one sensory estimator relative to another depends strongly on the relative reliabilities of the two estimators.

DOI: 10.1523/JNEUROSCI.6427-09.2010
PubMed: 20519546

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20519546

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visual-haptic adaptation is determined by relative reliability.</title>
<author>
<name sortKey="Burge, Johannes" sort="Burge, Johannes" uniqKey="Burge J" first="Johannes" last="Burge">Johannes Burge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vision Science Program, University of California, Berkeley, California 94720, USA. jburge@mail.cps.utexas.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vision Science Program, University of California, Berkeley, California 94720</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Girshick, Ahna R" sort="Girshick, Ahna R" uniqKey="Girshick A" first="Ahna R" last="Girshick">Ahna R. Girshick</name>
</author>
<author>
<name sortKey="Banks, Martin S" sort="Banks, Martin S" uniqKey="Banks M" first="Martin S" last="Banks">Martin S. Banks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1523/JNEUROSCI.6427-09.2010</idno>
<idno type="RBID">pubmed:20519546</idno>
<idno type="pmid">20519546</idno>
<idno type="wicri:Area/PubMed/Corpus">001087</idno>
<idno type="wicri:Area/PubMed/Curation">001087</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Visual-haptic adaptation is determined by relative reliability.</title>
<author>
<name sortKey="Burge, Johannes" sort="Burge, Johannes" uniqKey="Burge J" first="Johannes" last="Burge">Johannes Burge</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vision Science Program, University of California, Berkeley, California 94720, USA. jburge@mail.cps.utexas.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vision Science Program, University of California, Berkeley, California 94720</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Girshick, Ahna R" sort="Girshick, Ahna R" uniqKey="Girshick A" first="Ahna R" last="Girshick">Ahna R. Girshick</name>
</author>
<author>
<name sortKey="Banks, Martin S" sort="Banks, Martin S" uniqKey="Banks M" first="Martin S" last="Banks">Martin S. Banks</name>
</author>
</analytic>
<series>
<title level="j">The Journal of neuroscience : the official journal of the Society for Neuroscience</title>
<idno type="eISSN">1529-2401</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (physiology)</term>
<term>Adult</term>
<term>Choice Behavior (physiology)</term>
<term>Computer Simulation</term>
<term>Cues</term>
<term>Humans</term>
<term>Models, Psychological</term>
<term>Photic Stimulation (methods)</term>
<term>Predictive Value of Tests</term>
<term>Reproducibility of Results</term>
<term>Sensory Thresholds</term>
<term>Touch (physiology)</term>
<term>Touch Perception (physiology)</term>
<term>Visual Perception (physiology)</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Photic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Choice Behavior</term>
<term>Touch</term>
<term>Touch Perception</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Computer Simulation</term>
<term>Cues</term>
<term>Humans</term>
<term>Models, Psychological</term>
<term>Predictive Value of Tests</term>
<term>Reproducibility of Results</term>
<term>Sensory Thresholds</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Accurate calibration of sensory estimators is critical for maintaining accurate estimates of the environment. Classically, it was assumed that sensory calibration occurs by one sense changing to become consistent with vision; this is visual dominance. Recently, it has been proposed that changes in estimators occur according to their relative reliabilities; this is the reliability-based model. We show that if cue combination occurs according to relative reliability, then reliability-based calibration assures minimum-variance sensory estimates over time. Recent studies are qualitatively consistent with the reliability-based model, but none have shown that the predictions are quantitatively accurate. We conducted an experiment in which the model could be assessed quantitatively. Subjects indicated whether visual, haptic, and visual-haptic planar surfaces appeared slanted positively or negatively from frontoparallel. In preadaptation, we determined the visual and haptic slants of perceived frontoparallel, and measured visual and haptic reliabilities. We varied visual reliability by adjusting the size of the viewable stimulus. Haptic reliability was fixed. During adaptation, subjects were exposed to visual-haptic surfaces with a discrepancy between the visual and haptic slants. After adaptation, we remeasured the visual and haptic slants of perceived frontoparallel. When vision was more reliable, haptics adapted to match vision. When vision was less reliable, vision adapted to match haptics. Most importantly, the ratio of visual and haptic adaptation was quantitatively predicted by relative reliability. The amount of adaptation of one sensory estimator relative to another depends strongly on the relative reliabilities of the two estimators.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">20519546</PMID>
<DateCreated>
<Year>2010</Year>
<Month>06</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1529-2401</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>2</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of neuroscience : the official journal of the Society for Neuroscience</Title>
<ISOAbbreviation>J. Neurosci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Visual-haptic adaptation is determined by relative reliability.</ArticleTitle>
<Pagination>
<MedlinePgn>7714-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1523/JNEUROSCI.6427-09.2010</ELocationID>
<Abstract>
<AbstractText>Accurate calibration of sensory estimators is critical for maintaining accurate estimates of the environment. Classically, it was assumed that sensory calibration occurs by one sense changing to become consistent with vision; this is visual dominance. Recently, it has been proposed that changes in estimators occur according to their relative reliabilities; this is the reliability-based model. We show that if cue combination occurs according to relative reliability, then reliability-based calibration assures minimum-variance sensory estimates over time. Recent studies are qualitatively consistent with the reliability-based model, but none have shown that the predictions are quantitatively accurate. We conducted an experiment in which the model could be assessed quantitatively. Subjects indicated whether visual, haptic, and visual-haptic planar surfaces appeared slanted positively or negatively from frontoparallel. In preadaptation, we determined the visual and haptic slants of perceived frontoparallel, and measured visual and haptic reliabilities. We varied visual reliability by adjusting the size of the viewable stimulus. Haptic reliability was fixed. During adaptation, subjects were exposed to visual-haptic surfaces with a discrepancy between the visual and haptic slants. After adaptation, we remeasured the visual and haptic slants of perceived frontoparallel. When vision was more reliable, haptics adapted to match vision. When vision was less reliable, vision adapted to match haptics. Most importantly, the ratio of visual and haptic adaptation was quantitatively predicted by relative reliability. The amount of adaptation of one sensory estimator relative to another depends strongly on the relative reliabilities of the two estimators.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Burge</LastName>
<ForeName>Johannes</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Vision Science Program, University of California, Berkeley, California 94720, USA. jburge@mail.cps.utexas.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Girshick</LastName>
<ForeName>Ahna R</ForeName>
<Initials>AR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Banks</LastName>
<ForeName>Martin S</ForeName>
<Initials>MS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY012851</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012851-06</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012851-07</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY014194</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY014194-04</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY014194-05A2</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-EY12851</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosci</MedlineTA>
<NlmUniqueID>8102140</NlmUniqueID>
<ISSNLinking>0270-6474</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1989 Sep;9(9):3297-305</RefSource>
<PMID Version="1">2795163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol. 1966 Jan;71(1):150-8</RefSource>
<PMID Version="1">5902133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1991 Jul 5;253(5015):85-7</RefSource>
<PMID Version="1">2063209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Jul;115(3):557-61</RefSource>
<PMID Version="1">9262212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1964 Feb 7;143(3606):594-6</RefSource>
<PMID Version="1">14080333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Opt Soc Am A Opt Image Sci Vis. 2005 May;22(5):801-9</RefSource>
<PMID Version="1">15898539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Nov 3;48(3):489-96</RefSource>
<PMID Version="1">16269365</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(4):20.1-19</RefSource>
<PMID Version="1">18484859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2008;8(8):3.1-16</RefSource>
<PMID Version="1">18831626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1999 Oct;39(21):3621-9</RefSource>
<PMID Version="1">10746132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Nov;4(11):1063-4</RefSource>
<PMID Version="1">11584290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2001 Nov;63(8):1293-313</RefSource>
<PMID Version="1">11800458</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2002 May 14;12(10):834-7</RefSource>
<PMID Version="1">12015120</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 May 16;417(6886):322-8</RefSource>
<PMID Version="1">12015612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 2002 Sep-Oct;9(5):268-78</RefSource>
<PMID Version="1">12359836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2003 Feb;6(2):175-81</RefSource>
<PMID Version="1">12524547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2003 Mar 18;13(6):483-8</RefSource>
<PMID Version="1">12646130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Apr 1;23(7):3066-75</RefSource>
<PMID Version="1">12684493</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 2003 Nov;43(25):2603-13</RefSource>
<PMID Version="1">14552802</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2004 Feb 3;14(3):257-62</RefSource>
<PMID Version="1">14761661</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1989 Sep;9(9):3306-13</RefSource>
<PMID Version="1">2795164</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000222">Adaptation, Physiological</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002755">Choice Behavior</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003463">Cues</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008960">Models, Psychological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011237">Predictive Value of Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012684">Sensory Thresholds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055698">Touch Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS278522</OtherID>
<OtherID Source="NLM">PMC3056491</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">30/22/7714</ArticleId>
<ArticleId IdType="doi">10.1523/JNEUROSCI.6427-09.2010</ArticleId>
<ArticleId IdType="pubmed">20519546</ArticleId>
<ArticleId IdType="pmc">PMC3056491</ArticleId>
<ArticleId IdType="mid">NIHMS278522</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001087 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001087 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:20519546
   |texte=   Visual-haptic adaptation is determined by relative reliability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:20519546" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024