Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.

Identifieur interne : 000475 ( PubMed/Curation ); précédent : 000474; suivant : 000476

da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.

Auteurs : Hani J. Marcus [Royaume-Uni] ; Archie Hughes-Hallett ; Thomas P. Cundy ; Guang-Zhong Yang ; Ara Darzi ; Dipankar Nandi

Source :

RBID : pubmed:25516094

English descriptors

Abstract

The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.

DOI: 10.1007/s10143-014-0602-2
PubMed: 25516094

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25516094

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.</title>
<author>
<name sortKey="Marcus, Hani J" sort="Marcus, Hani J" uniqKey="Marcus H" first="Hani J" last="Marcus">Hani J. Marcus</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Paterson Building (Level 3), Praed Street, London, W2 1NY, UK, hani.marcus10@imperial.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>The Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Paterson Building (Level 3), Praed Street, London, W2 1NY, UK</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hughes Hallett, Archie" sort="Hughes Hallett, Archie" uniqKey="Hughes Hallett A" first="Archie" last="Hughes-Hallett">Archie Hughes-Hallett</name>
</author>
<author>
<name sortKey="Cundy, Thomas P" sort="Cundy, Thomas P" uniqKey="Cundy T" first="Thomas P" last="Cundy">Thomas P. Cundy</name>
</author>
<author>
<name sortKey="Yang, Guang Zhong" sort="Yang, Guang Zhong" uniqKey="Yang G" first="Guang-Zhong" last="Yang">Guang-Zhong Yang</name>
</author>
<author>
<name sortKey="Darzi, Ara" sort="Darzi, Ara" uniqKey="Darzi A" first="Ara" last="Darzi">Ara Darzi</name>
</author>
<author>
<name sortKey="Nandi, Dipankar" sort="Nandi, Dipankar" uniqKey="Nandi D" first="Dipankar" last="Nandi">Dipankar Nandi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1007/s10143-014-0602-2</idno>
<idno type="RBID">pubmed:25516094</idno>
<idno type="pmid">25516094</idno>
<idno type="wicri:Area/PubMed/Corpus">000475</idno>
<idno type="wicri:Area/PubMed/Curation">000475</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.</title>
<author>
<name sortKey="Marcus, Hani J" sort="Marcus, Hani J" uniqKey="Marcus H" first="Hani J" last="Marcus">Hani J. Marcus</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Paterson Building (Level 3), Praed Street, London, W2 1NY, UK, hani.marcus10@imperial.ac.uk.</nlm:affiliation>
<country wicri:rule="url">Royaume-Uni</country>
<wicri:regionArea>The Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Paterson Building (Level 3), Praed Street, London, W2 1NY, UK</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hughes Hallett, Archie" sort="Hughes Hallett, Archie" uniqKey="Hughes Hallett A" first="Archie" last="Hughes-Hallett">Archie Hughes-Hallett</name>
</author>
<author>
<name sortKey="Cundy, Thomas P" sort="Cundy, Thomas P" uniqKey="Cundy T" first="Thomas P" last="Cundy">Thomas P. Cundy</name>
</author>
<author>
<name sortKey="Yang, Guang Zhong" sort="Yang, Guang Zhong" uniqKey="Yang G" first="Guang-Zhong" last="Yang">Guang-Zhong Yang</name>
</author>
<author>
<name sortKey="Darzi, Ara" sort="Darzi, Ara" uniqKey="Darzi A" first="Ara" last="Darzi">Ara Darzi</name>
</author>
<author>
<name sortKey="Nandi, Dipankar" sort="Nandi, Dipankar" uniqKey="Nandi D" first="Dipankar" last="Nandi">Dipankar Nandi</name>
</author>
</analytic>
<series>
<title level="j">Neurosurgical review</title>
<idno type="eISSN">1437-2320</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadaver</term>
<term>Craniotomy (instrumentation)</term>
<term>Humans</term>
<term>Neurosurgical Procedures (methods)</term>
<term>Robotic Surgical Procedures</term>
<term>Robotics (instrumentation)</term>
<term>Surgery, Computer-Assisted (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Craniotomy</term>
<term>Robotics</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Neurosurgical Procedures</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cadaver</term>
<term>Humans</term>
<term>Robotic Surgical Procedures</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25516094</PMID>
<DateCreated>
<Year>2015</Year>
<Month>03</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>03</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1437-2320</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Neurosurgical review</Title>
<ISOAbbreviation>Neurosurg Rev</ISOAbbreviation>
</Journal>
<ArticleTitle>da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.</ArticleTitle>
<Pagination>
<MedlinePgn>367-71; discussion 371</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10143-014-0602-2</ELocationID>
<Abstract>
<AbstractText>The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marcus</LastName>
<ForeName>Hani J</ForeName>
<Initials>HJ</Initials>
<AffiliationInfo>
<Affiliation>The Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Paterson Building (Level 3), Praed Street, London, W2 1NY, UK, hani.marcus10@imperial.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hughes-Hallett</LastName>
<ForeName>Archie</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cundy</LastName>
<ForeName>Thomas P</ForeName>
<Initials>TP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Guang-Zhong</ForeName>
<Initials>GZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Darzi</LastName>
<ForeName>Ara</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nandi</LastName>
<ForeName>Dipankar</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Neurosurg Rev</MedlineTA>
<NlmUniqueID>7908181</NlmUniqueID>
<ISSNLinking>0344-5607</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>World Neurosurg. 2013 Feb;79(2 Suppl):S3-13</RefSource>
<PMID Version="1">23391453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMJ. 2013;346:f2461</RefSource>
<PMID Version="1">23615587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Otolaryngol Head Neck Surg. 2013 Dec;149(6):940-6</RefSource>
<PMID Version="1">24154747</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurgery. 2014 Mar;10 Suppl 1:84-95; discussion 95-6</RefSource>
<PMID Version="1">23921708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Neurosurg. 2014 Oct;28(5):606-10</RefSource>
<PMID Version="1">24533591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pediatr Neurosurg. 2002 Feb;36(2):85-9</RefSource>
<PMID Version="1">11893890</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2013 Mar;60(3):674-81</RefSource>
<PMID Version="1">23372075</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Urol. 2008 Mar;179(3):1138-42; discussion 1142-3</RefSource>
<PMID Version="1">18206956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Interact Cardiovasc Thorac Surg. 2009 Sep;9(3):500-5</RefSource>
<PMID Version="1">19542085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spine (Phila Pa 1976). 2009 Sep 1;34(19):2104-9</RefSource>
<PMID Version="1">19730218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ORL J Otorhinolaryngol Relat Spec. 2010;72(2):91-5</RefSource>
<PMID Version="1">20431319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Korean Med Sci. 2011 Jan;26(1):150-3</RefSource>
<PMID Version="1">21218046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Spine (Phila Pa 1976). 2011 Jan 15;36(2):E139-43</RefSource>
<PMID Version="1">20948463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>World J Surg. 2012 Feb;36(2):447-52</RefSource>
<PMID Version="1">22194031</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurgery. 2012 Sep;71(1 Suppl Operative):209-14</RefSource>
<PMID Version="1">22653397</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurgery. 2013 Jan;72 Suppl 1:33-8</RefSource>
<PMID Version="1">23254810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Endourol. 2013 Jan;27(1):102-7</RefSource>
<PMID Version="1">22834981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurgery. 2013 Mar;72(1 Suppl Operative):2-5; discussion 5</RefSource>
<PMID Version="1">22902343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BJU Int. 2007 May;99(5):1109-12</RefSource>
<PMID Version="1">17437441</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002102">Cadaver</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003399">Craniotomy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D019635">Neurosurgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D065287">Robotic Surgical Procedures</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4365271</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>5</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>9</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10143-014-0602-2</ArticleId>
<ArticleId IdType="pubmed">25516094</ArticleId>
<ArticleId IdType="pmc">PMC4365271</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25516094
   |texte=   da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25516094" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024