Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feeling form: the neural basis of haptic shape perception.

Identifieur interne : 000192 ( PubMed/Corpus ); précédent : 000191; suivant : 000193

Feeling form: the neural basis of haptic shape perception.

Auteurs : Jeffrey M. Yau ; Sung Soo Kim ; Pramodsingh H. Thakur ; Sliman J. Bensmaia

Source :

RBID : pubmed:26581869

Abstract

The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.

DOI: 10.1152/jn.00598.2015
PubMed: 26581869

Links to Exploration step

pubmed:26581869

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Feeling form: the neural basis of haptic shape perception.</title>
<author>
<name sortKey="Yau, Jeffrey M" sort="Yau, Jeffrey M" uniqKey="Yau J" first="Jeffrey M" last="Yau">Jeffrey M. Yau</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Jeffrey.yau@bcm.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sung Soo" sort="Kim, Sung Soo" uniqKey="Kim S" first="Sung Soo" last="Kim">Sung Soo Kim</name>
<affiliation>
<nlm:affiliation>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thakur, Pramodsingh H" sort="Thakur, Pramodsingh H" uniqKey="Thakur P" first="Pramodsingh H" last="Thakur">Pramodsingh H. Thakur</name>
<affiliation>
<nlm:affiliation>Boston Scientific Corporation, St Paul, Minnesota; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bensmaia, Sliman J" sort="Bensmaia, Sliman J" uniqKey="Bensmaia S" first="Sliman J" last="Bensmaia">Sliman J. Bensmaia</name>
<affiliation>
<nlm:affiliation>Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26581869</idno>
<idno type="pmid">26581869</idno>
<idno type="doi">10.1152/jn.00598.2015</idno>
<idno type="wicri:Area/PubMed/Corpus">000192</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Feeling form: the neural basis of haptic shape perception.</title>
<author>
<name sortKey="Yau, Jeffrey M" sort="Yau, Jeffrey M" uniqKey="Yau J" first="Jeffrey M" last="Yau">Jeffrey M. Yau</name>
<affiliation>
<nlm:affiliation>Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Jeffrey.yau@bcm.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sung Soo" sort="Kim, Sung Soo" uniqKey="Kim S" first="Sung Soo" last="Kim">Sung Soo Kim</name>
<affiliation>
<nlm:affiliation>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Thakur, Pramodsingh H" sort="Thakur, Pramodsingh H" uniqKey="Thakur P" first="Pramodsingh H" last="Thakur">Pramodsingh H. Thakur</name>
<affiliation>
<nlm:affiliation>Boston Scientific Corporation, St Paul, Minnesota; and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bensmaia, Sliman J" sort="Bensmaia, Sliman J" uniqKey="Bensmaia S" first="Sliman J" last="Bensmaia">Sliman J. Bensmaia</name>
<affiliation>
<nlm:affiliation>Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">26581869</PMID>
<DateCreated>
<Year>2016</Year>
<Month>02</Month>
<Day>02</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Feeling form: the neural basis of haptic shape perception.</ArticleTitle>
<Pagination>
<MedlinePgn>631-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00598.2015</ELocationID>
<Abstract>
<AbstractText>The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.</AbstractText>
<CopyrightInformation>Copyright © 2016 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yau</LastName>
<ForeName>Jeffrey M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Jeffrey.yau@bcm.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sung Soo</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thakur</LastName>
<ForeName>Pramodsingh H</ForeName>
<Initials>PH</Initials>
<AffiliationInfo>
<Affiliation>Boston Scientific Corporation, St Paul, Minnesota; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bensmaia</LastName>
<ForeName>Sliman J</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NS-082865</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 May;10(5):345-59</RefSource>
<PMID Version="1">19352402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2009 Sep;198(2-3):165-82</RefSource>
<PMID Version="1">19652959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16457-62</RefSource>
<PMID Version="1">19805320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Dec;102(6):3310-28</RefSource>
<PMID Version="1">19793876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2010 Feb;8(2):e1000305</RefSource>
<PMID Version="1">20126380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Jan 28;65(2):150-64</RefSource>
<PMID Version="1">20152123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Jun;103(6):3115-22</RefSource>
<PMID Version="1">20457848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2010;10(11):2</RefSource>
<PMID Version="1">20884497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2001;134:427-45</RefSource>
<PMID Version="1">11702559</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Mar;87(3):1186-95</RefSource>
<PMID Version="1">11877492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2002 Apr 15;445(4):347-59</RefSource>
<PMID Version="1">11920712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2002;25:189-220</RefSource>
<PMID Version="1">12052908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Jul;88(1):455-63</RefSource>
<PMID Version="1">12091567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Exp Med Biol. 2002;508:5-12</RefSource>
<PMID Version="1">12171149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2002 Sep;3(9):741-7</RefSource>
<PMID Version="1">12209122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2002 Sep 20;135(1-2):167-78</RefSource>
<PMID Version="1">12356447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2003 Jul;18(1):164-76</RefSource>
<PMID Version="1">12859350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cerebellum. 2003;2(2):131-45</RefSource>
<PMID Version="1">12880181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 2003;93:57-67</RefSource>
<PMID Version="1">12894401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech Eng. 2003 Oct;125(5):682-91</RefSource>
<PMID Version="1">14618927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2004 Feb;7(2):170-7</RefSource>
<PMID Version="1">14730306</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2004 Mar 22;471(1):97-111</RefSource>
<PMID Version="1">14983479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Apr 8;42(1):173-9</RefSource>
<PMID Version="1">15066274</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5658-63</RefSource>
<PMID Version="1">15064396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2004;42(8):1079-87</RefSource>
<PMID Version="1">15093147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2004;27:53-77</RefSource>
<PMID Version="1">15217326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2004 Apr;66(3):392-7</RefSource>
<PMID Version="1">15283064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1978 Aug;281:101-25</RefSource>
<PMID Version="1">702358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1978 Oct;283:523-37</RefSource>
<PMID Version="1">102767</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Dec;98(6):3708-30</RefSource>
<PMID Version="1">17942625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Jan 16;28(3):776-86</RefSource>
<PMID Version="1">18199777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 1991 Nov;27(5):751-7</RefSource>
<PMID Version="1">1756394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1991;87(2):319-39</RefSource>
<PMID Version="1">1769386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1991;20(2):167-77</RefSource>
<PMID Version="1">1745589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vis Neurosci. 1991 Dec;7(6):561-73</RefSource>
<PMID Version="1">1772806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1992 Mar;12(3):827-39</RefSource>
<PMID Version="1">1545242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1992 May;67(5):1105-13</RefSource>
<PMID Version="1">1597700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1992;91(2):207-28</RefSource>
<PMID Version="1">1459224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1993;92(3):360-8</RefSource>
<PMID Version="1">8454001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1993 Aug;54(2):170-8</RefSource>
<PMID Version="1">8361831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 1993;10(4):399-413</RefSource>
<PMID Version="1">8310779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1994 Jan;71(1):161-72</RefSource>
<PMID Version="1">8158225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1994 Jan;71(1):173-81</RefSource>
<PMID Version="1">8158227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1994 May;72(5):542-5</RefSource>
<PMID Version="1">7954084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Chem Neuroanat. 1994 Jul;7(1-2):75-86</RefSource>
<PMID Version="1">7802972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2011 Aug;23(8):1987-97</RefSource>
<PMID Version="1">20807050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3097-105</RefSource>
<PMID Version="1">21969691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Oct;10(4):448-59</RefSource>
<PMID Version="1">10493902</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1999 Jul;61(5):874-94</RefSource>
<PMID Version="1">10499001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Oct 7;401(6753):587-90</RefSource>
<PMID Version="1">10524625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bull Johns Hopkins Hosp. 1960 May;106:266-316</RefSource>
<PMID Version="1">14433641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Dec 8;24(49):11193-204</RefSource>
<PMID Version="1">15590936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2005 Aug;25(4):370-7</RefSource>
<PMID Version="1">15852384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12601-5</RefSource>
<PMID Version="1">16116098</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Jul;8(7):941-9</RefSource>
<PMID Version="1">15951810</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2005 Nov 1;568(Pt 3):1035-46</RefSource>
<PMID Version="1">16109730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Feb;16(2):254-67</RefSource>
<PMID Version="1">15888607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Feb 15;26(7):2101-14</RefSource>
<PMID Version="1">16481443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Mar;95(3):1783-91</RefSource>
<PMID Version="1">16236778</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2015 Apr 22;86(2):555-66</RefSource>
<PMID Version="1">25864632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2015;13(9):e1002271</RefSource>
<PMID Version="1">26418156</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2016 Jan 1;115(1):92-9</RefSource>
<PMID Version="1">26510760</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2011 Feb 10;69(3):536-47</RefSource>
<PMID Version="1">21315263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 2011 Apr 1;519(5):874-99</RefSource>
<PMID Version="1">21280042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2000 Jan 1;20(1):495-510</RefSource>
<PMID Version="1">10627625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 May;83(5):2580-601</RefSource>
<PMID Version="1">10805659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2001 Aug 2;31(2):173-4</RefSource>
<PMID Version="1">11502249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1995 Jan;15(1 Pt 2):798-810</RefSource>
<PMID Version="1">7823181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jan;73(1):218-26</RefSource>
<PMID Version="1">7714567</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Feb;73(2):820-35</RefSource>
<PMID Version="1">7760137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1995 Feb 17;186(2-3):127-30</RefSource>
<PMID Version="1">7777180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 May 15;355(4):508-38</RefSource>
<PMID Version="1">7636029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1995 May 15;355(4):539-62</RefSource>
<PMID Version="1">7636030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1995 Aug 15;487(1):243-51</RefSource>
<PMID Version="1">7473253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1996 Dec;76(6):3787-97</RefSource>
<PMID Version="1">8985876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Oct;74(4):1675-88</RefSource>
<PMID Version="1">8989404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 Oct;78(4):2226-30</RefSource>
<PMID Version="1">9325390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1998 Mar 2;392(1):115-33</RefSource>
<PMID Version="1">9482236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1998 Apr 1;18(7):2626-45</RefSource>
<PMID Version="1">9502821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Jun;79(6):3238-51</RefSource>
<PMID Version="1">9636122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Nov;80(5):2446-66</RefSource>
<PMID Version="1">9819255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Novartis Found Symp. 1998;218:176-90; discussion 190-201</RefSource>
<PMID Version="1">9949821</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1999 Mar 6;821(1):87-94</RefSource>
<PMID Version="1">10064791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Jun;81(6):2701-10</RefSource>
<PMID Version="1">10368390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Jun;95(6):3852-64</RefSource>
<PMID Version="1">16481453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jul 12;26(28):7491-501</RefSource>
<PMID Version="1">16837597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Dec 27;26(52):13567-75</RefSource>
<PMID Version="1">17192440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Jan;97(1):387-406</RefSource>
<PMID Version="1">16971679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2007 Apr;17(2):140-7</RefSource>
<PMID Version="1">17369035</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Aug;17(8):1800-11</RefSource>
<PMID Version="1">17032710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2007 Oct 1;37(4):1362-70</RefSource>
<PMID Version="1">17706435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 2008 Mar;25(1):49-59</RefSource>
<PMID Version="1">18344147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2008 May 1;40(4):1807-14</RefSource>
<PMID Version="1">18329290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Oct;29(10):1123-38</RefSource>
<PMID Version="1">17924535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 2008 Sep;25(3):149-62</RefSource>
<PMID Version="1">18821280</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2008 Aug;18(4):418-24</RefSource>
<PMID Version="1">18809491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1984 Aug;353:81-92</RefSource>
<PMID Version="1">6237191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1985 Sep 9;342(2):391-5</RefSource>
<PMID Version="1">4041845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1986 Jun;36(6):864-7</RefSource>
<PMID Version="1">3703298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1986 Sep;56(3):623-39</RefSource>
<PMID Version="1">3097272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2006 Jun;10(6):278-85</RefSource>
<PMID Version="1">16713325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2006 Jul;96(1):27-39</RefSource>
<PMID Version="1">16641375</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jun 14;26(24):6473-84</RefSource>
<PMID Version="1">16775135</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 Jun 14;26(24):6485-95</RefSource>
<PMID Version="1">16775136</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2001 Aug 2;31(2):317-28</RefSource>
<PMID Version="1">11502261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 Oct 15;21(20):8222-37</RefSource>
<PMID Version="1">11588194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Aug 25;24(34):7524-30</RefSource>
<PMID Version="1">15329399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1967 May;30(3):466-81</RefSource>
<PMID Version="1">6037588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1967 Nov;30(6):1466-81</RefSource>
<PMID Version="1">6066449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1968 Mar;195(1):215-43</RefSource>
<PMID Version="1">4966457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1969 Aug;203(2):317-35</RefSource>
<PMID Version="1">5796466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1972 Jan 28;36(2):229-49</RefSource>
<PMID Version="1">4621596</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1974 May;239(1):27P-28P</RefSource>
<PMID Version="1">4854233</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1974 Aug 30;77(1):1-23</RefSource>
<PMID Version="1">4277655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1975 Jul;38(4):871-908</RefSource>
<PMID Version="1">808592</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1976 Jul 15;168(2):197-247</RefSource>
<PMID Version="1">821974</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1977 Jun 24;129(1):61-74</RefSource>
<PMID Version="1">326352</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1978 Jul 21;150(3):662-6</RefSource>
<PMID Version="1">98206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1988 Feb;85(4):1317-21</RefSource>
<PMID Version="1">3422492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1988;69(2):245-59</RefSource>
<PMID Version="1">3345806</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 1988 Apr;66(4):439-54</RefSource>
<PMID Version="1">3139269</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Somatosens Mot Res. 1988;6(1):41-61</RefSource>
<PMID Version="1">3242343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1989;76(1):213-22</RefSource>
<PMID Version="1">2753103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1989 Oct;39(10):1377-85</RefSource>
<PMID Version="1">2552351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1989 Dec;62(6):1410-36</RefSource>
<PMID Version="1">2600632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2011 Oct;19(5):490-500</RefSource>
<PMID Version="1">21984518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2012;12(1). pii: 6. doi: 10.1167/12.1.6</RefSource>
<PMID Version="1">22235145</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Jul;108(1):243-62</RefSource>
<PMID Version="1">22457468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2012 Oct;92(4):1651-97</RefSource>
<PMID Version="1">23073629</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2013 Jan;23(1):198-209</RefSource>
<PMID Version="1">22298729</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Elife. 2013;2:e00400</RefSource>
<PMID Version="1">23467508</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2013 Jun;109(12):2999-3012</RefSource>
<PMID Version="1">23536717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2014 Feb;25(2):555-65</RefSource>
<PMID Version="1">24390826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2014 Sep 17;83(6):1444-52</RefSource>
<PMID Version="1">25175880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2014 Oct;17(10):1404-9</RefSource>
<PMID Version="1">25174006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2014 Dec;37(12):689-97</RefSource>
<PMID Version="1">25257208</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Dec 15;112(12):3023-32</RefSource>
<PMID Version="1">25253479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1978 Oct;283:539-56</RefSource>
<PMID Version="1">102768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1979 Jan;286:283-300</RefSource>
<PMID Version="1">439026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1980 Feb;6(1):151-66</RefSource>
<PMID Version="1">6444989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1980 Feb;43(2):444-68</RefSource>
<PMID Version="1">6770054</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1980 Jul 1;192(1):21-41</RefSource>
<PMID Version="1">7410612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1980 Aug;44(2):295-311</RefSource>
<PMID Version="1">7411189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1981 Jan;310:117-44</RefSource>
<PMID Version="1">7230030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1981 Jun 15;214(2):301-19</RefSource>
<PMID Version="1">7237173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1981 Jun 15;214(2):321-33</RefSource>
<PMID Version="1">7237174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1981 Dec;46(6):1177-92</RefSource>
<PMID Version="1">7320742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1981 Dec;46(6):1192-203</RefSource>
<PMID Version="1">6275041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1981 Dec;46(6):1204-25</RefSource>
<PMID Version="1">7320743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1982 Jan;31(1):41-52</RefSource>
<PMID Version="1">7070936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1982 Aug;48(2):521-44</RefSource>
<PMID Version="1">7119861</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1983;51(2):247-60</RefSource>
<PMID Version="1">6617794</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1983 Sep;34(3):243-9</RefSource>
<PMID Version="1">6646966</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1983;52(3):375-84</RefSource>
<PMID Version="1">6653699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Neurobiol. 1984;3(1):3-14</RefSource>
<PMID Version="1">6330008</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1986 Oct 15;252(3):323-47</RefSource>
<PMID Version="1">3793980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1987 Jun;7(6):1682-97</RefSource>
<PMID Version="1">3598642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 1990 Feb;16(1):106-20</RefSource>
<PMID Version="1">2137513</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1990;81(3):589-92</RefSource>
<PMID Version="1">2226691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1991 Mar;65(3):657-70</RefSource>
<PMID Version="1">2051199</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4752307 [Available on 02/01/17]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">neural coding</Keyword>
<Keyword MajorTopicYN="N">neurophysiology</Keyword>
<Keyword MajorTopicYN="N">objects</Keyword>
<Keyword MajorTopicYN="N">perception</Keyword>
<Keyword MajorTopicYN="N">shape</Keyword>
<Keyword MajorTopicYN="N">tactile</Keyword>
<Keyword MajorTopicYN="N">touch</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>6</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2017</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26581869</ArticleId>
<ArticleId IdType="pii">jn.00598.2015</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00598.2015</ArticleId>
<ArticleId IdType="pmc">PMC4752307</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000192 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000192 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26581869
   |texte=   Feeling form: the neural basis of haptic shape perception.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26581869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024