Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.

Identifieur interne : 000185 ( PubMed/Corpus ); précédent : 000184; suivant : 000186

An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.

Auteurs : Jeremy D. Brown ; Andrew Paek ; Mashaal Syed ; Marcia K. O'Malley ; Patricia A. Shewokis ; Jose L. Contreras-Vidal ; Alicia J. Davis ; R Brent Gillespie

Source :

RBID : pubmed:26602538

English descriptors

Abstract

Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback.

DOI: 10.1186/s12984-015-0098-1
PubMed: 26602538

Links to Exploration step

pubmed:26602538

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.</title>
<author>
<name sortKey="Brown, Jeremy D" sort="Brown, Jeremy D" uniqKey="Brown J" first="Jeremy D" last="Brown">Jeremy D. Brown</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. jdelaine@umich.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paek, Andrew" sort="Paek, Andrew" uniqKey="Paek A" first="Andrew" last="Paek">Andrew Paek</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. aypaek@uh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Syed, Mashaal" sort="Syed, Mashaal" uniqKey="Syed M" first="Mashaal" last="Syed">Mashaal Syed</name>
<affiliation>
<nlm:affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. mms382@drexel.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O Malley, Marcia K" sort="O Malley, Marcia K" uniqKey="O Malley M" first="Marcia K" last="O'Malley">Marcia K. O'Malley</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Rice University, Houston, TX, USA. omalleym@rice.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shewokis, Patricia A" sort="Shewokis, Patricia A" uniqKey="Shewokis P" first="Patricia A" last="Shewokis">Patricia A. Shewokis</name>
<affiliation>
<nlm:affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. pas38@drexel.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Contreras Vidal, Jose L" sort="Contreras Vidal, Jose L" uniqKey="Contreras Vidal J" first="Jose L" last="Contreras-Vidal">Jose L. Contreras-Vidal</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. jlcontreras-vidal@central.uh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Alicia J" sort="Davis, Alicia J" uniqKey="Davis A" first="Alicia J" last="Davis">Alicia J. Davis</name>
<affiliation>
<nlm:affiliation>UM Orthotics and Prosthetics Center, University of Michigan, Ann Arbor, MI, USA. aliciad@med.umich.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gillespie, R Brent" sort="Gillespie, R Brent" uniqKey="Gillespie R" first="R Brent" last="Gillespie">R Brent Gillespie</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. brentg@umich.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1186/s12984-015-0098-1</idno>
<idno type="RBID">pubmed:26602538</idno>
<idno type="pmid">26602538</idno>
<idno type="wicri:Area/PubMed/Corpus">000185</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.</title>
<author>
<name sortKey="Brown, Jeremy D" sort="Brown, Jeremy D" uniqKey="Brown J" first="Jeremy D" last="Brown">Jeremy D. Brown</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. jdelaine@umich.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paek, Andrew" sort="Paek, Andrew" uniqKey="Paek A" first="Andrew" last="Paek">Andrew Paek</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. aypaek@uh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Syed, Mashaal" sort="Syed, Mashaal" uniqKey="Syed M" first="Mashaal" last="Syed">Mashaal Syed</name>
<affiliation>
<nlm:affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. mms382@drexel.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="O Malley, Marcia K" sort="O Malley, Marcia K" uniqKey="O Malley M" first="Marcia K" last="O'Malley">Marcia K. O'Malley</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, Rice University, Houston, TX, USA. omalleym@rice.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shewokis, Patricia A" sort="Shewokis, Patricia A" uniqKey="Shewokis P" first="Patricia A" last="Shewokis">Patricia A. Shewokis</name>
<affiliation>
<nlm:affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. pas38@drexel.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Contreras Vidal, Jose L" sort="Contreras Vidal, Jose L" uniqKey="Contreras Vidal J" first="Jose L" last="Contreras-Vidal">Jose L. Contreras-Vidal</name>
<affiliation>
<nlm:affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. jlcontreras-vidal@central.uh.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Davis, Alicia J" sort="Davis, Alicia J" uniqKey="Davis A" first="Alicia J" last="Davis">Alicia J. Davis</name>
<affiliation>
<nlm:affiliation>UM Orthotics and Prosthetics Center, University of Michigan, Ann Arbor, MI, USA. aliciad@med.umich.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gillespie, R Brent" sort="Gillespie, R Brent" uniqKey="Gillespie R" first="R Brent" last="Gillespie">R Brent Gillespie</name>
<affiliation>
<nlm:affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. brentg@umich.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neuroengineering and rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Amputees (rehabilitation)</term>
<term>Artificial Limbs</term>
<term>Electric Impedance</term>
<term>Feedback, Sensory (physiology)</term>
<term>Female</term>
<term>Forearm</term>
<term>Hand Strength (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Feedback, Sensory</term>
<term>Hand Strength</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Amputees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Artificial Limbs</term>
<term>Electric Impedance</term>
<term>Female</term>
<term>Forearm</term>
<term>Humans</term>
<term>Male</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">26602538</PMID>
<DateCreated>
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Journal of neuroengineering and rehabilitation</Title>
<ISOAbbreviation>J Neuroeng Rehabil</ISOAbbreviation>
</Journal>
<ArticleTitle>An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.</ArticleTitle>
<Pagination>
<MedlinePgn>104</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12984-015-0098-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results suggest that a backdrivable terminal device may hold advantages over non-backdrivable devices by allowing grip/load force coordination consistent with behaviors observed in the natural limb. Likewise, the inconclusive effect of referred haptic feedback on grasp and lift performance suggests the need for additional testing that includes adequate training for participants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Jeremy D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. jdelaine@umich.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA. jdelaine@umich.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paek</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. aypaek@uh.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Mashaal</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. mms382@drexel.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>O'Malley</LastName>
<ForeName>Marcia K</ForeName>
<Initials>MK</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Rice University, Houston, TX, USA. omalleym@rice.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shewokis</LastName>
<ForeName>Patricia A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>School of Biomedical Engineering, Science and Health Systems (BIOMED), Drexel University, Philadelphia, PA, USA. pas38@drexel.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA. pas38@drexel.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Surgery, Drexel University College of Medicine, Philadelphia, PA, USA. pas38@drexel.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Contreras-Vidal</LastName>
<ForeName>Jose L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. jlcontreras-vidal@central.uh.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Alicia J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>UM Orthotics and Prosthetics Center, University of Michigan, Ann Arbor, MI, USA. aliciad@med.umich.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gillespie</LastName>
<ForeName>R Brent</ForeName>
<Initials>RB</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. brentg@umich.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016449">Randomized Controlled Trial</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Neuroeng Rehabil</MedlineTA>
<NlmUniqueID>101232233</NlmUniqueID>
<ISSNLinking>1743-0003</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2014 Sep;22(5):1041-52</RefSource>
<PMID Version="1">24801625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):53-61</RefSource>
<PMID Version="1">23799698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Biol Eng Comput. 2000 May;38(3):267-74</RefSource>
<PMID Version="1">10912342</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Nov;84(5):2390-7</RefSource>
<PMID Version="1">11067981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2001 Sep 18;11(18):R729-32</RefSource>
<PMID Version="1">11566114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Feb;89(2):665-71</RefSource>
<PMID Version="1">12574444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2003 Jun;17(12):2741-9</RefSource>
<PMID Version="1">12823481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2004 Jan;127(Pt 1):182-92</RefSource>
<PMID Version="1">14570822</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1988;71(1):59-71</RefSource>
<PMID Version="1">3416958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1988;71(1):72-86</RefSource>
<PMID Version="1">3416959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 1989 Summer;26(3):53-62</RefSource>
<PMID Version="1">2666644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Rehabil Res Dev. 1992 Winter;29(1):1-8</RefSource>
<PMID Version="1">1740774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 1992 Dec;2(6):815-23</RefSource>
<PMID Version="1">1477545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 Feb 15;17(4):1519-28</RefSource>
<PMID Version="1">9006993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 Jun 1;17(11):4486-99</RefSource>
<PMID Version="1">9151765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Sep;173(4):650-60</RefSource>
<PMID Version="1">16525799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2006 Dec;16(6):650-9</RefSource>
<PMID Version="1">17084619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2009 May;10(5):345-59</RefSource>
<PMID Version="1">19352402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2009 Dec;17(6):560-7</RefSource>
<PMID Version="1">19457753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2010 Feb;18(1):58-66</RefSource>
<PMID Version="1">20071271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5077-80</RefSource>
<PMID Version="1">21096030</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroeng Rehabil. 2011;8:60</RefSource>
<PMID Version="1">22032545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2012 Feb;59(2):400-8</RefSource>
<PMID Version="1">22042125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Int Conf Rehabil Robot. 2011;2011:5975477</RefSource>
<PMID Version="1">22275675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2012 Aug;59(8):2200-10</RefSource>
<PMID Version="1">22614517</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2012 Nov;20(6):798-805</RefSource>
<PMID Version="1">22855230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Disabil Rehabil Assist Technol. 2013 May;8(3):249-54</RefSource>
<PMID Version="1">22928878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2013 Aug;60(8):2226-32</RefSource>
<PMID Version="1">23508245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Haptics. 2013 Apr-Jun;6(2):242-52</RefSource>
<PMID Version="1">24808307</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000674">Amputees</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D001186">Artificial Limbs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017097">Electric Impedance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D056228">Feedback, Sensory</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005542">Forearm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018737">Hand Strength</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4659194</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>1</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s12984-015-0098-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12984-015-0098-1</ArticleId>
<ArticleId IdType="pubmed">26602538</ArticleId>
<ArticleId IdType="pmc">PMC4659194</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000185 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000185 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26602538
   |texte=   An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26602538" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024