Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cognitive neuroscience of prehension: recent developments

Identifieur interne : 000911 ( Pmc/Curation ); précédent : 000910; suivant : 000912

The cognitive neuroscience of prehension: recent developments

Auteurs : Scott T. Grafton [États-Unis]

Source :

RBID : PMC:2903689

Abstract

Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions.


Url:
DOI: 10.1007/s00221-010-2315-2
PubMed: 20532487
PubMed Central: 2903689

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2903689

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cognitive neuroscience of prehension: recent developments</title>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T." last="Grafton">Scott T. Grafton</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara, CA 93106 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20532487</idno>
<idno type="pmc">2903689</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903689</idno>
<idno type="RBID">PMC:2903689</idno>
<idno type="doi">10.1007/s00221-010-2315-2</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000911</idno>
<idno type="wicri:Area/Pmc/Curation">000911</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The cognitive neuroscience of prehension: recent developments</title>
<author>
<name sortKey="Grafton, Scott T" sort="Grafton, Scott T" uniqKey="Grafton S" first="Scott T." last="Grafton">Scott T. Grafton</name>
<affiliation wicri:level="2">
<nlm:aff id="Aff1">Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara, CA 93106 USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale</title>
<idno type="ISSN">0014-4819</idno>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Albert, F" uniqKey="Albert F">F Albert</name>
</author>
<author>
<name sortKey="Santello, M" uniqKey="Santello M">M Santello</name>
</author>
<author>
<name sortKey="Gordon, Am" uniqKey="Gordon A">AM Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andersen, Ra" uniqKey="Andersen R">RA Andersen</name>
</author>
<author>
<name sortKey="Cui, H" uniqKey="Cui H">H Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ansuini, C" uniqKey="Ansuini C">C Ansuini</name>
</author>
<author>
<name sortKey="Santello, M" uniqKey="Santello M">M Santello</name>
</author>
<author>
<name sortKey="Massaccesi, S" uniqKey="Massaccesi S">S Massaccesi</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ansuini, C" uniqKey="Ansuini C">C Ansuini</name>
</author>
<author>
<name sortKey="Tognin, V" uniqKey="Tognin V">V Tognin</name>
</author>
<author>
<name sortKey="Turella, L" uniqKey="Turella L">L Turella</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ansuini, C" uniqKey="Ansuini C">C Ansuini</name>
</author>
<author>
<name sortKey="Giosa, L" uniqKey="Giosa L">L Giosa</name>
</author>
<author>
<name sortKey="Turella, L" uniqKey="Turella L">L Turella</name>
</author>
<author>
<name sortKey="Altoe, G" uniqKey="Altoe G">G Altoè</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arbib, Ma" uniqKey="Arbib M">MA Arbib</name>
</author>
<author>
<name sortKey="Bonaiuto, Jb" uniqKey="Bonaiuto J">JB Bonaiuto</name>
</author>
<author>
<name sortKey="Jacobs, S" uniqKey="Jacobs S">S Jacobs</name>
</author>
<author>
<name sortKey="Frey, Sh" uniqKey="Frey S">SH Frey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Archambault, Ps" uniqKey="Archambault P">PS Archambault</name>
</author>
<author>
<name sortKey="Caminiti, R" uniqKey="Caminiti R">R Caminiti</name>
</author>
<author>
<name sortKey="Battaglia Mayer, A" uniqKey="Battaglia Mayer A">A Battaglia-Mayer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badre, D" uniqKey="Badre D">D Badre</name>
</author>
<author>
<name sortKey="D Sposito, M" uniqKey="D Sposito M">M D’Esposito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Badre, D" uniqKey="Badre D">D Badre</name>
</author>
<author>
<name sortKey="D Sposito, M" uniqKey="D Sposito M">M D’Esposito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barsalou, Lw" uniqKey="Barsalou L">LW Barsalou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baumann, Ma" uniqKey="Baumann M">MA Baumann</name>
</author>
<author>
<name sortKey="Fluet, Mc" uniqKey="Fluet M">MC Fluet</name>
</author>
<author>
<name sortKey="Scherberger, H" uniqKey="Scherberger H">H Scherberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Begliomini, C" uniqKey="Begliomini C">C Begliomini</name>
</author>
<author>
<name sortKey="Wall, Mb" uniqKey="Wall M">MB Wall</name>
</author>
<author>
<name sortKey="Smith, At" uniqKey="Smith A">AT Smith</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Begliomini, C" uniqKey="Begliomini C">C Begliomini</name>
</author>
<author>
<name sortKey="Nelini, C" uniqKey="Nelini C">C Nelini</name>
</author>
<author>
<name sortKey="Caria, A" uniqKey="Caria A">A Caria</name>
</author>
<author>
<name sortKey="Grodd, W" uniqKey="Grodd W">W Grodd</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bingham, G" uniqKey="Bingham G">G Bingham</name>
</author>
<author>
<name sortKey="Coats, R" uniqKey="Coats R">R Coats</name>
</author>
<author>
<name sortKey="Mon Williams, M" uniqKey="Mon Williams M">M Mon-Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bonini, L" uniqKey="Bonini L">L Bonini</name>
</author>
<author>
<name sortKey="Rozzi, S" uniqKey="Rozzi S">S Rozzi</name>
</author>
<author>
<name sortKey="Serventi, Fu" uniqKey="Serventi F">FU Serventi</name>
</author>
<author>
<name sortKey="Simone, L" uniqKey="Simone L">L Simone</name>
</author>
<author>
<name sortKey="Ferrari, Pf" uniqKey="Ferrari P">PF Ferrari</name>
</author>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borra, E" uniqKey="Borra E">E Borra</name>
</author>
<author>
<name sortKey="Belmalih, A" uniqKey="Belmalih A">A Belmalih</name>
</author>
<author>
<name sortKey="Calzavara, R" uniqKey="Calzavara R">R Calzavara</name>
</author>
<author>
<name sortKey="Gerbella, M" uniqKey="Gerbella M">M Gerbella</name>
</author>
<author>
<name sortKey="Murata, A" uniqKey="Murata A">A Murata</name>
</author>
<author>
<name sortKey="Rozzi, S" uniqKey="Rozzi S">S Rozzi</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borra, E" uniqKey="Borra E">E Borra</name>
</author>
<author>
<name sortKey="Ichinohe, N" uniqKey="Ichinohe N">N Ichinohe</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Tanifuji, M" uniqKey="Tanifuji M">M Tanifuji</name>
</author>
<author>
<name sortKey="Rockland, Ks" uniqKey="Rockland K">KS Rockland</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botvinick, Mm" uniqKey="Botvinick M">MM Botvinick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botvinick, Mm" uniqKey="Botvinick M">MM Botvinick</name>
</author>
<author>
<name sortKey="Plaut, Dc" uniqKey="Plaut D">DC Plaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botvinick, Mm" uniqKey="Botvinick M">MM Botvinick</name>
</author>
<author>
<name sortKey="Buxbaum, Lj" uniqKey="Buxbaum L">LJ Buxbaum</name>
</author>
<author>
<name sortKey="Bylsma, Lm" uniqKey="Bylsma L">LM Bylsma</name>
</author>
<author>
<name sortKey="Jax, Sa" uniqKey="Jax S">SA Jax</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boudrias, Mh" uniqKey="Boudrias M">MH Boudrias</name>
</author>
<author>
<name sortKey="Mcpherson, Rl" uniqKey="Mcpherson R">RL McPherson</name>
</author>
<author>
<name sortKey="Frost, Sb" uniqKey="Frost S">SB Frost</name>
</author>
<author>
<name sortKey="Cheney, Pd" uniqKey="Cheney P">PD Cheney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boudrias, Mh" uniqKey="Boudrias M">MH Boudrias</name>
</author>
<author>
<name sortKey="Lee, Sp" uniqKey="Lee S">SP Lee</name>
</author>
<author>
<name sortKey="Svojanovsky, S" uniqKey="Svojanovsky S">S Svojanovsky</name>
</author>
<author>
<name sortKey="Cheney, Pd" uniqKey="Cheney P">PD Cheney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brandauer, B" uniqKey="Brandauer B">B Brandauer</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
<author>
<name sortKey="Beck, A" uniqKey="Beck A">A Beck</name>
</author>
<author>
<name sortKey="Aurich, V" uniqKey="Aurich V">V Aurich</name>
</author>
<author>
<name sortKey="Gizewski, Er" uniqKey="Gizewski E">ER Gizewski</name>
</author>
<author>
<name sortKey="Marquardt, C" uniqKey="Marquardt C">C Marquardt</name>
</author>
<author>
<name sortKey="Timmann, D" uniqKey="Timmann D">D Timmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brozzoli, C" uniqKey="Brozzoli C">C Brozzoli</name>
</author>
<author>
<name sortKey="Pavani, F" uniqKey="Pavani F">F Pavani</name>
</author>
<author>
<name sortKey="Urquizar, C" uniqKey="Urquizar C">C Urquizar</name>
</author>
<author>
<name sortKey="Cardinali, L" uniqKey="Cardinali L">L Cardinali</name>
</author>
<author>
<name sortKey="Farne, A" uniqKey="Farne A">A Farnè</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buelte, D" uniqKey="Buelte D">D Buelte</name>
</author>
<author>
<name sortKey="Meister, Ig" uniqKey="Meister I">IG Meister</name>
</author>
<author>
<name sortKey="Staedtgen, M" uniqKey="Staedtgen M">M Staedtgen</name>
</author>
<author>
<name sortKey="Dambeck, N" uniqKey="Dambeck N">N Dambeck</name>
</author>
<author>
<name sortKey="Sparing, R" uniqKey="Sparing R">R Sparing</name>
</author>
<author>
<name sortKey="Grefkes, C" uniqKey="Grefkes C">C Grefkes</name>
</author>
<author>
<name sortKey="Boroojerdi, B" uniqKey="Boroojerdi B">B Boroojerdi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bursztyn, Llcd" uniqKey="Bursztyn L">LLCD Bursztyn</name>
</author>
<author>
<name sortKey="Ganesh, G" uniqKey="Ganesh G">G Ganesh</name>
</author>
<author>
<name sortKey="Imamizu, H" uniqKey="Imamizu H">H Imamizu</name>
</author>
<author>
<name sortKey="Kawato, M" uniqKey="Kawato M">M Kawato</name>
</author>
<author>
<name sortKey="Flanagan, Jr" uniqKey="Flanagan J">JR Flanagan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buxbaum, Lj" uniqKey="Buxbaum L">LJ Buxbaum</name>
</author>
<author>
<name sortKey="Kyle, Km" uniqKey="Kyle K">KM Kyle</name>
</author>
<author>
<name sortKey="Tang, K" uniqKey="Tang K">K Tang</name>
</author>
<author>
<name sortKey="Detre, Ja" uniqKey="Detre J">JA Detre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardinali, L" uniqKey="Cardinali L">L Cardinali</name>
</author>
<author>
<name sortKey="Frassinetti, F" uniqKey="Frassinetti F">F Frassinetti</name>
</author>
<author>
<name sortKey="Brozzoli, C" uniqKey="Brozzoli C">C Brozzoli</name>
</author>
<author>
<name sortKey="Urquizar, C" uniqKey="Urquizar C">C Urquizar</name>
</author>
<author>
<name sortKey="Roy, Ac" uniqKey="Roy A">AC Roy</name>
</author>
<author>
<name sortKey="Farne, A" uniqKey="Farne A">A Farnè</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrico, Rl" uniqKey="Carrico R">RL Carrico</name>
</author>
<author>
<name sortKey="Berthier, Ne" uniqKey="Berthier N">NE Berthier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
<author>
<name sortKey="Begliomini, C" uniqKey="Begliomini C">C Begliomini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cattaneo, L" uniqKey="Cattaneo L">L Cattaneo</name>
</author>
<author>
<name sortKey="Caruana, F" uniqKey="Caruana F">F Caruana</name>
</author>
<author>
<name sortKey="Jezzini, A" uniqKey="Jezzini A">A Jezzini</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavina Pratesi, C" uniqKey="Cavina Pratesi C">C Cavina-Pratesi</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavina Pratesi, C" uniqKey="Cavina Pratesi C">C Cavina-Pratesi</name>
</author>
<author>
<name sortKey="Ietswaart, M" uniqKey="Ietswaart M">M Ietswaart</name>
</author>
<author>
<name sortKey="Humphreys, Gw" uniqKey="Humphreys G">GW Humphreys</name>
</author>
<author>
<name sortKey="Lestou, V" uniqKey="Lestou V">V Lestou</name>
</author>
<author>
<name sortKey="Milner, Ad" uniqKey="Milner A">AD Milner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, H" uniqKey="Chapman H">H Chapman</name>
</author>
<author>
<name sortKey="Pierno, Ac" uniqKey="Pierno A">AC Pierno</name>
</author>
<author>
<name sortKey="Cunnington, R" uniqKey="Cunnington R">R Cunnington</name>
</author>
<author>
<name sortKey="Gavrilescu, M" uniqKey="Gavrilescu M">M Gavrilescu</name>
</author>
<author>
<name sortKey="Egan, G" uniqKey="Egan G">G Egan</name>
</author>
<author>
<name sortKey="Castiello, U" uniqKey="Castiello U">U Castiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chassagnon, S" uniqKey="Chassagnon S">S Chassagnon</name>
</author>
<author>
<name sortKey="Minotti, L" uniqKey="Minotti L">L Minotti</name>
</author>
<author>
<name sortKey="Kremer, S" uniqKey="Kremer S">S Kremer</name>
</author>
<author>
<name sortKey="Hoffmann, D" uniqKey="Hoffmann D">D Hoffmann</name>
</author>
<author>
<name sortKey="Kahane, P" uniqKey="Kahane P">P Kahane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Reitzen, Sd" uniqKey="Reitzen S">SD Reitzen</name>
</author>
<author>
<name sortKey="Kohlenstein, Jb" uniqKey="Kohlenstein J">JB Kohlenstein</name>
</author>
<author>
<name sortKey="Gardner, Ep" uniqKey="Gardner E">EP Gardner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chouinard, Pa" uniqKey="Chouinard P">PA Chouinard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chouinard, Pa" uniqKey="Chouinard P">PA Chouinard</name>
</author>
<author>
<name sortKey="Morrissey, Bf" uniqKey="Morrissey B">BF Morrissey</name>
</author>
<author>
<name sortKey="Kohler, S" uniqKey="Kohler S">S Kohler</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chouinard, Pa" uniqKey="Chouinard P">PA Chouinard</name>
</author>
<author>
<name sortKey="Large, Me" uniqKey="Large M">ME Large</name>
</author>
<author>
<name sortKey="Chang, Ec" uniqKey="Chang E">EC Chang</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, Nr" uniqKey="Cohen N">NR Cohen</name>
</author>
<author>
<name sortKey="Cross, Es" uniqKey="Cross E">ES Cross</name>
</author>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cole, Kj" uniqKey="Cole K">KJ Cole</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, T" uniqKey="Collins T">T Collins</name>
</author>
<author>
<name sortKey="Schicke, T" uniqKey="Schicke T">T Schicke</name>
</author>
<author>
<name sortKey="Roder, B" uniqKey="Roder B">B Röder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, R" uniqKey="Cooper R">R Cooper</name>
</author>
<author>
<name sortKey="Shallice, T" uniqKey="Shallice T">T Shallice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Creem Regehr, Sh" uniqKey="Creem Regehr S">SH Creem-Regehr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dafotakis, M" uniqKey="Dafotakis M">M Dafotakis</name>
</author>
<author>
<name sortKey="Sparing, R" uniqKey="Sparing R">R Sparing</name>
</author>
<author>
<name sortKey="Eickhoff, Sb" uniqKey="Eickhoff S">SB Eickhoff</name>
</author>
<author>
<name sortKey="Fink, Gr" uniqKey="Fink G">GR Fink</name>
</author>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davare, M" uniqKey="Davare M">M Davare</name>
</author>
<author>
<name sortKey="Andres, M" uniqKey="Andres M">M Andres</name>
</author>
<author>
<name sortKey="Cosnard, G" uniqKey="Cosnard G">G Cosnard</name>
</author>
<author>
<name sortKey="Thonnard, Jl" uniqKey="Thonnard J">JL Thonnard</name>
</author>
<author>
<name sortKey="Olivier, E" uniqKey="Olivier E">E Olivier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davare, M" uniqKey="Davare M">M Davare</name>
</author>
<author>
<name sortKey="Lemon, R" uniqKey="Lemon R">R Lemon</name>
</author>
<author>
<name sortKey="Olivier, E" uniqKey="Olivier E">E Olivier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davare, M" uniqKey="Davare M">M Davare</name>
</author>
<author>
<name sortKey="Montague, K" uniqKey="Montague K">K Montague</name>
</author>
<author>
<name sortKey="Olivier, E" uniqKey="Olivier E">E Olivier</name>
</author>
<author>
<name sortKey="Rothwell, Jc" uniqKey="Rothwell J">JC Rothwell</name>
</author>
<author>
<name sortKey="Lemon, Rn" uniqKey="Lemon R">RN Lemon</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deiber, Mp" uniqKey="Deiber M">MP Deiber</name>
</author>
<author>
<name sortKey="Honda, M" uniqKey="Honda M">M Honda</name>
</author>
<author>
<name sortKey="Ibanez, V" uniqKey="Ibanez V">V Ibanez</name>
</author>
<author>
<name sortKey="Sadato, N" uniqKey="Sadato N">N Sadato</name>
</author>
<author>
<name sortKey="Hallett, M" uniqKey="Hallett M">M Hallett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desanghere, L" uniqKey="Desanghere L">L Desanghere</name>
</author>
<author>
<name sortKey="Marotta, Jj" uniqKey="Marotta J">JJ Marotta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dijkerman, Hc" uniqKey="Dijkerman H">HC Dijkerman</name>
</author>
<author>
<name sortKey="Smit, Mc" uniqKey="Smit M">MC Smit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dijkerman, Hc" uniqKey="Dijkerman H">HC Dijkerman</name>
</author>
<author>
<name sortKey="Mcintosh, Rd" uniqKey="Mcintosh R">RD McIntosh</name>
</author>
<author>
<name sortKey="Schindler, I" uniqKey="Schindler I">I Schindler</name>
</author>
<author>
<name sortKey="Nijboer, Tcw" uniqKey="Nijboer T">TCW Nijboer</name>
</author>
<author>
<name sortKey="Milner, Ad" uniqKey="Milner A">AD Milner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Domellof, E" uniqKey="Domellof E">E Domellöf</name>
</author>
<author>
<name sortKey="Rosblad, B" uniqKey="Rosblad B">B Rösblad</name>
</author>
<author>
<name sortKey="Ronnqvist, L" uniqKey="Ronnqvist L">L Rönnqvist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Durand, J B" uniqKey="Durand J">J-B Durand</name>
</author>
<author>
<name sortKey="Nelissen, K" uniqKey="Nelissen K">K Nelissen</name>
</author>
<author>
<name sortKey="Joly, O" uniqKey="Joly O">O Joly</name>
</author>
<author>
<name sortKey="Wardak, C" uniqKey="Wardak C">C Wardak</name>
</author>
<author>
<name sortKey="Todd, Jt" uniqKey="Todd J">JT Todd</name>
</author>
<author>
<name sortKey="Norman, Jf" uniqKey="Norman J">JF Norman</name>
</author>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P Janssen</name>
</author>
<author>
<name sortKey="Vanduffel, W" uniqKey="Vanduffel W">W Vanduffel</name>
</author>
<author>
<name sortKey="Orban, Ga" uniqKey="Orban G">GA Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Epstein, Ra" uniqKey="Epstein R">RA Epstein</name>
</author>
<author>
<name sortKey="Parker, We" uniqKey="Parker W">WE Parker</name>
</author>
<author>
<name sortKey="Feiler, Am" uniqKey="Feiler A">AM Feiler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evangeliou, Mn" uniqKey="Evangeliou M">MN Evangeliou</name>
</author>
<author>
<name sortKey="Raos, V" uniqKey="Raos V">V Raos</name>
</author>
<author>
<name sortKey="Galletti, C" uniqKey="Galletti C">C Galletti</name>
</author>
<author>
<name sortKey="Savaki, He" uniqKey="Savaki H">HE Savaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fattori, P" uniqKey="Fattori P">P Fattori</name>
</author>
<author>
<name sortKey="Breveglieri, R" uniqKey="Breveglieri R">R Breveglieri</name>
</author>
<author>
<name sortKey="Marzocchi, N" uniqKey="Marzocchi N">N Marzocchi</name>
</author>
<author>
<name sortKey="Filippini, D" uniqKey="Filippini D">D Filippini</name>
</author>
<author>
<name sortKey="Bosco, A" uniqKey="Bosco A">A Bosco</name>
</author>
<author>
<name sortKey="Galletti, C" uniqKey="Galletti C">C Galletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fattori, P" uniqKey="Fattori P">P Fattori</name>
</author>
<author>
<name sortKey="Raos, V" uniqKey="Raos V">V Raos</name>
</author>
<author>
<name sortKey="Breveglieri, R" uniqKey="Breveglieri R">R Breveglieri</name>
</author>
<author>
<name sortKey="Bosco, A" uniqKey="Bosco A">A Bosco</name>
</author>
<author>
<name sortKey="Marzocchi, N" uniqKey="Marzocchi N">N Marzocchi</name>
</author>
<author>
<name sortKey="Galletti, C" uniqKey="Galletti C">C Galletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
<author>
<name sortKey="Ferrari, Pf" uniqKey="Ferrari P">PF Ferrari</name>
</author>
<author>
<name sortKey="Gesierich, B" uniqKey="Gesierich B">B Gesierich</name>
</author>
<author>
<name sortKey="Rozzi, S" uniqKey="Rozzi S">S Rozzi</name>
</author>
<author>
<name sortKey="Chersi, F" uniqKey="Chersi F">F Chersi</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frak, V" uniqKey="Frak V">V Frak</name>
</author>
<author>
<name sortKey="Croteau, I" uniqKey="Croteau I">I Croteau</name>
</author>
<author>
<name sortKey="Bourbonnais, D" uniqKey="Bourbonnais D">D Bourbonnais</name>
</author>
<author>
<name sortKey="Duval, C" uniqKey="Duval C">C Duval</name>
</author>
<author>
<name sortKey="Duclos, C" uniqKey="Duclos C">C Duclos</name>
</author>
<author>
<name sortKey="Cohen, H" uniqKey="Cohen H">H Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franz, Vh" uniqKey="Franz V">VH Franz</name>
</author>
<author>
<name sortKey="Hesse, C" uniqKey="Hesse C">C Hesse</name>
</author>
<author>
<name sortKey="Kollath, S" uniqKey="Kollath S">S Kollath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gallivan, Jp" uniqKey="Gallivan J">JP Gallivan</name>
</author>
<author>
<name sortKey="Cavina Pratesi, C" uniqKey="Cavina Pratesi C">C Cavina-Pratesi</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gamberini, M" uniqKey="Gamberini M">M Gamberini</name>
</author>
<author>
<name sortKey="Passarelli, L" uniqKey="Passarelli L">L Passarelli</name>
</author>
<author>
<name sortKey="Fattori, P" uniqKey="Fattori P">P Fattori</name>
</author>
<author>
<name sortKey="Zucchelli, M" uniqKey="Zucchelli M">M Zucchelli</name>
</author>
<author>
<name sortKey="Bakola, S" uniqKey="Bakola S">S Bakola</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
<author>
<name sortKey="Galletti, C" uniqKey="Galletti C">C Galletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gardner, Ep" uniqKey="Gardner E">EP Gardner</name>
</author>
<author>
<name sortKey="Babu, Ks" uniqKey="Babu K">KS Babu</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
<author>
<name sortKey="Sherwood, A" uniqKey="Sherwood A">A Sherwood</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gardner, Ep" uniqKey="Gardner E">EP Gardner</name>
</author>
<author>
<name sortKey="Ro, Jy" uniqKey="Ro J">JY Ro</name>
</author>
<author>
<name sortKey="Babu, Ks" uniqKey="Babu K">KS Babu</name>
</author>
<author>
<name sortKey="Ghosh, S" uniqKey="Ghosh S">S Ghosh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerbella, M" uniqKey="Gerbella M">M Gerbella</name>
</author>
<author>
<name sortKey="Belmalih, A" uniqKey="Belmalih A">A Belmalih</name>
</author>
<author>
<name sortKey="Borra, E" uniqKey="Borra E">E Borra</name>
</author>
<author>
<name sortKey="Rozzi, S" uniqKey="Rozzi S">S Rozzi</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez Alvarez, C" uniqKey="Gonzalez Alvarez C">C González-Alvarez</name>
</author>
<author>
<name sortKey="Subramanian, A" uniqKey="Subramanian A">A Subramanian</name>
</author>
<author>
<name sortKey="Pardhan, S" uniqKey="Pardhan S">S Pardhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
<author>
<name sortKey="Milner, Ad" uniqKey="Milner A">AD Milner</name>
</author>
<author>
<name sortKey="Jakobson, Ls" uniqKey="Jakobson L">LS Jakobson</name>
</author>
<author>
<name sortKey="Carey, Dp" uniqKey="Carey D">DP Carey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greenwald, Hs" uniqKey="Greenwald H">HS Greenwald</name>
</author>
<author>
<name sortKey="Knill, Dc" uniqKey="Knill D">DC Knill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haynes, Jd" uniqKey="Haynes J">JD Haynes</name>
</author>
<author>
<name sortKey="Rees, G" uniqKey="Rees G">G Rees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hendrix, Cm" uniqKey="Hendrix C">CM Hendrix</name>
</author>
<author>
<name sortKey="Mason, Cr" uniqKey="Mason C">CR Mason</name>
</author>
<author>
<name sortKey="Ebner, Tj" uniqKey="Ebner T">TJ Ebner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
<author>
<name sortKey="Elias, Z" uniqKey="Elias Z">Z Elias</name>
</author>
<author>
<name sortKey="Cole, Jd" uniqKey="Cole J">JD Cole</name>
</author>
<author>
<name sortKey="Quaney, Bm" uniqKey="Quaney B">BM Quaney</name>
</author>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hinkley, Lb" uniqKey="Hinkley L">LB Hinkley</name>
</author>
<author>
<name sortKey="Krubitzer, La" uniqKey="Krubitzer L">LA Krubitzer</name>
</author>
<author>
<name sortKey="Padberg, J" uniqKey="Padberg J">J Padberg</name>
</author>
<author>
<name sortKey="Disbrow, Ea" uniqKey="Disbrow E">EA Disbrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iriki, A" uniqKey="Iriki A">A Iriki</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P Janssen</name>
</author>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
<author>
<name sortKey="Ombelet, S" uniqKey="Ombelet S">S Ombelet</name>
</author>
<author>
<name sortKey="Orban, Ga" uniqKey="Orban G">GA Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeannerod, M" uniqKey="Jeannerod M">M Jeannerod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeannerod, M" uniqKey="Jeannerod M">M Jeannerod</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeannerod, M" uniqKey="Jeannerod M">M Jeannerod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeannerod, M" uniqKey="Jeannerod M">M Jeannerod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeannerod, M" uniqKey="Jeannerod M">M Jeannerod</name>
</author>
<author>
<name sortKey="Arbib, Ma" uniqKey="Arbib M">MA Arbib</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
<author>
<name sortKey="Sakata, H" uniqKey="Sakata H">H Sakata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Sh" uniqKey="Johnson S">SH Johnson</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Joly, O" uniqKey="Joly O">O Joly</name>
</author>
<author>
<name sortKey="Vanduffel, W" uniqKey="Vanduffel W">W Vanduffel</name>
</author>
<author>
<name sortKey="Orban, Ga" uniqKey="Orban G">GA Orban</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karnath, H O" uniqKey="Karnath H">H-O Karnath</name>
</author>
<author>
<name sortKey="Ruter, J" uniqKey="Ruter J">J Rüter</name>
</author>
<author>
<name sortKey="Mandler, A" uniqKey="Mandler A">A Mandler</name>
</author>
<author>
<name sortKey="Himmelbach, M" uniqKey="Himmelbach M">M Himmelbach</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keefe, Bd" uniqKey="Keefe B">BD Keefe</name>
</author>
<author>
<name sortKey="Watt, Sj" uniqKey="Watt S">SJ Watt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keisker, B" uniqKey="Keisker B">B Keisker</name>
</author>
<author>
<name sortKey="Hepp Reymond, M C" uniqKey="Hepp Reymond M">M-C Hepp-Reymond</name>
</author>
<author>
<name sortKey="Blickenstorfer, A" uniqKey="Blickenstorfer A">A Blickenstorfer</name>
</author>
<author>
<name sortKey="Meyer, M" uniqKey="Meyer M">M Meyer</name>
</author>
<author>
<name sortKey="Kollias, Ss" uniqKey="Kollias S">SS Kollias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kermadi, I" uniqKey="Kermadi I">I Kermadi</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Tempini, A" uniqKey="Tempini A">A Tempini</name>
</author>
<author>
<name sortKey="Rouiller, Em" uniqKey="Rouiller E">EM Rouiller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koch, G" uniqKey="Koch G">G Koch</name>
</author>
<author>
<name sortKey="Rothwell, Jc" uniqKey="Rothwell J">JC Rothwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kourtis, D" uniqKey="Kourtis D">D Kourtis</name>
</author>
<author>
<name sortKey="Kwok, Hf" uniqKey="Kwok H">HF Kwok</name>
</author>
<author>
<name sortKey="Roach, N" uniqKey="Roach N">N Roach</name>
</author>
<author>
<name sortKey="Wing, Am" uniqKey="Wing A">AM Wing</name>
</author>
<author>
<name sortKey="Praamstra, P" uniqKey="Praamstra P">P Praamstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kroliczak, G" uniqKey="Kroliczak G">G Kroliczak</name>
</author>
<author>
<name sortKey="Mcadam, Td" uniqKey="Mcadam T">TD McAdam</name>
</author>
<author>
<name sortKey="Quinlan, Dj" uniqKey="Quinlan D">DJ Quinlan</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lalazar, H" uniqKey="Lalazar H">H Lalazar</name>
</author>
<author>
<name sortKey="Vaadia, E" uniqKey="Vaadia E">E Vaadia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lashley, Ks" uniqKey="Lashley K">KS Lashley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y L" uniqKey="Lee Y">Y-L Lee</name>
</author>
<author>
<name sortKey="Crabtree, Ce" uniqKey="Crabtree C">CE Crabtree</name>
</author>
<author>
<name sortKey="Norman, Jf" uniqKey="Norman J">JF Norman</name>
</author>
<author>
<name sortKey="Bingham, Gp" uniqKey="Bingham G">GP Bingham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lukos, Jr" uniqKey="Lukos J">JR Lukos</name>
</author>
<author>
<name sortKey="Ansuini, C" uniqKey="Ansuini C">C Ansuini</name>
</author>
<author>
<name sortKey="Santello, M" uniqKey="Santello M">M Santello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macfarlane, Nbw" uniqKey="Macfarlane N">NBW Macfarlane</name>
</author>
<author>
<name sortKey="Graziano, Msa" uniqKey="Graziano M">MSA Graziano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maratos, Fa" uniqKey="Maratos F">FA Maratos</name>
</author>
<author>
<name sortKey="Anderson, Sj" uniqKey="Anderson S">SJ Anderson</name>
</author>
<author>
<name sortKey="Hillebrand, A" uniqKey="Hillebrand A">A Hillebrand</name>
</author>
<author>
<name sortKey="Singh, Kd" uniqKey="Singh K">KD Singh</name>
</author>
<author>
<name sortKey="Barnes, Gr" uniqKey="Barnes G">GR Barnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marino, Bfm" uniqKey="Marino B">BFM Marino</name>
</author>
<author>
<name sortKey="Stucchi, N" uniqKey="Stucchi N">N Stucchi</name>
</author>
<author>
<name sortKey="Nava, E" uniqKey="Nava E">E Nava</name>
</author>
<author>
<name sortKey="Haggard, P" uniqKey="Haggard P">P Haggard</name>
</author>
<author>
<name sortKey="Maravita, A" uniqKey="Maravita A">A Maravita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martelloni, C" uniqKey="Martelloni C">C Martelloni</name>
</author>
<author>
<name sortKey="Carpaneto, J" uniqKey="Carpaneto J">J Carpaneto</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mason, Cr" uniqKey="Mason C">CR Mason</name>
</author>
<author>
<name sortKey="Hendrix, Cm" uniqKey="Hendrix C">CM Hendrix</name>
</author>
<author>
<name sortKey="Ebner, Tj" uniqKey="Ebner T">TJ Ebner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melmoth, Dr" uniqKey="Melmoth D">DR Melmoth</name>
</author>
<author>
<name sortKey="Grant, S" uniqKey="Grant S">S Grant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melmoth, Dr" uniqKey="Melmoth D">DR Melmoth</name>
</author>
<author>
<name sortKey="Finlay, Al" uniqKey="Finlay A">AL Finlay</name>
</author>
<author>
<name sortKey="Morgan, Mj" uniqKey="Morgan M">MJ Morgan</name>
</author>
<author>
<name sortKey="Grant, S" uniqKey="Grant S">S Grant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milner, Ad" uniqKey="Milner A">AD Milner</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milner, Ad" uniqKey="Milner A">AD Milner</name>
</author>
<author>
<name sortKey="Dijkerman, Hc" uniqKey="Dijkerman H">HC Dijkerman</name>
</author>
<author>
<name sortKey="Mcintosh, Rd" uniqKey="Mcintosh R">RD McIntosh</name>
</author>
<author>
<name sortKey="Rossetti, Y" uniqKey="Rossetti Y">Y Rossetti</name>
</author>
<author>
<name sortKey="Pisella, L" uniqKey="Pisella L">L Pisella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milner, Te" uniqKey="Milner T">TE Milner</name>
</author>
<author>
<name sortKey="Franklin, Dw" uniqKey="Franklin D">DW Franklin</name>
</author>
<author>
<name sortKey="Imamizu, H" uniqKey="Imamizu H">H Imamizu</name>
</author>
<author>
<name sortKey="Kawato, M" uniqKey="Kawato M">M Kawato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murata, Y" uniqKey="Murata Y">Y Murata</name>
</author>
<author>
<name sortKey="Higo, N" uniqKey="Higo N">N Higo</name>
</author>
<author>
<name sortKey="Oishi, T" uniqKey="Oishi T">T Oishi</name>
</author>
<author>
<name sortKey="Yamashita, A" uniqKey="Yamashita A">A Yamashita</name>
</author>
<author>
<name sortKey="Matsuda, K" uniqKey="Matsuda K">K Matsuda</name>
</author>
<author>
<name sortKey="Hayashi, M" uniqKey="Hayashi M">M Hayashi</name>
</author>
<author>
<name sortKey="Yamane, S" uniqKey="Yamane S">S Yamane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishimura, Y" uniqKey="Nishimura Y">Y Nishimura</name>
</author>
<author>
<name sortKey="Onoe, H" uniqKey="Onoe H">H Onoe</name>
</author>
<author>
<name sortKey="Morichika, Y" uniqKey="Morichika Y">Y Morichika</name>
</author>
<author>
<name sortKey="Tsukada, H" uniqKey="Tsukada H">H Tsukada</name>
</author>
<author>
<name sortKey="Isa, T" uniqKey="Isa T">T Isa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noppeney, U" uniqKey="Noppeney U">U Noppeney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noppeney, U" uniqKey="Noppeney U">U Noppeney</name>
</author>
<author>
<name sortKey="Price, Cj" uniqKey="Price C">CJ Price</name>
</author>
<author>
<name sortKey="Penny, Wd" uniqKey="Penny W">WD Penny</name>
</author>
<author>
<name sortKey="Friston, Kj" uniqKey="Friston K">KJ Friston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
<author>
<name sortKey="Timmann, D" uniqKey="Timmann D">D Timmann</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
<author>
<name sortKey="Topka, H" uniqKey="Topka H">H Topka</name>
</author>
<author>
<name sortKey="Timmann, D" uniqKey="Timmann D">D Timmann</name>
</author>
<author>
<name sortKey="Boecker, H" uniqKey="Boecker H">H Boecker</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
<author>
<name sortKey="Berner, J" uniqKey="Berner J">J Berner</name>
</author>
<author>
<name sortKey="Herrnberger, B" uniqKey="Herrnberger B">B Herrnberger</name>
</author>
<author>
<name sortKey="Kammer, T" uniqKey="Kammer T">T Kammer</name>
</author>
<author>
<name sortKey="Gron, G" uniqKey="Gron G">G Grön</name>
</author>
<author>
<name sortKey="Schonfeldt Lecuona, C" uniqKey="Schonfeldt Lecuona C">C Schönfeldt-Lecuona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nowak, Da" uniqKey="Nowak D">DA Nowak</name>
</author>
<author>
<name sortKey="Hufnagel, A" uniqKey="Hufnagel A">A Hufnagel</name>
</author>
<author>
<name sortKey="Ameli, M" uniqKey="Ameli M">M Ameli</name>
</author>
<author>
<name sortKey="Timmann, D" uniqKey="Timmann D">D Timmann</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivier, G" uniqKey="Olivier G">G Olivier</name>
</author>
<author>
<name sortKey="Velay, Jl" uniqKey="Velay J">JL Velay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitzalis, S" uniqKey="Pitzalis S">S Pitzalis</name>
</author>
<author>
<name sortKey="Sereno, Mi" uniqKey="Sereno M">MI Sereno</name>
</author>
<author>
<name sortKey="Committeri, G" uniqKey="Committeri G">G Committeri</name>
</author>
<author>
<name sortKey="Fattori, P" uniqKey="Fattori P">P Fattori</name>
</author>
<author>
<name sortKey="Galati, G" uniqKey="Galati G">G Galati</name>
</author>
<author>
<name sortKey="Patria, F" uniqKey="Patria F">F Patria</name>
</author>
<author>
<name sortKey="Galletti, C" uniqKey="Galletti C">C Galletti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prevosto, V" uniqKey="Prevosto V">V Prevosto</name>
</author>
<author>
<name sortKey="Graf, W" uniqKey="Graf W">W Graf</name>
</author>
<author>
<name sortKey="Ugolini, G" uniqKey="Ugolini G">G Ugolini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prodoehl, J" uniqKey="Prodoehl J">J Prodoehl</name>
</author>
<author>
<name sortKey="Corcos, Dm" uniqKey="Corcos D">DM Corcos</name>
</author>
<author>
<name sortKey="Vaillancourt, De" uniqKey="Vaillancourt D">DE Vaillancourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quaney, B" uniqKey="Quaney B">B Quaney</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
<author>
<name sortKey="Timberlake, G" uniqKey="Timberlake G">G Timberlake</name>
</author>
<author>
<name sortKey="Dodd, K" uniqKey="Dodd K">K Dodd</name>
</author>
<author>
<name sortKey="Carr, C" uniqKey="Carr C">C Carr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabe, K" uniqKey="Rabe K">K Rabe</name>
</author>
<author>
<name sortKey="Brandauer, B" uniqKey="Brandauer B">B Brandauer</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Gizewski, Er" uniqKey="Gizewski E">ER Gizewski</name>
</author>
<author>
<name sortKey="Timmann, D" uniqKey="Timmann D">D Timmann</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramayya, Ag" uniqKey="Ramayya A">AG Ramayya</name>
</author>
<author>
<name sortKey="Glasser, Mf" uniqKey="Glasser M">MF Glasser</name>
</author>
<author>
<name sortKey="Rilling, Jk" uniqKey="Rilling J">JK Rilling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randerath, J" uniqKey="Randerath J">J Randerath</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Goldenberg, G" uniqKey="Goldenberg G">G Goldenberg</name>
</author>
<author>
<name sortKey="Hermsdorfer, J" uniqKey="Hermsdorfer J">J Hermsdörfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raos, V" uniqKey="Raos V">V Raos</name>
</author>
<author>
<name sortKey="Umilta, Ma" uniqKey="Umilta M">MA Umilta</name>
</author>
<author>
<name sortKey="Murata, A" uniqKey="Murata A">A Murata</name>
</author>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
<author>
<name sortKey="Gallese, V" uniqKey="Gallese V">V Gallese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reilly, Kt" uniqKey="Reilly K">KT Reilly</name>
</author>
<author>
<name sortKey="Mercier, C" uniqKey="Mercier C">C Mercier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rice, Nj" uniqKey="Rice N">NJ Rice</name>
</author>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rice, Nj" uniqKey="Rice N">NJ Rice</name>
</author>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Cross, Es" uniqKey="Cross E">ES Cross</name>
</author>
<author>
<name sortKey="Grafton, S" uniqKey="Grafton S">S Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
<author>
<name sortKey="Gentilucci, M" uniqKey="Gentilucci M">M Gentilucci</name>
</author>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
<author>
<name sortKey="Matelli, M" uniqKey="Matelli M">M Matelli</name>
</author>
<author>
<name sortKey="Ponzoni Maggi, S" uniqKey="Ponzoni Maggi S">S Ponzoni-Maggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzolatti, Gm" uniqKey="Rizzolatti G">GM Rizzolatti</name>
</author>
<author>
<name sortKey="Gentilucci, L" uniqKey="Gentilucci L">L Gentilucci</name>
</author>
<author>
<name sortKey="Fogassi, G" uniqKey="Fogassi G">G Fogassi</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
<author>
<name sortKey="Matelli, M" uniqKey="Matelli M">M Matelli</name>
</author>
<author>
<name sortKey="Ponzoni Maggi, S" uniqKey="Ponzoni Maggi S">S Ponzoni-Maggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
<author>
<name sortKey="Gentilucci, M" uniqKey="Gentilucci M">M Gentilucci</name>
</author>
<author>
<name sortKey="Camarda, Rm" uniqKey="Camarda R">RM Camarda</name>
</author>
<author>
<name sortKey="Gallese, V" uniqKey="Gallese V">V Gallese</name>
</author>
<author>
<name sortKey="Luppino, G" uniqKey="Luppino G">G Luppino</name>
</author>
<author>
<name sortKey="Matelli, M" uniqKey="Matelli M">M Matelli</name>
</author>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenbaum, Da" uniqKey="Rosenbaum D">DA Rosenbaum</name>
</author>
<author>
<name sortKey="Vaughan, J" uniqKey="Vaughan J">J Vaughan</name>
</author>
<author>
<name sortKey="Barnes, Hj" uniqKey="Barnes H">HJ Barnes</name>
</author>
<author>
<name sortKey="Jorgensen, Mj" uniqKey="Jorgensen M">MJ Jorgensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenbaum, Da" uniqKey="Rosenbaum D">DA Rosenbaum</name>
</author>
<author>
<name sortKey="Meulenbroek, Rg" uniqKey="Meulenbroek R">RG Meulenbroek</name>
</author>
<author>
<name sortKey="Vaughan, J" uniqKey="Vaughan J">J Vaughan</name>
</author>
<author>
<name sortKey="Jansen, C" uniqKey="Jansen C">C Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rozzi, S" uniqKey="Rozzi S">S Rozzi</name>
</author>
<author>
<name sortKey="Ferrari, Pf" uniqKey="Ferrari P">PF Ferrari</name>
</author>
<author>
<name sortKey="Bonini, L" uniqKey="Bonini L">L Bonini</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
<author>
<name sortKey="Fogassi, L" uniqKey="Fogassi L">L Fogassi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rushworth, Mf" uniqKey="Rushworth M">MF Rushworth</name>
</author>
<author>
<name sortKey="Buckley, Mj" uniqKey="Buckley M">MJ Buckley</name>
</author>
<author>
<name sortKey="Behrens, Te" uniqKey="Behrens T">TE Behrens</name>
</author>
<author>
<name sortKey="Walton, Me" uniqKey="Walton M">ME Walton</name>
</author>
<author>
<name sortKey="Bannerman, Dm" uniqKey="Bannerman D">DM Bannerman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakata, H" uniqKey="Sakata H">H Sakata</name>
</author>
<author>
<name sortKey="Taira, M" uniqKey="Taira M">M Taira</name>
</author>
<author>
<name sortKey="Kusunoki, M" uniqKey="Kusunoki M">M Kusunoki</name>
</author>
<author>
<name sortKey="Murata, A" uniqKey="Murata A">A Murata</name>
</author>
<author>
<name sortKey="Tsutsui, K" uniqKey="Tsutsui K">K Tsutsui</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y Tanaka</name>
</author>
<author>
<name sortKey="Shein, Wn" uniqKey="Shein W">WN Shein</name>
</author>
<author>
<name sortKey="Miyashita, Y" uniqKey="Miyashita Y">Y Miyashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schabrun, Sm" uniqKey="Schabrun S">SM Schabrun</name>
</author>
<author>
<name sortKey="Ridding, Mc" uniqKey="Ridding M">MC Ridding</name>
</author>
<author>
<name sortKey="Miles, Ts" uniqKey="Miles T">TS Miles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidlin, E" uniqKey="Schmidlin E">E Schmidlin</name>
</author>
<author>
<name sortKey="Brochier, T" uniqKey="Brochier T">T Brochier</name>
</author>
<author>
<name sortKey="Maier, Ma" uniqKey="Maier M">MA Maier</name>
</author>
<author>
<name sortKey="Kirkwood, Pa" uniqKey="Kirkwood P">PA Kirkwood</name>
</author>
<author>
<name sortKey="Lemon, Rn" uniqKey="Lemon R">RN Lemon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shadmehr, R" uniqKey="Shadmehr R">R Shadmehr</name>
</author>
<author>
<name sortKey="Krakauer, Jw" uniqKey="Krakauer J">JW Krakauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smeets, Jb" uniqKey="Smeets J">JB Smeets</name>
</author>
<author>
<name sortKey="Brenner, E" uniqKey="Brenner E">E Brenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sommerville, Ja" uniqKey="Sommerville J">JA Sommerville</name>
</author>
<author>
<name sortKey="Hildebrand, Ea" uniqKey="Hildebrand E">EA Hildebrand</name>
</author>
<author>
<name sortKey="Crane, Cc" uniqKey="Crane C">CC Crane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soteropoulos, Ds" uniqKey="Soteropoulos D">DS Soteropoulos</name>
</author>
<author>
<name sortKey="Baker, Sn" uniqKey="Baker S">SN Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spinks, Rl" uniqKey="Spinks R">RL Spinks</name>
</author>
<author>
<name sortKey="Kraskov, A" uniqKey="Kraskov A">A Kraskov</name>
</author>
<author>
<name sortKey="Brochier, T" uniqKey="Brochier T">T Brochier</name>
</author>
<author>
<name sortKey="Umilta, Ma" uniqKey="Umilta M">MA Umilta</name>
</author>
<author>
<name sortKey="Lemon, Rn" uniqKey="Lemon R">RN Lemon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spraker, Mb" uniqKey="Spraker M">MB Spraker</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Corcos, Dm" uniqKey="Corcos D">DM Corcos</name>
</author>
<author>
<name sortKey="Vaillancourt, De" uniqKey="Vaillancourt D">DE Vaillancourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Srivastava, S" uniqKey="Srivastava S">S Srivastava</name>
</author>
<author>
<name sortKey="Orban, Ga" uniqKey="Orban G">GA Orban</name>
</author>
<author>
<name sortKey="Maziere, Pa" uniqKey="Maziere P">PA Mazière</name>
</author>
<author>
<name sortKey="Janssen, P" uniqKey="Janssen P">P Janssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, E" uniqKey="Stark E">E Stark</name>
</author>
<author>
<name sortKey="Abeles, M" uniqKey="Abeles M">M Abeles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, A" uniqKey="Stark A">A Stark</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, E" uniqKey="Stark E">E Stark</name>
</author>
<author>
<name sortKey="Asher, I" uniqKey="Asher I">I Asher</name>
</author>
<author>
<name sortKey="Abeles, M" uniqKey="Abeles M">M Abeles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, E" uniqKey="Stark E">E Stark</name>
</author>
<author>
<name sortKey="Drori, R" uniqKey="Drori R">R Drori</name>
</author>
<author>
<name sortKey="Asher, I" uniqKey="Asher I">I Asher</name>
</author>
<author>
<name sortKey="Ben Shaul, Y" uniqKey="Ben Shaul Y">Y Ben-Shaul</name>
</author>
<author>
<name sortKey="Abeles, M" uniqKey="Abeles M">M Abeles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stark, E" uniqKey="Stark E">E Stark</name>
</author>
<author>
<name sortKey="Globerson, A" uniqKey="Globerson A">A Globerson</name>
</author>
<author>
<name sortKey="Asher, I" uniqKey="Asher I">I Asher</name>
</author>
<author>
<name sortKey="Abeles, M" uniqKey="Abeles M">M Abeles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taira, M" uniqKey="Taira M">M Taira</name>
</author>
<author>
<name sortKey="Mine, S" uniqKey="Mine S">S Mine</name>
</author>
<author>
<name sortKey="Georgopoulos, Ap" uniqKey="Georgopoulos A">AP Georgopoulos</name>
</author>
<author>
<name sortKey="Murata, A" uniqKey="Murata A">A Murata</name>
</author>
<author>
<name sortKey="Sakata, H" uniqKey="Sakata H">H Sakata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Rice, Nj" uniqKey="Rice N">NJ Rice</name>
</author>
<author>
<name sortKey="Hamilton, A" uniqKey="Hamilton A">A Hamilton</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Ortigue, S" uniqKey="Ortigue S">S Ortigue</name>
</author>
<author>
<name sortKey="Adamovich, Sv" uniqKey="Adamovich S">SV Adamovich</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tunik, E" uniqKey="Tunik E">E Tunik</name>
</author>
<author>
<name sortKey="Houk, Jc" uniqKey="Houk J">JC Houk</name>
</author>
<author>
<name sortKey="Grafton, St" uniqKey="Grafton S">ST Grafton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umilta, Ma" uniqKey="Umilta M">MA Umilta</name>
</author>
<author>
<name sortKey="Brochier, T" uniqKey="Brochier T">T Brochier</name>
</author>
<author>
<name sortKey="Spinks, Rl" uniqKey="Spinks R">RL Spinks</name>
</author>
<author>
<name sortKey="Lemon, Rn" uniqKey="Lemon R">RN Lemon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umilta, Ma" uniqKey="Umilta M">MA Umiltà</name>
</author>
<author>
<name sortKey="Escola, L" uniqKey="Escola L">L Escola</name>
</author>
<author>
<name sortKey="Intskirveli, I" uniqKey="Intskirveli I">I Intskirveli</name>
</author>
<author>
<name sortKey="Grammont, F" uniqKey="Grammont F">F Grammont</name>
</author>
<author>
<name sortKey="Rochat, M" uniqKey="Rochat M">M Rochat</name>
</author>
<author>
<name sortKey="Caruana, F" uniqKey="Caruana F">F Caruana</name>
</author>
<author>
<name sortKey="Jezzini, A" uniqKey="Jezzini A">A Jezzini</name>
</author>
<author>
<name sortKey="Gallese, V" uniqKey="Gallese V">V Gallese</name>
</author>
<author>
<name sortKey="Rizzolatti, G" uniqKey="Rizzolatti G">G Rizzolatti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaillancourt, De" uniqKey="Vaillancourt D">DE Vaillancourt</name>
</author>
<author>
<name sortKey="Mayka, Ma" uniqKey="Mayka M">MA Mayka</name>
</author>
<author>
<name sortKey="Thulborn, Kr" uniqKey="Thulborn K">KR Thulborn</name>
</author>
<author>
<name sortKey="Corcos, Dm" uniqKey="Corcos D">DM Corcos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaillancourt, De" uniqKey="Vaillancourt D">DE Vaillancourt</name>
</author>
<author>
<name sortKey="Yu, H" uniqKey="Yu H">H Yu</name>
</author>
<author>
<name sortKey="Mayka, Ma" uniqKey="Mayka M">MA Mayka</name>
</author>
<author>
<name sortKey="Corcos, Dm" uniqKey="Corcos D">DM Corcos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vainio, L" uniqKey="Vainio L">L Vainio</name>
</author>
<author>
<name sortKey="Tucker, M" uniqKey="Tucker M">M Tucker</name>
</author>
<author>
<name sortKey="Ellis, R" uniqKey="Ellis R">R Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valyear, Kf" uniqKey="Valyear K">KF Valyear</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
<author>
<name sortKey="Sharif, N" uniqKey="Sharif N">N Sharif</name>
</author>
<author>
<name sortKey="Westwood, D" uniqKey="Westwood D">D Westwood</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valyear, Kf" uniqKey="Valyear K">KF Valyear</name>
</author>
<author>
<name sortKey="Cavina Pratesi, C" uniqKey="Cavina Pratesi C">C Cavina-Pratesi</name>
</author>
<author>
<name sortKey="Stiglick, Aj" uniqKey="Stiglick A">AJ Stiglick</name>
</author>
<author>
<name sortKey="Culham, Jc" uniqKey="Culham J">JC Culham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamp, C" uniqKey="Kamp C">C Kamp</name>
</author>
<author>
<name sortKey="Zaal, Ftjm" uniqKey="Zaal F">FTJM Zaal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verhagen, L" uniqKey="Verhagen L">L Verhagen</name>
</author>
<author>
<name sortKey="Dijkerman, Hc" uniqKey="Dijkerman H">HC Dijkerman</name>
</author>
<author>
<name sortKey="Grol, Mj" uniqKey="Grol M">MJ Grol</name>
</author>
<author>
<name sortKey="Toni, I" uniqKey="Toni I">I Toni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiss, Ph" uniqKey="Weiss P">PH Weiss</name>
</author>
<author>
<name sortKey="Dafotakis, M" uniqKey="Dafotakis M">M Dafotakis</name>
</author>
<author>
<name sortKey="Metten, L" uniqKey="Metten L">L Metten</name>
</author>
<author>
<name sortKey="Noth, J" uniqKey="Noth J">J Noth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitwell, Rl" uniqKey="Whitwell R">RL Whitwell</name>
</author>
<author>
<name sortKey="Lambert, Lm" uniqKey="Lambert L">LM Lambert</name>
</author>
<author>
<name sortKey="Goodale, Ma" uniqKey="Goodale M">MA Goodale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Ghahramani, Z" uniqKey="Ghahramani Z">Z Ghahramani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Goodbody, Sj" uniqKey="Goodbody S">SJ Goodbody</name>
</author>
<author>
<name sortKey="Husain, M" uniqKey="Husain M">M Husain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zatsiorsky, Vm" uniqKey="Zatsiorsky V">VM Zatsiorsky</name>
</author>
<author>
<name sortKey="Latash, Ml" uniqKey="Latash M">ML Latash</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Exp Brain Res</journal-id>
<journal-title-group>
<journal-title>Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale</journal-title>
</journal-title-group>
<issn pub-type="ppub">0014-4819</issn>
<issn pub-type="epub">1432-1106</issn>
<publisher>
<publisher-name>Springer-Verlag</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20532487</article-id>
<article-id pub-id-type="pmc">2903689</article-id>
<article-id pub-id-type="publisher-id">2315</article-id>
<article-id pub-id-type="doi">10.1007/s00221-010-2315-2</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The cognitive neuroscience of prehension: recent developments</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Grafton</surname>
<given-names>Scott T.</given-names>
</name>
<address>
<phone>+1-805-9755272</phone>
<fax>+1-805-8934303</fax>
<email>Grafton@psych.ucsb.edu</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">Department of Psychology, Sage Center for the Study of Mind, University of California at Santa Barbara, Santa Barbara, CA 93106 USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>8</day>
<month>6</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>8</day>
<month>6</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="ppub">
<month>8</month>
<year>2010</year>
</pub-date>
<volume>204</volume>
<issue>4</issue>
<fpage>475</fpage>
<lpage>491</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>12</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>22</day>
<month>5</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2010</copyright-statement>
</permissions>
<abstract>
<p>Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Prehension</kwd>
<kwd>Reach</kwd>
<kwd>Grasp</kwd>
<kwd>Action planning</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer-Verlag 2010</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec8">
<title>Introduction</title>
<p>Twenty-five years have passed since Marc Jeannerod used the simple behavior of grasping objects to create a model system for understanding goal-oriented action (Jeannerod
<xref ref-type="bibr" rid="CR80">1984</xref>
). By carefully documenting the detailed kinematics of a constrained yet ecologically robust behavior, his laboratory was able to decompose prehensile actions into fundamental components (Jeannerod
<xref ref-type="bibr" rid="CR81">1986</xref>
). Distinguishing components of an action such as reach, grasp and their primitives led to a conceptualization of action goals as cognitive representations. A key insight was that the underlying control processes were modular (Jeannerod
<xref ref-type="bibr" rid="CR84">1994b</xref>
). The modularity was supported by lesion studies in patients demonstrating double dissociations between object perception and action with objects, foreshadowing the coming revolution in cognitive neuroscience (Jeannerod
<xref ref-type="bibr" rid="CR82">1988</xref>
,
<xref ref-type="bibr" rid="CR83">1994a</xref>
). Within only a few years, Jeannerod’s ideas led to the characterization of a putative neural architecture of how the brain implements prehension based on a synthesis of behavior, physiology, anatomy and computational developments (Jeannerod et al.
<xref ref-type="bibr" rid="CR85">1995</xref>
). This architecture continues to be sustained and improved by a flood of experimental evidence, with over 50 new publications each year on the cognitive neuroscience of prehension. This review focuses on the leading edge of this flood, examining how recent experimental evidence from just the past few years has enhanced or modified how we might conceptualize prehension from a cognitive perspective, sensitive to evidence of how prehension is instantiated at a neural level. As such, the review serves as an “update” limited to recent results, rather than as a historic or detailed review as others have recently done (Castiello
<xref ref-type="bibr" rid="CR31">2005</xref>
; Tunik et al.
<xref ref-type="bibr" rid="CR154">2007</xref>
; Castiello and Begliomini
<xref ref-type="bibr" rid="CR32">2008</xref>
). Emphasis is placed on studies of reach and grasp, rather than all goal-oriented behavior, and on methods drawn from cognitive neuroscience. From this, it is possible to identify some points of opportunity, where data is sparse and uncertainty high. The review begins with a consideration of how precision grasps are selected and transformed into motor commands within premotor networks. Then, the complement to this is pursued. How is action relevant information generated from vision or the touch of an object? While there is overwhelming evidence for two visual streams for processing grasp relevant objects and it is possible to continue doing experiments dissociating these streams, the new excitement is in determining how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. The on-line control of grasping action is then considered within a state estimation framework that can accommodate a wealth of new behavioral results that accentuate the critical role of haptics in prehension. An additional development is the recognition that state estimation includes the maintenance of a desired goal and this in turn affects how internal models of objects, grip and load forces are used. The sections close with speculations about what constitutes an action goal and how they might be represented in the brain.</p>
</sec>
<sec id="Sec1">
<title>Action vocabularies</title>
<p>Humans and monkeys are capable of an extraordinary range of possible solutions for grasping (Macfarlane and Graziano
<xref ref-type="bibr" rid="CR99">2009</xref>
). Many theories that consider how the brain can create such a vast repertoire propose that the nervous system retrieves knowledge or programs about prototype grasping actions and use these to generate anticipatory motor commands (For early physiological evidence see Rizzolatti et al.
<xref ref-type="bibr" rid="CR130">1987a</xref>
,
<xref ref-type="bibr" rid="CR132">1990</xref>
). There may be a vocabulary for actions that provides a basis set that could be combined to approximate the full range of grasp behaviors. Some of the behavioral approaches to test this hypothesis are to determine what the content of an action vocabulary is, what the selection processes are within this vocabulary and how elements of a vocabulary are implemented as actual motor commands. This last step can be viewed as a transformation process from high- to low-level goals that are ultimately expressed primarily in motor cortex.</p>
<p>In precision grasping, a detailed vocabulary is needed to shape a multifinger, roughly prismatic shaped, opposition space to match an object’s shape (Ansuini et al.
<xref ref-type="bibr" rid="CR3">2006</xref>
) and with an appropriate distribution of desired multidigit forces (for review, see Zatsiorsky and Latash
<xref ref-type="bibr" rid="CR171">2008</xref>
). A classic approach for modeling this process is to model the thumb and fingers as double pointing actuators (Smeets and Brenner
<xref ref-type="bibr" rid="CR142">2001</xref>
). However, recent studies raise doubts whether this type of opposition space is sufficient (van de Kamp and Zaal
<xref ref-type="bibr" rid="CR164">2007</xref>
). Fingers need to do a lot more than just point to particular locations if they are to achieve sufficient dexterity for handling objects. Any action vocabulary must reflect additional task requirements, such as matching to object shape, generating an appropriate grip force and possibly even scaling lift forces. Evidence that these additional features are part of an action vocabulary can be demonstrated by showing they are anticipatory. They emerge behaviorally during transport toward an object or at initial contact with an object prior to on-line manipulation. There is clear evidence that finger preshaping is anticipatory and appears during the reach phase to a single object. Critically, as the goal of the task changes, so does the finger shaping, prior to object contact, establishing that anticipation reflects not only the object, but the action goal (Ansuini et al.
<xref ref-type="bibr" rid="CR5">2008</xref>
). Even proximal arm muscles will show EMG changes consistent with anticipatory feedforward planning that is object specific (Martelloni et al.
<xref ref-type="bibr" rid="CR102">2009</xref>
). Another anticipatory component that may be part of an action vocabulary is grip force scaling. This is nicely demonstrated in deafferented patients, who lack proprioceptive sensory input. They are able to generate appropriate grip force scaling with familiar objects during precision grasping (Hermsdörfer et al.
<xref ref-type="bibr" rid="CR75">2008</xref>
). Indirect evidence for at least a modest influence of cortical input to grip force knowledge can be inferred from patients with middle cerebral artery stroke. They show a very mild loss of anticipatory grip force control, even ipsilateral to the lesion (Quaney et al.
<xref ref-type="bibr" rid="CR121">2009</xref>
). Patients with cerebellar agenesis or other pathology show preserved size-force coupling, suggesting that the cerebellum is not needed for action selection (Rabe et al.
<xref ref-type="bibr" rid="CR122">2009</xref>
).</p>
<p>Another important system that could possibly play a direct role in grasp selection or planning is the basal ganglia (BG). There is overwhelming fMRI and PET evidence for the BG to be involved in force scaling across a range of tasks (for detailed review, see Prodoehl et al.
<xref ref-type="bibr" rid="CR120">2009</xref>
). Some of this may be related to on-line control of force or force pulses during each movement (Vaillancourt et al.
<xref ref-type="bibr" rid="CR159">2004</xref>
,
<xref ref-type="bibr" rid="CR160">2007</xref>
; Spraker et al.
<xref ref-type="bibr" rid="CR146">2007</xref>
; Tunik et al.
<xref ref-type="bibr" rid="CR156">2009</xref>
). In patients with degeneration of the BG due to Parkinson’s or Huntington’s disease, there can be marked abnormalities of force/load coupling, high variability in static force and higher than needed grip forces (Prodoehl et al.
<xref ref-type="bibr" rid="CR120">2009</xref>
). Of note, anticipatory grip force scaling can be preserved in Parkinson’s disease, suggesting that the selection of grip force at the time of initial movement planning is a cortico-cortical process that is not basal ganglia dependent (Weiss et al.
<xref ref-type="bibr" rid="CR166">2009</xref>
). An alternative hypothesis is that the basal ganglia are needed for the formation of experience-dependent short-term sensorimotor memories. Object knowledge acquired in one trial could then be used in the planning of the next trial, as has been shown recently (Weiss et al.
<xref ref-type="bibr" rid="CR166">2009</xref>
). This short-range adaptation might require a reward-based learning mechanism tied to the context or motor goal (for review, see Shadmehr and Krakauer
<xref ref-type="bibr" rid="CR140">2008</xref>
; Shadmehr et al.
<xref ref-type="bibr" rid="CR141">2010</xref>
).</p>
<p>Returning to this problem of selecting among possible actions, if an action vocabulary consists of distinct elements, then choosing among them might be subject to interference by distracters. This is observed behaviorally, where flanker objects will slow the reach, increase finger abduction and alter thumb flexion. However, the individual fingers do not shape into a new pattern that matches the specific shape of the distracters (Ansuini et al.
<xref ref-type="bibr" rid="CR4">2007</xref>
). This could be because the distracters add noise to the selection process or a default grasp of lower specificity is chosen. Another experimental strategy for understanding the content of stored action representations is to identify conditions that constrain what can be selected or anticipated in advance. What information is not stored by the nervous system in anticipatory planning? This has been tested in behavioral transfer studies, where the overall gain of finger forces for a familiar object is readily transferred between hands, but individuated finger grip and lift forces needed to control object dynamics are not transferred (Albert et al.
<xref ref-type="bibr" rid="CR1">2009</xref>
). Even explicit knowledge about an object does not improve on this limitation (Lukos et al.
<xref ref-type="bibr" rid="CR98">2008</xref>
). Rather, individuated grip and lift (as opposed to initial grasp) requires direct on-line experience with the object.</p>
<p>To be useful, an action vocabulary needs to learn from prior experience for generalization to new actions. Are there features of an object that are particularly influential in determining grip selection on future trials? Grasp memory is strongly influenced by object size, which sets a strong constraint on expected weight (Cole
<xref ref-type="bibr" rid="CR43">2008</xref>
). Density also has a significant albeit weaker influence. A putative action vocabulary that involves memory for grip force scaling can be disrupted by causing transcranial magnetic stimulation (TMS)-induced virtual lesions of the ventral premotor cortex during object exposure (Dafotakis et al.
<xref ref-type="bibr" rid="CR47">2008</xref>
).</p>
</sec>
<sec id="Sec2">
<title>From goals to movements</title>
<p>It has long been known that grasp-related information is represented by single neurons, particularly in the posterior part of area F5 of ventral premotor cortex in monkey (Rizzolatti et al.
<xref ref-type="bibr" rid="CR131">1987b</xref>
). These “canonical” neurons respond to many aspects of a grasp action including high-level action goals, consistent with the presence of a motor vocabulary. In remarkable new work in monkeys, it was shown that multiunit activity recorded in ventral premotor cortex (and also in dorsal premotor cortex) is very accurate (89%) at predicting the current grasp action. This level of accuracy was not observed at the single neuron level or with local field potentials, suggesting that small-sized networks may be particularly important for generating a particular grasping action (Stark and Abeles
<xref ref-type="bibr" rid="CR148">2007</xref>
; Stark et al.
<xref ref-type="bibr" rid="CR150">2007a</xref>
).</p>
<p>At some point during motor planning, a particular set of motor commands must be generated, based on higher-level representations that define an action goal. While it is possible that motor planning areas such as ventral premotor cortex (PMv) or dorsal premotor cortex (PMd) could do this directly by shaping activity of spinal cord motor neurons, recent studies show that direct spinal-motor connections are quite sparse, supporting a view that planning areas shape behavior elsewhere (Boudrias et al.
<xref ref-type="bibr" rid="CR22">2009</xref>
). Growing evidence shows that motor cortex is the critical final common influence on spinal cord. This is supported by studies that reversibly inactivate motor cortex in monkeys. In this condition, there is a pronounced loss of digit responses induced by microstimulation of PMv (Schmidlin et al.
<xref ref-type="bibr" rid="CR139">2008</xref>
). In other words, the PMv influence on finger shaping is through interactions with motor cortex (for review, see Chouinard
<xref ref-type="bibr" rid="CR39">2006</xref>
). Tight functional coupling between PMv and motor cortex can be demonstrated by applying a TMS conditioning stimulus to human PMv and then measuring the effect on the motor evoked potential (MEP) generated by second TMS pulse applied to motor cortex 6–8 ms later. During a precision grasp, this will facilitate an MEP response, whereas at rest it will actually inhibit the MEP response from motor cortex (Davare et al.
<xref ref-type="bibr" rid="CR49">2008</xref>
). Interestingly, power grip had no effect on the MEP, suggesting that PMv–motor cortex interaction is not required for this more basic type of grasp. A related TMS virtual lesion study shows that the information passed between PMv and motor cortex includes the sequential recruitment of appropriate hand muscles (Davare et al.
<xref ref-type="bibr" rid="CR48">2006</xref>
).</p>
<p>Object properties also appear to play a major role in determining motor selection within PMv. But is it the object identity that is important or the physical properties of the object that constrain grasp selection? Many studies support the latter interpretation. In a double-pulse TMS experiment, the preconditioning stimulus to PMv modified the MEPs in motor cortex as a function of object geometry. This shows that PMv processes key object properties that are then implemented through motor cortex (Davare et al.
<xref ref-type="bibr" rid="CR50">2009</xref>
). In fMRI studies performed in monkeys, the ventral premotor cortex is responsive to 3-D features of objects, suggesting that grasp relevant object information forms part of a shared representation in this area (Joly et al.
<xref ref-type="bibr" rid="CR87">2009</xref>
). Consistent with this interpretation, direct recordings within monkey PMv show non-selective, increasing local field potentials during object viewing that become selective during the grasp and hold phase of a precision grasp task (Spinks et al.
<xref ref-type="bibr" rid="CR145">2008</xref>
). In a single neuronal recording study comparing response properties between area F5, a component of ventral premotor cortex and motor cortex, neurons in F5 show object tuning properties that become more selective earlier than motor cortex (Umilta et al.
<xref ref-type="bibr" rid="CR157">2007</xref>
). Human fMRI adaptation studies that show that PMv adapts to repeated exposure to a particular grasping axis, but not to a particular object (Kroliczak et al.
<xref ref-type="bibr" rid="CR94">2008</xref>
). In other words, PMv is more closely linked to the specific motor solutions tied to an object than an object per se. This is further amplified in the studies of size weight illusions or contrasts. For example, in a human fMRI study of object grasping and lifting, there was fMRI adaptation in PMv with repeated exposures to objects of same density (Chouinard et al.
<xref ref-type="bibr" rid="CR41">2009</xref>
). Density estimation is essential for determining the initial grip and lift forces.</p>
<p>While PMv has been associated with selection of specific grip postures (Raos et al.
<xref ref-type="bibr" rid="CR125">2006</xref>
), prehension also requires integration of reach and grasp. A focus on just grasp-related activity at the single neuron level provides an incomplete measure of what may be planned in PMv. Ventral premotor cortex contains neurons that are specific for either reach direction or grasp type, and these are highly intermixed with any selectivity for proximal and distal movements (Stark et al.
<xref ref-type="bibr" rid="CR150">2007a</xref>
). This is consistent with a mosaic-like topological model where grasp/reach functions and joint/body are intertwined, allowing for enormous combinatorial variation. Multiunit activity in PMv that considers both reach and grasp selective activity can be used as a very strong predictor of prehension, demonstrating the emergence of composite representations between reach and grasp (Stark et al.
<xref ref-type="bibr" rid="CR152">2008</xref>
). It remains to be seen whether the differential distributions between proximal–distal and reach-grasp neurons within premotor areas could provide an anatomic substrate for the adaptive strategies used in patients with stroke and hemi-cerebral palsy. In general, there is increased reliance of proximal musculature in reach-grasp tasks (Domellöf et al.
<xref ref-type="bibr" rid="CR56">2009</xref>
).</p>
<p>The role of PMd in precision grasping is far less understood than what has been mapped in PMv. Functional comparisons of single neurons in PMv and PMd during precision grasping are rare. Like PMv, dorsal premotor cortex contains neurons that are specific for either reach direction or grasp type (Stark et al.
<xref ref-type="bibr" rid="CR150">2007a</xref>
). PMd neurons modulate in relationship to object identify as well as object size (independent of object vision). Grasp forces are specifically manipulated and modulated in a small percentage of PMd neurons (Hendrix et al.
<xref ref-type="bibr" rid="CR74">2009</xref>
). PMd also demonstrates composite representations for reach and grasp based on analysis of multiunit activity in monkeys (Stark et al.
<xref ref-type="bibr" rid="CR152">2008</xref>
). Virtual lesions of PMd in humans will disrupt the coupling of grasp and lift (Davare et al.
<xref ref-type="bibr" rid="CR48">2006</xref>
). An important distinguishing feature between PMd and PMv is that the former may play a stronger role in associating symbolic features with object properties. TMS to PMd in humans will disrupt the ability to associate object mass with symbolic information, reflected in abnormal lift forces (Nowak et al.
<xref ref-type="bibr" rid="CR115">2009a</xref>
).</p>
<p>In considering the role of motor cortex in prehension more closely, there is accumulating evidence that different neurons in motor cortex capture different parameters of movement in a precision grasping task, and it is the population encoding across this multidimensional space that enables complex behavior (Stark et al.
<xref ref-type="bibr" rid="CR151">2007b</xref>
). Action goals appear to influence response properties across all levels of the motor system including motor cortex. TMS-induced MEPs at motor cortex will vary depending on whether a goal is present or not, demonstrating a remarkable flexibility in the degree to which context will shape the output structure of motor cortex (Cattaneo et al.
<xref ref-type="bibr" rid="CR33">2009</xref>
). In another study, the size of the MEP evoked map of the first dorsal interosseus over motor cortex did not differ for a five or two finger precision grasp (Reilly and Mercier
<xref ref-type="bibr" rid="CR126">2008</xref>
). One interpretation of these findings is that the action goal and underlying map in motor cortex for controlling the grasp are closely related. This close connection may be important for designing optimal therapies to accelerate recovery after stroke. Rather than focusing on elemental movements, there might be better recovery with therapies involving goal-directed behavior. In support of this idea, in a recent animal experiment, a lesion to motor cortex reduced individuated finger movements needed for precision grasping. Dexterity in these animals recovers better with 1 h/day of goal-directed prehensile training (Murata et al.
<xref ref-type="bibr" rid="CR109">2008</xref>
).</p>
</sec>
<sec id="Sec3">
<title>Action initiation</title>
<p>Neural systems are required to control the initiation of a precision grasp in relationship to the actor’s needs, motivation and desires. Traditionally, the mesial wall premotor areas have been associated with the initiation of internally generated actions (Kermadi et al.
<xref ref-type="bibr" rid="CR91">1997</xref>
; Deiber et al.
<xref ref-type="bibr" rid="CR52">1999</xref>
). Intraoperative cortical stimulation of mesial wall areas including pre-supplementary motor area and anterior cingulate motor area (CMA) in patients with epilepsy can induce automatic reach and grasp movements (Chassagnon et al.
<xref ref-type="bibr" rid="CR37">2008</xref>
). These areas do not have strong direct connections to spinal motor circuits (Boudrias et al.
<xref ref-type="bibr" rid="CR21">2010</xref>
) and act on movement indirectly. Thus, the effect of stimulation might reflect a “release” of reach- and grasp-specific motor programs stored in other areas including PMv. The processes that select and initiate actions are likely to be embedded in larger-scale circuits that can estimate relative values of alternative behaviors, costs of different behaviors and confidence that an action can be achieved successfully (reviewed in Rushworth et al.
<xref ref-type="bibr" rid="CR136">2007</xref>
).</p>
</sec>
<sec id="Sec4">
<title>Two dorsal pathways for grasping</title>
<p>The concept of distinct dorsal and ventral visual streams for processing visual information is well accepted, with ventral temporal and occipital cortex essential to semantic object identification and dorsal occipital and parietal cortex critical for physical interaction with objects (Goodale et al.
<xref ref-type="bibr" rid="CR71">1991</xref>
; Milner and Goodale
<xref ref-type="bibr" rid="CR106">1995</xref>
). The distinctions are nicely captured in a recent fMRI study that showed greater activity in lateral occipital cortex (LOC) of the ventral stream when an object was part of a perceptual task and in the dorsal stream area AIP when the same object was grasped (Cavina-Pratesi et al.
<xref ref-type="bibr" rid="CR34">2007</xref>
). Differences were also shown in another functional imaging study using repetition suppression that dissociated ventral and dorsal streams based on object identify and orientation (Valyear et al.
<xref ref-type="bibr" rid="CR162">2006</xref>
). The separation of the streams appears to take place close to visual cortex. Lesion localization analysis in a well-characterized patient demonstrate that a lesion located in medial occipital/fusiform/lingual gyri is sufficient to cause visual agnosia with preserved visually guided grasping (Karnath et al.
<xref ref-type="bibr" rid="CR88">2009</xref>
).</p>
<p>While the ventral–dorsal stream dichotomy is a useful starting point, it is becoming increasingly apparent that there is more to the story, particularly within parietal cortex (for recent review, see Creem-Regehr
<xref ref-type="bibr" rid="CR46">2009</xref>
). Functional imaging provides a way to survey the entire cortex to identify putative areas involved in reach and grasp. High-resolution 2-deoxyglucose radiography of the brain in monkeys performing reach-to-grasp tasks demonstrates the involvement of AIP, MIP, LIP, VIP, PF, PFG, PG, V6, V6Ad, PGm7 and superior parietal lobule (Evangeliou et al.
<xref ref-type="bibr" rid="CR59">2009</xref>
). This widespread recruitment is also observed in vivo with blood flow studies of awake primates performing a reach-to-grasp task (Nishimura et al.
<xref ref-type="bibr" rid="CR110">2007</xref>
). In other words, almost all subsectors of parietal cortex show some level of involvement in prehension. Similar broad recruitment is found in human fMRI studies. How can this plethora of brain areas, schematized in Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
, be broken into functionally relevant sub-networks? It is increasingly recognized that prehension is supported by two parallel networks in parietal cortex (for reviews, see Johnson and Grafton
<xref ref-type="bibr" rid="CR86">2003</xref>
; Rizzolatti and Matelli
<xref ref-type="bibr" rid="CR129">2003</xref>
). The classic pathway between ventral premotor cortex (F5) and AIP forms one key inferior parietal network, with AIP forming a critical hub that is closely coupled to the adjacent inferior parietal lobule, particularly cortical areas SII and PFG. The second network, discussed in detail later, contains a hub organized around area V6A in the medial wall of parietal cortex, with strong connections to MIP and PMd. The inferior parietal network has neurons that are very similar to those in area F5 in being active during execution of goal based natural actions (Bonini et al.
<xref ref-type="bibr" rid="CR15">2010</xref>
). Indeed, there is increasing evidence for widespread goal-related activity across IPL with some evidence for somatotopic organization (PF mouth, PFG hand, PG arm) (Rozzi et al.
<xref ref-type="bibr" rid="CR135">2008</xref>
). In humans, there is some evidence that this inferior parietal network is lateralized to the left. While AIP activity is mainly contralateral to the hand used for grasping, there is some leftward asymmetry of parietal cortex that is more apparent in right handers (Begliomini et al.
<xref ref-type="bibr" rid="CR13">2008</xref>
; Stark and Zohary
<xref ref-type="bibr" rid="CR149">2008</xref>
). AIP projects strongly to ventral premotor area F5, and new data establishes there are prefrontal areas connections to areas 46 and 12 (Borra et al.
<xref ref-type="bibr" rid="CR16">2008</xref>
).
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Anatomic connections of areas V6A and AIP based on tract tracing in non-human primates. These are hubs that define superior and inferior networks within the parietal cortex. The superior network has strong connections to superior parietal lobule and dorsal premotor cortex. The inferior network has strong connections with temporal cortex, SII and the posterior portion of area F5. Anatomic labeling is approximate</p>
</caption>
<graphic xlink:href="221_2010_2315_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p>The parietal cortex in the region of area AIP has long been known to contain neurons intimately involved in object grasping (Taira et al.
<xref ref-type="bibr" rid="CR153">1990</xref>
). One of the most important new developments in characterizing the inferior parietal network, including area AIP, is the role of stereoscopic vision. Stereoscopic vision, while not essential, leads to faster more accurate grasping. Behavioral experiments comparing monocular and binocular vision during grasp have historically been inconsistent on this point, in part because of the use of small sample sets, in which subjects could more easily remember object attributes. Differences between binocular and monocular vision on grasp precision emerge with larger object sets and are also apparent in persons with long-standing monocular vision, who show a prolongation of the time for the fingers to make final contact around an object (Keefe and Watt
<xref ref-type="bibr" rid="CR89">2009</xref>
; Melmoth et al.
<xref ref-type="bibr" rid="CR105">2009</xref>
). Stereoscopic vision is more important for grasping than pointing (i.e., placing objects), suggesting that there should be a high prevalence of neurons sensitive to binocular rivalry in grasp-related parietal cortex, particularly AIP (Greenwald and Knill
<xref ref-type="bibr" rid="CR72">2009</xref>
). Recent studies replicate and extend early experiments demonstrating that there are neurons in AIP sensitive to stereoscopic features of an object with depth, shape and curvature sensitivity similar to what was originally defined in area TE of inferior temporal cortex. In both areas, the sensitivity is preserved across position in depth and position in the fronto-parallel plane, with maximal selectivity when the stimulus is at the fixation point (Sakata et al.
<xref ref-type="bibr" rid="CR137">1999</xref>
; Durand et al.
<xref ref-type="bibr" rid="CR57">2007</xref>
; Srivastava et al.
<xref ref-type="bibr" rid="CR147">2009</xref>
). The two areas differ in terms of latency, sensitivity to disparity and tuning to object curvature (Srivastava et al.
<xref ref-type="bibr" rid="CR147">2009</xref>
). AIP neurons are less sensitive to sharp edges and show strong monotonic tuning to curvature. The findings suggest that TE neurons are more categorical in their selectivity, whereas AIP neurons are selective to metric properties of a 3D shape. Evidence for 3D shape processing is also captured in fMRI studies of awake behaving macaque monkeys. There is sensitivity to object depth disparity in temporal cortex (area TE) and AIP as well as a premotor area F5A (Joly et al.
<xref ref-type="bibr" rid="CR87">2009</xref>
). In humans, fMRI activity in AIP increases as the grasp precision increases (Begliomini et al.
<xref ref-type="bibr" rid="CR12">2007</xref>
), perhaps because there is increased processing of grasp-relevant object features. Alternatively, this could be due to increased on-line control necessary for higher precision movements. In another fMRI study, object-viewing conditions (monocular vs. binocular, object orientation) were manipulated during grasping. Both LOC and AIP showed increasing activity and also functional connectivity when subjects had to use monocular vision and with steeper slant angle of the object, making grasp more difficult (Verhagen et al.
<xref ref-type="bibr" rid="CR165">2008</xref>
).</p>
<p>Haptic or visual information converge in the inferior network of the dorsal stream and are used to develop grasp relevant information about objects. When reaching to grasp within virtual environments, it is possible to look at the relative contribution of haptic or visual knowledge on grasp planning in subsequent trials. In this setting, visual information describing an object’s features dominates future behavior, with incompatible haptic feedback having little influence on future grasps (Lee et al.
<xref ref-type="bibr" rid="CR97">2008</xref>
). TMS disruption studies also suggest that visual and tactile information are not processed equivalently in the inferior network. To test this, area AIP was disrupted with low-frequency rTMS during the tactile or visual encoding of an object, followed by tactile or visual recognition (Buelte et al.
<xref ref-type="bibr" rid="CR26">2008</xref>
). During the manipulation of objects with the right hand, rTMS over the left anterior intraparietal sulcus (IPS), the putative homolog of monkey area AIP, induced a significant deterioration for visual encoding and tactile recognition, but not for tactile encoding and visual recognition.</p>
<p>The second key parietal network is organized around area V6A in the medial wall of the posterior parietal cortex. The dorsal most portion of V6A has strong anatomic connections to superior parietal lobule, particularly area MIP, and to dorsal premotor cortex, as shown in Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
. It also interconnects with AIP, LIP and VIP, as well as MST, underscoring the relative inter-connections throughout parietal cortex (Gamberini et al.
<xref ref-type="bibr" rid="CR66">2009</xref>
). The superior parietal network was traditionally viewed as a reach-related system. A more precise functional description of the superior parietal network is that it is essential for integrating reaching requirements with a goal-directed grasp. This new interpretation is based on several lines of evidence. The first is the fact that the cortex in the area of V6A has object-sensitive properties. In fMRI, this region is active when graspable objects are present (Maratos et al.
<xref ref-type="bibr" rid="CR100">2007</xref>
). When there are multiple objects present, this region is more involved in their individuation, rather than their identification (Xu
<xref ref-type="bibr" rid="CR170">2009</xref>
). Increasing the number of object distracters during grasping tasks increases activity in this region. This is likely related to either increased aiming requirements or individuation processes (Chapman et al.
<xref ref-type="bibr" rid="CR36">2007</xref>
).</p>
<p>Further support that the superior parietal network is more than just a reach-related system is based on studies that specifically manipulate grasping. In single neuronal recordings in the area V6A of monkeys identify neurons that are sensitive to reach direction as well as grip orientation (Fattori et al.
<xref ref-type="bibr" rid="CR60">2009</xref>
) and hand preshaping (Fattori et al.
<xref ref-type="bibr" rid="CR61">2010</xref>
). In human fMRI grasp studies, both V6 and PMd are active during grasp planning and sensitive to the angle of the object to be grasped and are insensitive to monocular or binocular viewing (Verhagen et al.
<xref ref-type="bibr" rid="CR165">2008</xref>
) The V6A area is also more active when targets are within reach (Gallivan et al.
<xref ref-type="bibr" rid="CR65">2009</xref>
). The area is closely connected to area MST and has motion-sensitive properties as well, perhaps allowing for joint coding of self and target motion (Pitzalis et al.
<xref ref-type="bibr" rid="CR118">2010</xref>
). From this, it can be speculated that the superior parietal network may also be important for grasping during motion, as when a monkey swings from branch to branch.</p>
<p>Unlike the inferior parietal network, response laterality in the superior network (including V6A and caudal IPS) is driven by target location (Stark and Zohary
<xref ref-type="bibr" rid="CR149">2008</xref>
). Receptive fields in V6A are broadly tuned and uninfluenced by stereoscopic vision, consistent with a role for grasping to peripherally placed targets. In human psychophysics experiments, restriction of peripheral vision in normal subjects will reduce performance for both planning and to a lesser degree execution of grasps (González-Alvarez et al.
<xref ref-type="bibr" rid="CR70">2007</xref>
). This could be due to reduced information passing through this superior parietal network. Damage of this network should lead to not only misreaching in the periphery but also errors in grasping that also require reaching. This idea is supported by behavioral experiments in optic ataxia patients, who show grip timing errors with respect to the reach but no grip error when there is minimal reach needed in the task (Cavina-Pratesi et al.
<xref ref-type="bibr" rid="CR35">2010</xref>
). In the latter case, the inferior parietal network is presumably intact for forming grip aperture independent of reach.</p>
<p>One uncharted functional territory that is ripe for study is the role of eye movements in grasp control. There is emerging behavioral evidence that saccades can be closely coupled to aspects of grasping and increase grasp precision. The eyes do not just look at the center of mass of objects but tend toward the index finger (Brouwer et al.
<xref ref-type="bibr" rid="CR24">2009</xref>
). They will also look toward occluded portions of target objects that the index finger will contact (de Grave et al.
<xref ref-type="bibr" rid="CR51">2008</xref>
). But how is this achieved? Somehow, the location of object features must be getting passed to gaze-related areas of cortex. Neurons in gaze-related regions such as area LIP do respond to 2-D objects, albeit with a complicated influence on receptive field properties (Janssen et al.
<xref ref-type="bibr" rid="CR79">2008</xref>
). Direct comparisons of fMRI responses during saccade and prehension tasks are mainly notable for the degree of common recruitment in parietal regions with very few parietal areas showing preferential activation for one task or the other (Hinkley et al.
<xref ref-type="bibr" rid="CR76">2009</xref>
). This may be because the tasks share many functional operations and that classic cognitive subtraction may not be the best way to map parietal function with fMRI. New fMRI sampling such as repetition suppression (Epstein et al.
<xref ref-type="bibr" rid="CR58">2008</xref>
) or analysis with multivoxel pattern classification (Haynes and Rees
<xref ref-type="bibr" rid="CR73">2006</xref>
) may become more effective at identifying these interactions between gaze and grasp.</p>
</sec>
<sec id="Sec5">
<title>Connections between dorsal and ventral streams</title>
<p>One of the more intractable problems for the next decade will be to understand how information is shared between the dorsal and ventral streams to achieve common task goals. Significant advance has already emerged from anatomic tract tracing studies. A key discovery was the identification of strong, direct connections between the two perceptual streams. For example, area AIP in the monkey has strong connections with areas in the ventral stream, including the lower bank of the superior temporal sulcus in the region of areas TEa/TEm and the middle temporal gyrus (Borra et al.
<xref ref-type="bibr" rid="CR16">2008</xref>
). Area TE also has strong projections to area 45B in prefrontal cortex (Borra et al.
<xref ref-type="bibr" rid="CR17">2010</xref>
; Gerbella et al.
<xref ref-type="bibr" rid="CR69">2010</xref>
). Connections between the dorsal and ventral streams are also being identified in human diffusion tensor imaging (DTI) maps of white matter tracts. Here too, there is a significant connection between posterior middle temporal gyrus and anterior IPL and posterior middle temporal gyrus with both anterior and posterior IPL. Furthermore, these connections are stronger in the left hemisphere and may provide some of the scaffolding for grasping-related behavior, particularly when involving tools (Ramayya et al.
<xref ref-type="bibr" rid="CR123">2010</xref>
) or accessing semantic knowledge about objects (for review, see Noppeney
<xref ref-type="bibr" rid="CR111">2008</xref>
).</p>
<p>Imaging studies are beginning to identify object features decoded in ventral stream that might influence grasp planning. Using repetition suppression, one study showed that the ventral stream is sensitive to not only high-level object identification but also to lower-level object properties including size or color and to a lesser degree weight and density (Chouinard et al.
<xref ref-type="bibr" rid="CR40">2008</xref>
,
<xref ref-type="bibr" rid="CR41">2009</xref>
). Grip selection is strongly biased toward superficial object features such as shape and less so for features such as density that require some prior knowledge about an object (Cole
<xref ref-type="bibr" rid="CR43">2008</xref>
). The implication is that object identity information, decoded in ventral stream, might provide a way to access prior knowledge about an everyday object’s expected properties and hence influence grasp planning. That said, it remains to be determined which aspects of an object that are defined from prior experience influence grasp planning and which features of an object are mostly managed on-line during object manipulation.</p>
<p>Another way to test how object knowledge in the ventral pathway might influence grasp planning in the dorsal stream is to look for performance deficits in patients with ventral pathway lesions. On simple testing, visual agnostic patients classically demonstrate preserved hand orientation (e.g., orienting the hand when posting a letter in a mail slot) and form normal grip apertures that match an object’s geometric properties, suggesting that the ventral stream is not needed for basic grasp planning (Goodale et al.
<xref ref-type="bibr" rid="CR71">1991</xref>
). However, in natural conditions when real objects such as tools are grasped, additional decisions must be made including whether to use an under- or overhand grip (Rosenbaum et al.
<xref ref-type="bibr" rid="CR133">1992</xref>
). These decisions are determined both by end-state comfort effects and task goals that place higher demands on object knowledge. With visual agnostics, the choice of grip selection (over or underhand) is far less consistent than in normal subjects, although the lower-level kinematics such as grip sizing are normal (Dijkerman et al.
<xref ref-type="bibr" rid="CR55">2009</xref>
).</p>
<p>Ventral and dorsal streams might also interact through memory. It has been proposed that memory buffers in dorsal stream are very limited (Milner et al.
<xref ref-type="bibr" rid="CR107">2003</xref>
). Once an object is no longer visible, the ventral stream may be required to maintain relevant information about the object if it is to be grasped in the dark. This has been tested with visual illusions, based on the assumption that illusion effects are mediated via ventral stream and grasps planned in dorsal stream are immune to illusion effects. With a delay, a grasp might appear to be influenced by an illusion if it were dependent on ventral stream. However, recent work shows that the changes in grasp with a delay are not necessarily due to an illusion effect and alternative experimental methods will be needed to test for memory effects (Franz et al.
<xref ref-type="bibr" rid="CR64">2009</xref>
). One new approach that shows a possible a role of the ventral pathway for supporting grasping when there is a memory load used single pulse disruptive TMS. It was delivered to ventral (LOC) or dorsal (AIP) stream cortex at movement onset, with or without a delay between a brief object presentation and movement onset. In this case, TMS to AIP disrupted grasp planning both at onset and with a delay. In contrast, TMS to LOC only disrupted grasp kinematics in the delayed condition (Cohen et al.
<xref ref-type="bibr" rid="CR42">2009</xref>
). A plausible interpretation is that AIP is used for all grasp planning and thus remains sensitive to the TMS both early and late, whereas the LOC only becomes relevant for grasp planning when there is a delay and object memory is required.</p>
<p>There may be limits in how categorical knowledge can influence grasp planning. Humans are very fast at learning to associate appropriate grasps that reflect size and to a lesser degree weight requirements for particular objects based on shape as well as symbolic features such as color. It is possible that ventral stream is needed for categorical classification and category knowledge could generalize grasping information to new objects via ventral–dorsal connections. However, attractive, this idea is not yet supported by any experiment. One study showed learned associations between color and grasp kinematics did not generalize to new objects of a same category (similar color) (Desanghere and Marotta
<xref ref-type="bibr" rid="CR53">2008</xref>
).</p>
</sec>
<sec id="Sec6">
<title>Controlling grasps on-line: state estimation</title>
<p>Object grasping and manipulation rely heavily on the ability of the nervous system to anticipate the consequences of ongoing movements so that fine dexterity can be achieved (Wolpert et al.
<xref ref-type="bibr" rid="CR169">1998</xref>
; Wolpert and Ghahramani
<xref ref-type="bibr" rid="CR168">2000</xref>
). This is particularly apparent when it is possible to make strong predictions about the properties of a familiar object, such as expected weight, texture and default size. Anticipation is also needed in manipulating objects of uncertain physical properties. Anticipation in this case implies that the brain has access to internal models based less on prior knowledge and more on information acquired in real time. That is, it knows something about how the motor apparatus and handled object should respond to motor commands under different conditions. In engineering and robotics, internal models are computational solutions for modifying or adapting motor commands based on both forward and inverse models of either kinematics or dynamics (Lalazar and Vaadia
<xref ref-type="bibr" rid="CR95">2008</xref>
). Whether these computational principles are actually implemented or just metaphors for what the human nervous system does remains uncertain. Regardless, from a cognitive perspective and as shown schematically in Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
, internal models, when integrated into a larger conceptual framework, are extremely useful heuristics to account for many of the findings observed in experiments of goal-directed prehension. In this conceptual framework, objects must be included as intermediaries for accomplishing naturalistic prehension. That is, the objects are not the goals but are used to achieve goals, such as grasping a hammer to pound a nail. Prior knowledge in the brain allows for the selection of appropriate objects (a hammer) and motor programs (hammering) for accomplishing particular goals. Pre-existing motor programs such as hammering allow for task execution but there still needs to be an evaluative process to determine whether the desired goal is being achieved. If a nail was pounded in the dark, one might not know that additional force was needed to drive the nail into a hardwood. State estimation is an additional important component for relating a desired goal with all relevant information about the state of the body as well as the object. Object position, vision, haptic feedback, proprioception and efference copy are the key sources to generate a continuous estimation of the state of the actor and tool. A critical aspect of this functional compartmentalization is that state estimation includes a representation of the desired outcome (Tunik et al.
<xref ref-type="bibr" rid="CR154">2007</xref>
). Failure of the combined object/body state to move toward a desired outcome (as assessed by some form of difference vector) could lead to (1) the modification of an ongoing motor command, by way of internal models, or (2) replanning of the entire motor program if an outcome is predicted not to occur. One can swing the hammer harder to pound a nail or alternatively reprogram the entire task by employing a bigger hammer. Computationally, state estimation and internal models are tightly bound, with state knowledge needed by internal models and the output of internal models needed to update the state estimation. This structure allows for enormous capacity to adapt across a broad range of conditions. If some sources of information are unavailable at a given time, other sources of feedback or prior knowledge are used to update an action. Internal models that incorporate object dynamics will depend on prior knowledge of the object’s physical properties (e.g., the center of mass of a hammer and its swing weight) and to a lesser degree their functional properties. In contrast, action selection relies more on knowledge about an object’s potential functional (e.g., hammering with a shoe) rather than physical properties.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Schematic showing the functional modularity supporting prehensile behavior.
<italic>Arrows</italic>
indicate main sources of information sharing. A motor command can be selected and programmed in advanced and adjusted on-line based on state estimation and internal models that also track object information</p>
</caption>
<graphic xlink:href="221_2010_2315_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>Recent behavioral studies of prehension support the compartmentalization outlined in Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
. The model suggests that internal models have access to object knowledge from both prior experience and on-line feedback (haptics). In the case where prior knowledge about an object is weak, such as the weight distribution of an object, internal models would rely more heavily on state information provided from on-line feedback. After grasping and lifting a novel object, one might predict that the physical properties of the object become generally accessible to internal models as object “priors”. If so, finger force requirements that were learned with one hand might transfer to the other inexperienced hand. In fact, global scaling parameters of grip force as well as lift forces do transfer (Nowak et al.
<xref ref-type="bibr" rid="CR116">2009b</xref>
), but the grip force distribution across individual fingers does not (Albert et al.
<xref ref-type="bibr" rid="CR1">2009</xref>
). Thus, individuated finger control requires on-line haptic feedback to adjust a refined internal model that can handle internal dynamics of an object.</p>
<p>In the case of reduced peripheral feedback, there should be increased reliance on preprogrammed behavior and delays in on-line control. Grasp execution is sensitive to even minor reductions in feedback used in state estimation. For example, grasp precision decreases if peripheral vision is restricted, even if there is no task relevant information in the periphery (González-Alvarez et al.
<xref ref-type="bibr" rid="CR70">2007</xref>
). Conversely improving the fidelity of feedback with stereovision increases grasp precision (Melmoth and Grant
<xref ref-type="bibr" rid="CR104">2006</xref>
). There appears to be a capacity limitation in state estimation during on-line control. Under some conditions, adding distracter targets in a precision grasp task does not necessarily influence initial planning or action selection, but it can modify on-line behavior (Olivier and Velay
<xref ref-type="bibr" rid="CR117">2009</xref>
). This may be due to an inability to represent multiple action goals and their desired outcomes.</p>
<p>Not surprisingly, TMS disruption to S1 will lead to an increased time spent in generating appropriate lifting forces (Schabrun et al.
<xref ref-type="bibr" rid="CR138">2008</xref>
). The need for haptic feedback is also revealed in patients with chronic peripheral deafferentation (Hermsdörfer et al.
<xref ref-type="bibr" rid="CR75">2008</xref>
). They display increased compensatory grip forces and show a failure in the dynamic scaling of finger forces during object manipulation, consistent with an inability to update state estimation and use internal models. Nevertheless, they can adjust their initial grip force with an object. One way to explain this discrepancy is that the initial grip force adjustments could be updated using an internal model derived mainly from the initial motor commands. However, during manipulation, the handler is faced with a far more difficult dynamical problem that also depends on peripheral feedback to build a reliable internal model.</p>
<p>The use of visual feedback for adjusting grasps can be observed as early as 15 months of age (Carrico and Berthier
<xref ref-type="bibr" rid="CR30">2008</xref>
) and suggests that internal models are largely built on implicit learning mechanisms. In adults, object priors based on explicit knowledge also appear to have only limited access to state estimation and internal models. Explicit knowledge tends to be linked to more superficial features, such as where an object’s center of mass resides. While this can guide where to place the fingers, there is far less explicit knowledge of object dynamics, such as how to apply grip forces to stabilize an object (Lukos et al.
<xref ref-type="bibr" rid="CR98">2008</xref>
). Explicit knowledge about what type of feedback is available for state estimation on subsequent trials has minimal influence on whether or not the system will reprogram a movement to reflect this anticipated change in state (Whitwell et al.
<xref ref-type="bibr" rid="CR167">2008</xref>
).</p>
<p>Haptic or visual feedback is needed for not only for real time control but also to calibrate internal models that are useful on future trials. To test this, haptic feedback can be withdrawn in a virtual reality experiment. This leads to degraded grasps on successive trials. This decalibration can be eliminated if there is intermixing of trials with and without haptic feedback implying that there is an inherent time constant for maintaining haptic calibration (Bingham et al.
<xref ref-type="bibr" rid="CR14">2007</xref>
). The need for calibration to maintain accurate performance over trials is one example showing that haptic and visual reference frames are very dynamic over time. Another example at a finer level of description is the observation that the relative size of peripersonal space centered around the hand can dynamically change as the action unfolds (Brozzoli et al.
<xref ref-type="bibr" rid="CR25">2009</xref>
).</p>
<p>While Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
shows feedback as a unidirectional source of information in state estimation, this is certainly an oversimplification. Organisms actively manipulate sensors to improve feedback. For example, the eyes will saccade toward the grasping index finger to increase foveation at critical points of object affordance (Brouwer et al.
<xref ref-type="bibr" rid="CR24">2009</xref>
). This is a rich area for further analysis.</p>
<p>There is general consensus that both cerebellum and parietal cortex play critical roles in forming internal models that involve state estimation for tasks such as pointing and grasping (For recent reviews, see Nowak et al.
<xref ref-type="bibr" rid="CR114">2007b</xref>
; Tunik et al.
<xref ref-type="bibr" rid="CR154">2007</xref>
; Andersen and Cui
<xref ref-type="bibr" rid="CR2">2009</xref>
). Many studies establish a role of the cerebellum in grasp execution, with impairments observed in hand transport, in hand shaping, the time to peak grip force and in grip/load force coupling (Brandauer et al.
<xref ref-type="bibr" rid="CR23">2008</xref>
). They are also impaired in anticipating lift forces (Rabe et al.
<xref ref-type="bibr" rid="CR122">2009</xref>
), in compensating when there are expected loads (self-triggered release of a ball) (Nowak et al.
<xref ref-type="bibr" rid="CR113">2007a</xref>
) and in transferring learned lift force knowledge between the hands (Nowak et al.
<xref ref-type="bibr" rid="CR116">2009b</xref>
). From the previous and many other studies, an important role of the cerebellum was proposed in inverse plus forward models to update motor commands. As such, there should be evidence for predictive or anticipatory signals in the cerebellum during precision grasping. Single neuronal recordings of cerebellar Purkinje cells show object-specific modulation of signals appearing within the reach phase or at grasp onset in a precision reach-to-grasp task (Mason et al.
<xref ref-type="bibr" rid="CR103">2006</xref>
). There was no significant interaction between object and grasp force modulation, supporting previous experiments of grasping that kinematics and force are signaled independently. These findings show there is cerebellar updating during on-line control. Cerebellar involvement is likely implemented in part via thalamo-cortical pathways to motor cortex. If so, there should be evidence for anticipatory or predictive activity within motor cortex activity during on-line control. This idea is now being pursued in part with fMRI. Motor cortex activity as measured in an fMRI adaptation paradigm was modulated by the weight of an object (Chouinard et al.
<xref ref-type="bibr" rid="CR41">2009</xref>
). This is probably a result of differences in final grip force adjustments needed to lift the objects. Responses within motor cortex and cerebellum track monotonically with overall grip force (Keisker et al.
<xref ref-type="bibr" rid="CR90">2009</xref>
). Exposure to an object where the dynamics have been learned causes increased activity in cerebellum and motor cortex prior to movement onset, suggesting that the physical priors of the object are triggering internal models stored in these two areas (Bursztyn et al.
<xref ref-type="bibr" rid="CR27">2006</xref>
). When the dynamics of an object are experimentally manipulated by making subjects balance a flexible ruler compared to a simple grip task, there is also relatively greater activity in cerebellum and motor cortex, suggesting that these areas are either implementing or representing internal dynamics (Milner et al.
<xref ref-type="bibr" rid="CR108">2007</xref>
). Motor cortical involvement in humans is also shown by associating predictive information about when a load perturbation will occur during gripping with EEG long latency reflexes that must originate in central cortical areas (Kourtis et al.
<xref ref-type="bibr" rid="CR93">2008</xref>
). A more direct relationship between cerebellum and motor cortex has been measured physiologically in non-human primates. As grip force is initiated, there is increased coherence between the deep cerebellar nuclei and motor cortex, as measured in non-human primates (Soteropoulos and Baker
<xref ref-type="bibr" rid="CR144">2006</xref>
).</p>
<p>In addition to cerebellar influences, there is growing evidence for direct influences between posterior parietal cortex and motor cortex based on double-pulse TMS studies (Koch and Rothwell
<xref ref-type="bibr" rid="CR92">2009</xref>
). In humans, the relationship between a desired goal and state estimation in prehension tasks has focused on the role of parietal cortex, particularly areas AIP and SPL. One experimental approach is to change the target object within a trial, forcing subjects to amend an ongoing movement to accommodate the new task goal. TMS disruption to AIP at movement onset consistently disrupts both the on-line maintenance of an action as well as the ability to update a goal when the target changes (Rice et al.
<xref ref-type="bibr" rid="CR127">2006</xref>
,
<xref ref-type="bibr" rid="CR128">2007</xref>
). Single-pulse TMS to AIP also disrupts adjustment of grip forces on-line when subjects are exposed to an unexpected object mass (Dafotakis et al.
<xref ref-type="bibr" rid="CR47">2008</xref>
). EEG linear source analysis of subjects grasping objects suggests that AIP is recruited earlier than nearby SPL. The duration of the response in AIP area is longer when there is an object perturbation (Tunik et al.
<xref ref-type="bibr" rid="CR155">2008</xref>
). In contrast, initiation of a corrective movement coincides with activation in SPL. AIP and adjacent SPL are closely connected and share many functional properties when measured at the single neuron level in monkeys (Gardner et al.
<xref ref-type="bibr" rid="CR67">2007a</xref>
,
<xref ref-type="bibr" rid="CR68">b</xref>
). Both show object selective responses, increase in activity during the approach phase of a grasp and reach a peak of activity at object contact. Activity also increases with precision demands. Area 5 of the superior parietal lobule is also critical for mediating synergies between reach and grasp during ongoing movement (Chen et al.
<xref ref-type="bibr" rid="CR38">2009</xref>
) and maintaining on-line information about the state of the hand and its trajectory (Archambault et al.
<xref ref-type="bibr" rid="CR7">2009</xref>
). MIP, a portion of the SPL on the medial bank of the IPS, has strong anatomic connections with the gaze and arm area of interpositus nucleus of the cerebellum (Prevosto et al.
<xref ref-type="bibr" rid="CR119">2010</xref>
). Together these data support possible dissociable processes: the integration of target goal with an emerging action plan (within AIP) and further on-line adjustments (within SPL).</p>
</sec>
<sec id="Sec7">
<title>What is an action goal?</title>
<p>Prehension experiments remain a powerful approach for motivating experiments on what constitutes an action goal (Rizzolatti et al.
<xref ref-type="bibr" rid="CR130">1987a</xref>
; Rosenbaum et al.
<xref ref-type="bibr" rid="CR134">1999</xref>
). Prehension goals span many levels of complexity and can be defined by at least three experimental end-states. The first is grasp-centric, with completion of the grip defined as the completion of a goal. This is a long-standing experimental approach, but it is an uncommon goal in the real world. Objects are manipulated. To make prehension research ecologically valid, it is going to be essential for future studies to consider factors needed for controlling object dynamics such as lift forces and individuated finger movements as integral components of grasping. These are readily introduced when the end-state is object-centric, i.e., where the final position of an object is the goal. Selection in this case is influenced by either biomechanical constraints or end-state comfort effects (Rosenbaum et al.
<xref ref-type="bibr" rid="CR133">1992</xref>
). In this case, biomechanical comfort is a constraint on the end-state. The object position determines the end-state. Finally, how an object (tool) is used can be thought of as an end-state defining an action goal. This requires selection of specialized movements that go beyond end-state comfort effects and draw heavily on object knowledge. An important future question is whether there is evidence for hierarchically distributed neural architectures for supporting these different end-states.</p>
<p>Most work on end-states as goals rely on indirect evidence, such as behavioral studies. For example, when people grasp cubes, there is an effect on maximum grip aperture if a subject simultaneously observes another person grasping toward larger objects (Dijkerman and Smit
<xref ref-type="bibr" rid="CR54">2007</xref>
). A fundamental issue is whether this type of interference between observation and execution is at the level of the goal state (the object) or at lower levels, such as the underlying movements. To test this further, another behavioral study manipulated the congruency between observed and executed actions (power or precision grasp) with and without a target object. The critical finding was that interference effects required the presence of an object, and were more pronounced for precision than power grasps (Vainio et al.
<xref ref-type="bibr" rid="CR161">2007</xref>
). This suggests that grasp-based end-states may be organized at a supraordinate to lower-level planning processes such as the type of movement. Another way to think about this is to consider the goal representation as necessary to reconcile two parallel operations: the selection of a target object and the selection of an action to perform with the object. This joint selection among alternatives has been modeled computationally. The critical point is that the goal state shapes this interaction. This can be demonstrated by showing that distracter objects will differentially influence the reaching depending on the nature of the current action plan (Botvinick et al.
<xref ref-type="bibr" rid="CR20">2009</xref>
). These interactions across levels of action planning can also be observed when the two hands of a subject are tested against each other. In one study, subjects were asked to grasp and lift a smooth cylinder with one hand, before and after judging the level of difficulty of a ‘‘grasping for pouring’’ action, involving a smaller cylinder and using the opposite hand. The simulated grasp exerted a direct influence on an actual motor act with the other hand. This shows there may be conjoined representations of the graspable characteristics of the object, the biomechanical constraints of the arms and the overall action goal (Frak et al.
<xref ref-type="bibr" rid="CR63">2007</xref>
).</p>
<p>When an object is grasped to serve as a tool, then a whole host of additional computational requirements are introduced. Studies in apraxic subjects underscore the fact that multiple factors can influence grip selection for a given tool: Knowledge about the function of the object, structural tool characteristics, biomechanical costs of the movement and previous experience (Randerath et al.
<xref ref-type="bibr" rid="CR124">2009</xref>
). The basic principles of tool functions are acquired early in development (measured as early as 10 months) and require physical and not just observational experience (Sommerville et al.
<xref ref-type="bibr" rid="CR143">2008</xref>
). Relationships between the semantic understanding of a tool and the tool’s action properties remain uncertain (Noppeney et al.
<xref ref-type="bibr" rid="CR112">2006</xref>
; Noppeney
<xref ref-type="bibr" rid="CR111">2008</xref>
). Clearly, semantic knowledge can be used to constrain action planning. There is also a growing argument that these sources of knowledge actually share neural substrates, in line with a view that information storage is based on grounded cognition (Barsalou
<xref ref-type="bibr" rid="CR10">2008</xref>
). Nevertheless, this remains an area ripe for additional investigation.</p>
<p>One of the basic mechanisms that may be necessary for tool use is the remapping of the body schema to incorporate the acting part of a tool. This idea is based on work of primates who learned to use a tool that extended physical reach (Iriki
<xref ref-type="bibr" rid="CR77">2006</xref>
). It was proposed that the new skill led to an extension of the receptive fields of parietal neurons to cover the hand and tool. The same idea was tested in human subjects, who learned to reach and grasp with a set of “grabbers” that extended the reach of the limb (Cardinali et al.
<xref ref-type="bibr" rid="CR29">2009</xref>
). The key question was whether subjects adapt body schema to the tool and if so, whether they would show after-effects on trials when grasping with the hand alone. Indeed, after adaptation, there were measurable effects on trials with just the hand and no tool, suggesting a deep change of body schema induced by the tool. Adaptation of body schema was also tested by manipulating visual feedback during grasping. Using a video system, it is possible for the test subject to see their grasping hand as looking larger or smaller than normal (Marino et al.
<xref ref-type="bibr" rid="CR101">2010</xref>
). In trials where the hand is larger, there was an adaptive reduction in maximum grip aperture (MGA). This reduction persisted into catch trials that tested for after-effects, showing the depth of this adaptive process. The converse, where a smaller than normal hand was observed, did not lead to an increased MGA. The authors hypothesized that this asymmetry in the direction of adaptation was likely due to the fact that our bodies get bigger with growth and development and do not shrink.</p>
<p>These studies emphasize how the body representation is not constant, but highly plastic in changing shape. However, simple extension of a body schema by stretching the proprioceptive space to match the hand plus tool may be insufficient to explain the range of alterations needed for body schema to match complex tools. Instead, there is emerging evidence that simply expanding or stretching a body schema with tools does not necessarily alter the representation of peripersonal space and its boundaries (Gallivan et al.
<xref ref-type="bibr" rid="CR65">2009</xref>
). As opposed to extending the body schema, tool use may actually induce the distalization of the end-effector from hand to the tool. This is a far more specific process where body representations can be spatially relocated to a new island of space. Different tools extend the body schema in different ways, requiring the remapping of visual target and tool-specific haptic feedback of the hand (Arbib et al.
<xref ref-type="bibr" rid="CR6">2009</xref>
). Distalization as a process distinct from schema extension can be shown behaviorally by testing for differential gains of visual discrimination across the workspace. If the tool simply extends the body schema, then discrimination gains normally found at the finger tip in a pointing task should transfer to the tip of a tool used for pointing. Data shows that discrimination performance is enhanced in parallel at both spatial locations, but not at nearby and intermediate locations. In other words, there is distalization of the fingertip to a new location mediated in a specific way by the tool (Collins et al.
<xref ref-type="bibr" rid="CR44">2008</xref>
).</p>
<p>In some areas, such as AIP, the ability to represent an action goal is relatively concrete, in that it depends on the presence of the target object to generate a parallel representation of the motor action (Baumann et al.
<xref ref-type="bibr" rid="CR11">2009</xref>
). To show this, single neurons in area AIP were recorded in animals trained to perform power or precision grips on a handle at different orientations. In a cue separation task, when the object was presented first, neurons representing power or precision grips were activated simultaneously until the actual grip type was instructed. In contrast, when the grasp type instruction was presented before the object, type information was only weakly represented in AIP but was strongly encoded after the grasp target was revealed. As the granularity of functional imaging improves, it is becoming possible to dissociate areas more closely related to action plan/goal from underlying object affordances (Valyear et al.
<xref ref-type="bibr" rid="CR163">2007</xref>
). Another way to conceptualize AIP and interconnected prehension network is to assume they are optimally tuned for actions requiring prehensile interactions with objects. Other types of hand–object interactions would represent computational outliers and require increased processing demands. Evidence for this was found in an fMRI study where greater activity was active throughout left hemisphere fronto-parietal circuits for non-prehensile object manipulation (push, poke, etc.) than prehensile manipulation (Buxbaum et al.
<xref ref-type="bibr" rid="CR28">2006</xref>
).</p>
<p>The influence of action goals on underlying neural processing can be found throughout the premotor and motor cortex. In healthy subjects, TMS-induced MEPs from motor cortex are influenced by the observation of actions in others, and this can be used to examine the specificity of observed action goals on motor cortex. A clever experimental manipulation to do this is to dissociate muscle-specific responses used for an action from responses tied to the actions of a tool. This can be done by observing someone using regular pliers to grasp an object relative to using reverse pliers where the grip needs to close to open the pliers. Observed actions devoid of a goal will influence the MEP pattern of muscle recruitment that reflects the underlying muscle pattern of the observed action. When a goal is present, the MEP pattern of muscle recruitment reflects the action of the tool used to accomplish the action, rather than the specific muscle. In other words, motor cortex sensitivity was exquisitely linked to the motor goal and distalization of the hand action into the tool (Cattaneo et al.
<xref ref-type="bibr" rid="CR33">2009</xref>
). The same basic finding can be observed at the neuronal level in monkeys trained to use similar tools. Cortical motor neurons, active during hand grasping, also become active during grasping with pliers, as if the pliers were now the hand fingers. This motor embodiment occurs both for normal pliers and for “reverse pliers,” an implement that requires finger opening, instead of their closing, to grasp an object (Umiltà et al.
<xref ref-type="bibr" rid="CR158">2008</xref>
). Neuronal flexibility in remapping goals states to new tools rather than the hand can also be identified with fMRI in PMv and AIP in humans (Jacobs et al.
<xref ref-type="bibr" rid="CR78">2010</xref>
) These data underscore a remarkable flexibility of neuronal ensembles to functionally reconfigure to match new goal states. This implies that there may be a multiplicity of effector maps that could be recombined to achieve these new states. In support of this idea, a non-human primate study mapped distinct subregions for proximal and distal movements by intracortical microstimulation (Stark et al.
<xref ref-type="bibr" rid="CR150">2007a</xref>
). These same sites do not show segregation for reach and grasp actions during natural prehension. That is, there is a large degree of mixing neurons encoding reach and grasp across the premotor cortex, presumably to provide multiple solutions for coordinating the different components of prehension as a function of action goal.</p>
<p>Prehension remains a powerful “simple” system for understanding the neural underpinnings of goal-directed behavior. We have learned much about the underlying anatomic, functional and computational principles that guide object-centric movement. However, prehension is embedded within a much larger and more complex behavioral repertoire. What are missing are computational principles and neural mechanisms that explain how multiple movements, including prehension, are chained together to achieve temporally remote action outcomes (Lashley
<xref ref-type="bibr" rid="CR96">1951</xref>
; Fogassi et al.
<xref ref-type="bibr" rid="CR62">2005</xref>
). Computationally, this could be achieved via hierarchical task planning processes supported by a cascade of “if-then” rules (Cooper and Shallice
<xref ref-type="bibr" rid="CR45">2006</xref>
). This sort of highly structured, hierarchical planning architecture might readily map into prefrontal cortex, already recognized as playing a critical role in complex planning (Badre and D’Esposito
<xref ref-type="bibr" rid="CR8">2007</xref>
,
<xref ref-type="bibr" rid="CR9">2009</xref>
; Botvinick
<xref ref-type="bibr" rid="CR18">2008</xref>
). On the other hand, hierarchical planning may not be the only solution for getting complicated actions accomplished. There are strong computational arguments that many familiar actions can be executed via non-hierarchical processes, given sufficient practice (Botvinick and Plaut
<xref ref-type="bibr" rid="CR19">2006</xref>
). It is reasonable to propose that the next challenge in this domain will be reconciling this tension between automatic and controlled processes in forming goal-oriented behavior.</p>
</sec>
</body>
<back>
<ack>
<p>The author thanks the generous help of Giuseppe Luppino on the veracity of Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
. The work was supported by Public Health Service Grant NS 44393, support from the Institute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from the Army Research Office, the Dana Foundation and the James S. McDonnell Foundation.</p>
<p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albert</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Santello</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Sensorimotor memory of object weight distribution during multidigit grasp</article-title>
<source>Neurosci Lett</source>
<year>2009</year>
<volume>463</volume>
<fpage>188</fpage>
<lpage>193</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2009.07.080</pub-id>
<pub-id pub-id-type="pmid">19647782</pub-id>
</mixed-citation>
</ref>
<ref id="CR2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andersen</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Intention, action planning, and decision making in parietal-frontal circuits</article-title>
<source>Neuron</source>
<year>2009</year>
<volume>63</volume>
<fpage>568</fpage>
<lpage>583</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2009.08.028</pub-id>
<pub-id pub-id-type="pmid">19755101</pub-id>
</mixed-citation>
</ref>
<ref id="CR3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ansuini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Santello</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Massaccesi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Effects of end-goal on hand shaping</article-title>
<source>J Neurophysiol</source>
<year>2006</year>
<volume>95</volume>
<fpage>2456</fpage>
<lpage>2465</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01107.2005</pub-id>
<pub-id pub-id-type="pmid">16381806</pub-id>
</mixed-citation>
</ref>
<ref id="CR4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ansuini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tognin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turella</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Distractor objects affect fingers’ angular distances but not fingers’ shaping during grasping</article-title>
<source>Exp Brain Res</source>
<year>2007</year>
<volume>178</volume>
<fpage>194</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-006-0723-0</pub-id>
<pub-id pub-id-type="pmid">17051383</pub-id>
</mixed-citation>
</ref>
<ref id="CR5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ansuini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Giosa</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Turella</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Altoè</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>An object for an action, the same object for other actions: effects on hand shaping</article-title>
<source>Exp Brain Res</source>
<year>2008</year>
<volume>185</volume>
<fpage>111</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-007-1136-4</pub-id>
<pub-id pub-id-type="pmid">17909766</pub-id>
</mixed-citation>
</ref>
<ref id="CR6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arbib</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Bonaiuto</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Jacobs</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Frey</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Tool use and the distalization of the end-effector</article-title>
<source>Psychol Res</source>
<year>2009</year>
<volume>73</volume>
<fpage>441</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="doi">10.1007/s00426-009-0242-2</pub-id>
<pub-id pub-id-type="pmid">19347356</pub-id>
</mixed-citation>
</ref>
<ref id="CR7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Archambault</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Caminiti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Battaglia-Mayer</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex</article-title>
<source>Cereb Cortex</source>
<year>2009</year>
<volume>19</volume>
<fpage>2848</fpage>
<lpage>2864</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp058</pub-id>
<pub-id pub-id-type="pmid">19359349</pub-id>
</mixed-citation>
</ref>
<ref id="CR8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badre</surname>
<given-names>D</given-names>
</name>
<name>
<surname>D’Esposito</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex</article-title>
<source>J Cogn Neurosci</source>
<year>2007</year>
<volume>19</volume>
<fpage>2082</fpage>
<lpage>2099</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2007.19.12.2082</pub-id>
<pub-id pub-id-type="pmid">17892391</pub-id>
</mixed-citation>
</ref>
<ref id="CR9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Badre</surname>
<given-names>D</given-names>
</name>
<name>
<surname>D’Esposito</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Is the rostro-caudal axis of the frontal lobe hierarchical?</article-title>
<source>Nat Rev Neurosci</source>
<year>2009</year>
<volume>10</volume>
<fpage>659</fpage>
<lpage>669</lpage>
<pub-id pub-id-type="doi">10.1038/nrn2667</pub-id>
<pub-id pub-id-type="pmid">19672274</pub-id>
</mixed-citation>
</ref>
<ref id="CR10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barsalou</surname>
<given-names>LW</given-names>
</name>
</person-group>
<article-title>Grounded cognition</article-title>
<source>Annu Rev Psychol</source>
<year>2008</year>
<volume>59</volume>
<fpage>617</fpage>
<lpage>645</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.psych.59.103006.093639</pub-id>
<pub-id pub-id-type="pmid">17705682</pub-id>
</mixed-citation>
</ref>
<ref id="CR11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baumann</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Fluet</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Scherberger</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Context-specific grasp movement representation in the macaque anterior intraparietal area</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>6436</fpage>
<lpage>6448</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.5479-08.2009</pub-id>
<pub-id pub-id-type="pmid">19458215</pub-id>
</mixed-citation>
</ref>
<ref id="CR12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Begliomini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wall</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Differential cortical activity for precision and whole-hand visually guided grasping in humans</article-title>
<source>Eur J Neurosci</source>
<year>2007</year>
<volume>25</volume>
<fpage>1245</fpage>
<lpage>1252</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2007.05365.x</pub-id>
<pub-id pub-id-type="pmid">17331220</pub-id>
</mixed-citation>
</ref>
<ref id="CR13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Begliomini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nelini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Caria</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Grodd</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Cortical activations in humans grasp-related areas depend on hand used and handedness</article-title>
<source>PLoS ONE</source>
<year>2008</year>
<volume>3</volume>
<fpage>e3388</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0003388</pub-id>
<pub-id pub-id-type="pmid">18846222</pub-id>
</mixed-citation>
</ref>
<ref id="CR14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bingham</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Coats</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mon-Williams</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Natural prehension in trials without haptic feedback but only when calibration is allowed</article-title>
<source>Neuropsychologia</source>
<year>2007</year>
<volume>45</volume>
<fpage>288</fpage>
<lpage>294</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2006.07.011</pub-id>
<pub-id pub-id-type="pmid">17045314</pub-id>
</mixed-citation>
</ref>
<ref id="CR15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bonini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rozzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Serventi</surname>
<given-names>FU</given-names>
</name>
<name>
<surname>Simone</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>1372</fpage>
<lpage>1385</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp200</pub-id>
<pub-id pub-id-type="pmid">19805419</pub-id>
</mixed-citation>
</ref>
<ref id="CR16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borra</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Belmalih</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Calzavara</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gerbella</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rozzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cortical connections of the macaque anterior intraparietal (AIP) area</article-title>
<source>Cereb Cortex</source>
<year>2008</year>
<volume>18</volume>
<fpage>1094</fpage>
<lpage>1111</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhm146</pub-id>
<pub-id pub-id-type="pmid">17720686</pub-id>
</mixed-citation>
</ref>
<ref id="CR17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borra</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ichinohe</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanifuji</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rockland</surname>
<given-names>KS</given-names>
</name>
</person-group>
<article-title>Cortical connections to area TE in monkey: hybrid modular and distributed organization</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>257</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp096</pub-id>
<pub-id pub-id-type="pmid">19443621</pub-id>
</mixed-citation>
</ref>
<ref id="CR18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botvinick</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Hierarchical models of behavior and prefrontal function</article-title>
<source>Trends Cogn Sci</source>
<year>2008</year>
<volume>12</volume>
<fpage>201</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="doi">10.1016/j.tics.2008.02.009</pub-id>
<pub-id pub-id-type="pmid">18420448</pub-id>
</mixed-citation>
</ref>
<ref id="CR19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botvinick</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Plaut</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Such stuff as habits are made on: a reply to Cooper and Shallice (2006)</article-title>
<source>Psychol Rev</source>
<year>2006</year>
<volume>113</volume>
<fpage>917</fpage>
<lpage>928</lpage>
<pub-id pub-id-type="doi">10.1037/0033-295X.113.4.917</pub-id>
</mixed-citation>
</ref>
<ref id="CR20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botvinick</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Buxbaum</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Bylsma</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Jax</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Toward an integrated account of object and action selection: a computational analysis and empirical findings from reaching-to-grasp and tool-use</article-title>
<source>Neuropsychologia</source>
<year>2009</year>
<volume>47</volume>
<fpage>671</fpage>
<lpage>683</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2008.11.024</pub-id>
<pub-id pub-id-type="pmid">19100758</pub-id>
</mixed-citation>
</ref>
<ref id="CR22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boudrias</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>McPherson</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Frost</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Cheney</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>Output properties and organization of the forelimb representation of motor areas on the lateral aspect of the hemisphere in rhesus macaques</article-title>
<source>Cereb Cortex</source>
<year>2009</year>
<volume>20</volume>
<fpage>169</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp084</pub-id>
<pub-id pub-id-type="pmid">19561063</pub-id>
</mixed-citation>
</ref>
<ref id="CR21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boudrias</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Svojanovsky</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cheney</surname>
<given-names>PD</given-names>
</name>
</person-group>
<article-title>Forelimb muscle representations and output properties of motor areas in the mesial wall of rhesus macaques</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>704</fpage>
<lpage>719</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp136</pub-id>
<pub-id pub-id-type="pmid">19633176</pub-id>
</mixed-citation>
</ref>
<ref id="CR23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brandauer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aurich</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gizewski</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Marquardt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Timmann</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy</article-title>
<source>Clin Neurophysiol</source>
<year>2008</year>
<volume>119</volume>
<fpage>2528</fpage>
<lpage>2537</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2008.07.280</pub-id>
<pub-id pub-id-type="pmid">18835217</pub-id>
</mixed-citation>
</ref>
<ref id="CR24">
<mixed-citation publication-type="other">Brouwer AM, Franz VH, Gegenfurtner KR (2009) Differences in fixations between grasping and viewing objects. J Vis 9:18, 11–24</mixed-citation>
</ref>
<ref id="CR25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brozzoli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pavani</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Urquizar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cardinali</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Farnè</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Grasping actions remap peripersonal space</article-title>
<source>Neuroreport</source>
<year>2009</year>
<volume>20</volume>
<fpage>913</fpage>
<lpage>917</lpage>
<pub-id pub-id-type="doi">10.1097/WNR.0b013e32832c0b9b</pub-id>
<pub-id pub-id-type="pmid">19512951</pub-id>
</mixed-citation>
</ref>
<ref id="CR26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buelte</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Meister</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Staedtgen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Dambeck</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sparing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Grefkes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Boroojerdi</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The role of the anterior intraparietal sulcus in crossmodal processing of object features in humans: an rTMS study</article-title>
<source>Brain Res</source>
<year>2008</year>
<volume>1217</volume>
<fpage>110</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2008.03.075</pub-id>
<pub-id pub-id-type="pmid">18501339</pub-id>
</mixed-citation>
</ref>
<ref id="CR27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bursztyn</surname>
<given-names>LLCD</given-names>
</name>
<name>
<surname>Ganesh</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Imamizu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Flanagan</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Neural correlates of internal-model loading</article-title>
<source>Curr Biol</source>
<year>2006</year>
<volume>16</volume>
<fpage>2440</fpage>
<lpage>2445</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2006.10.051</pub-id>
<pub-id pub-id-type="pmid">17174919</pub-id>
</mixed-citation>
</ref>
<ref id="CR28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buxbaum</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Kyle</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Detre</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Neural substrates of knowledge of hand postures for object grasping and functional object use: evidence from fMRI</article-title>
<source>Brain Res</source>
<year>2006</year>
<volume>1117</volume>
<fpage>175</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2006.08.010</pub-id>
<pub-id pub-id-type="pmid">16962075</pub-id>
</mixed-citation>
</ref>
<ref id="CR29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardinali</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frassinetti</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Brozzoli</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Urquizar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Farnè</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Tool-use induces morphological updating of the body schema</article-title>
<source>Curr Biol</source>
<year>2009</year>
<volume>19</volume>
<fpage>R478</fpage>
<lpage>R479</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2009.05.009</pub-id>
<pub-id pub-id-type="pmid">19549491</pub-id>
</mixed-citation>
</ref>
<ref id="CR30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrico</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Berthier</surname>
<given-names>NE</given-names>
</name>
</person-group>
<article-title>Vision and precision reaching in 15-month-old infants</article-title>
<source>Infant Behav Dev</source>
<year>2008</year>
<volume>31</volume>
<fpage>62</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1016/j.infbeh.2007.07.005</pub-id>
<pub-id pub-id-type="pmid">17706290</pub-id>
</mixed-citation>
</ref>
<ref id="CR31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>The neuroscience of grasping</article-title>
<source>Nat Rev Neurosci</source>
<year>2005</year>
<volume>6</volume>
<fpage>726</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="doi">10.1038/nrn1744</pub-id>
<pub-id pub-id-type="pmid">16100518</pub-id>
</mixed-citation>
</ref>
<ref id="CR32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Begliomini</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The cortical control of visually guided grasping</article-title>
<source>Neuroscientist</source>
<year>2008</year>
<volume>14</volume>
<fpage>157</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.1177/1073858407312080</pub-id>
<pub-id pub-id-type="pmid">18219055</pub-id>
</mixed-citation>
</ref>
<ref id="CR33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cattaneo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Caruana</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jezzini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Representation of goal and movements without overt motor behavior in the human motor cortex: a transcranial magnetic stimulation study</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>11134</fpage>
<lpage>11138</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.2605-09.2009</pub-id>
<pub-id pub-id-type="pmid">19741119</pub-id>
</mixed-citation>
</ref>
<ref id="CR34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavina-Pratesi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects</article-title>
<source>PLoS ONE</source>
<year>2007</year>
<volume>2</volume>
<fpage>e424</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000424</pub-id>
<pub-id pub-id-type="pmid">17487272</pub-id>
</mixed-citation>
</ref>
<ref id="CR35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavina-Pratesi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ietswaart</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Humphreys</surname>
<given-names>GW</given-names>
</name>
<name>
<surname>Lestou</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching?</article-title>
<source>Neuropsychologia</source>
<year>2010</year>
<volume>48</volume>
<fpage>226</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2009.09.008</pub-id>
<pub-id pub-id-type="pmid">19766131</pub-id>
</mixed-citation>
</ref>
<ref id="CR36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chapman</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pierno</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Cunnington</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gavrilescu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Egan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Castiello</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>The neural basis of selection-for-action</article-title>
<source>Neurosci Lett</source>
<year>2007</year>
<volume>417</volume>
<fpage>171</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2007.02.033</pub-id>
<pub-id pub-id-type="pmid">17412509</pub-id>
</mixed-citation>
</ref>
<ref id="CR37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chassagnon</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Minotti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kremer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kahane</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Somatosensory, motor, and reaching/grasping responses to direct electrical stimulation of the human cingulate motor areas</article-title>
<source>J Neurosurg</source>
<year>2008</year>
<volume>109</volume>
<fpage>593</fpage>
<lpage>604</lpage>
<pub-id pub-id-type="doi">10.3171/JNS/2008/109/10/0593</pub-id>
<pub-id pub-id-type="pmid">18826345</pub-id>
</mixed-citation>
</ref>
<ref id="CR38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reitzen</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Kohlenstein</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>EP</given-names>
</name>
</person-group>
<article-title>Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey</article-title>
<source>J Neurophysiol</source>
<year>2009</year>
<volume>102</volume>
<fpage>3310</fpage>
<lpage>3328</lpage>
<pub-id pub-id-type="doi">10.1152/jn.90942.2008</pub-id>
<pub-id pub-id-type="pmid">19793876</pub-id>
</mixed-citation>
</ref>
<ref id="CR39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chouinard</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Different roles of PMv and PMd during object lifting</article-title>
<source>J Neurosci</source>
<year>2006</year>
<volume>26</volume>
<fpage>6397</fpage>
<lpage>6398</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1481-06.2006</pub-id>
<pub-id pub-id-type="pmid">16779900</pub-id>
</mixed-citation>
</ref>
<ref id="CR40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chouinard</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Morrissey</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Kohler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects</article-title>
<source>Neuroimage</source>
<year>2008</year>
<volume>41</volume>
<fpage>130</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2008.02.011</pub-id>
<pub-id pub-id-type="pmid">18375148</pub-id>
</mixed-citation>
</ref>
<ref id="CR41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chouinard</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Large</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion</article-title>
<source>Neuroimage</source>
<year>2009</year>
<volume>44</volume>
<fpage>200</fpage>
<lpage>212</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2008.08.023</pub-id>
<pub-id pub-id-type="pmid">18801445</pub-id>
</mixed-citation>
</ref>
<ref id="CR42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Cross</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach</article-title>
<source>Neuropsychologia</source>
<year>2009</year>
<volume>47</volume>
<fpage>1553</fpage>
<lpage>1562</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2008.12.034</pub-id>
<pub-id pub-id-type="pmid">19168086</pub-id>
</mixed-citation>
</ref>
<ref id="CR43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cole</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force</article-title>
<source>Exp Brain Res</source>
<year>2008</year>
<volume>188</volume>
<fpage>551</fpage>
<lpage>557</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-008-1392-y</pub-id>
<pub-id pub-id-type="pmid">18443767</pub-id>
</mixed-citation>
</ref>
<ref id="CR44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schicke</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Röder</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Action goal selection and motor planning can be dissociated by tool use</article-title>
<source>Cognition</source>
<year>2008</year>
<volume>109</volume>
<fpage>363</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="doi">10.1016/j.cognition.2008.10.001</pub-id>
<pub-id pub-id-type="pmid">19012884</pub-id>
</mixed-citation>
</ref>
<ref id="CR45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cooper</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shallice</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Hierarchical schemas and goals in the control of sequential behavior</article-title>
<source>Psychol Rev</source>
<year>2006</year>
<volume>113</volume>
<fpage>887</fpage>
<lpage>916</lpage>
<pub-id pub-id-type="doi">10.1037/0033-295X.113.4.887</pub-id>
<pub-id pub-id-type="pmid">17014307</pub-id>
</mixed-citation>
</ref>
<ref id="CR46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Creem-Regehr</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions</article-title>
<source>Neurobiol Learn Mem</source>
<year>2009</year>
<volume>91</volume>
<fpage>166</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1016/j.nlm.2008.10.004</pub-id>
<pub-id pub-id-type="pmid">18996216</pub-id>
</mixed-citation>
</ref>
<ref id="CR47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dafotakis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sparing</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Eickhoff</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Fink</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>On the role of the ventral premotor cortex and anterior intraparietal area for predictive and reactive scaling of grip force</article-title>
<source>Brain Res</source>
<year>2008</year>
<volume>1228</volume>
<fpage>73</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2008.06.027</pub-id>
<pub-id pub-id-type="pmid">18601912</pub-id>
</mixed-citation>
</ref>
<ref id="CR48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davare</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Andres</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cosnard</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Thonnard</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Olivier</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Dissociating the role of ventral and dorsal premotor cortex in precision grasping</article-title>
<source>J Neurosci</source>
<year>2006</year>
<volume>26</volume>
<fpage>2260</fpage>
<lpage>2268</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3386-05.2006</pub-id>
<pub-id pub-id-type="pmid">16495453</pub-id>
</mixed-citation>
</ref>
<ref id="CR49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davare</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Olivier</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans</article-title>
<source>J Physiol</source>
<year>2008</year>
<volume>586</volume>
<fpage>2735</fpage>
<lpage>2742</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2008.152603</pub-id>
<pub-id pub-id-type="pmid">18403420</pub-id>
</mixed-citation>
</ref>
<ref id="CR50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davare</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Montague</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Olivier</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>RN</given-names>
</name>
</person-group>
<article-title>Ventral premotor to primary motor cortical interactions during object-driven grasp in humans</article-title>
<source>Cortex</source>
<year>2009</year>
<volume>45</volume>
<fpage>1050</fpage>
<lpage>1057</lpage>
<pub-id pub-id-type="doi">10.1016/j.cortex.2009.02.011</pub-id>
<pub-id pub-id-type="pmid">19345344</pub-id>
</mixed-citation>
</ref>
<ref id="CR51">
<mixed-citation publication-type="other">de Grave DD, Hesse C, Brouwer AM, Franz VH (2008) Fixation locations when grasping partly occluded objects. J Vis 8:5, 1–11</mixed-citation>
</ref>
<ref id="CR52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deiber</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Honda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ibanez</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Sadato</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hallett</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate</article-title>
<source>J Neurophysiol</source>
<year>1999</year>
<volume>81</volume>
<fpage>3065</fpage>
<lpage>3077</lpage>
<pub-id pub-id-type="pmid">10368421</pub-id>
</mixed-citation>
</ref>
<ref id="CR53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Desanghere</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Marotta</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>The specificity of learned associations in visuomotor and perceptual processing</article-title>
<source>Exp Brain Res</source>
<year>2008</year>
<volume>187</volume>
<fpage>595</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-008-1328-6</pub-id>
<pub-id pub-id-type="pmid">18305929</pub-id>
</mixed-citation>
</ref>
<ref id="CR54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dijkerman</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Smit</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Interference of grasping observation during prehension, a behavioural study</article-title>
<source>Exp Brain Res</source>
<year>2007</year>
<volume>176</volume>
<fpage>387</fpage>
<lpage>396</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-006-0627-z</pub-id>
<pub-id pub-id-type="pmid">16917772</pub-id>
</mixed-citation>
</ref>
<ref id="CR55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dijkerman</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>McIntosh</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Schindler</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Nijboer</surname>
<given-names>TCW</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Choosing between alternative wrist postures: action planning needs perception</article-title>
<source>Neuropsychologia</source>
<year>2009</year>
<volume>47</volume>
<fpage>1476</fpage>
<lpage>1482</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2008.12.002</pub-id>
<pub-id pub-id-type="pmid">19114051</pub-id>
</mixed-citation>
</ref>
<ref id="CR56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Domellöf</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rösblad</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rönnqvist</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Impairment severity selectively affects the control of proximal and distal components of reaching movements in children with hemiplegic cerebral palsy</article-title>
<source>Dev Med Child Neurol</source>
<year>2009</year>
<volume>51</volume>
<fpage>807</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8749.2008.03215.x</pub-id>
<pub-id pub-id-type="pmid">19747280</pub-id>
</mixed-citation>
</ref>
<ref id="CR57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Durand</surname>
<given-names>J-B</given-names>
</name>
<name>
<surname>Nelissen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Joly</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wardak</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Todd</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Norman</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Vanduffel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Anterior regions of monkey parietal cortex process visual 3D shape</article-title>
<source>Neuron</source>
<year>2007</year>
<volume>55</volume>
<fpage>493</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2007.06.040</pub-id>
<pub-id pub-id-type="pmid">17678860</pub-id>
</mixed-citation>
</ref>
<ref id="CR58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Epstein</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Feiler</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Two kinds of FMRI repetition suppression? Evidence for dissociable neural mechanisms</article-title>
<source>J Neurophysiol</source>
<year>2008</year>
<volume>99</volume>
<fpage>2877</fpage>
<lpage>2886</lpage>
<pub-id pub-id-type="doi">10.1152/jn.90376.2008</pub-id>
<pub-id pub-id-type="pmid">18400954</pub-id>
</mixed-citation>
</ref>
<ref id="CR59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evangeliou</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Raos</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Savaki</surname>
<given-names>HE</given-names>
</name>
</person-group>
<article-title>Functional imaging of the parietal cortex during action execution and observation</article-title>
<source>Cereb Cortex</source>
<year>2009</year>
<volume>19</volume>
<fpage>624</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhn116</pub-id>
<pub-id pub-id-type="pmid">18641087</pub-id>
</mixed-citation>
</ref>
<ref id="CR60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fattori</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Breveglieri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marzocchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Filippini</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bosco</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>1928</fpage>
<lpage>1936</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.4998-08.2009</pub-id>
<pub-id pub-id-type="pmid">19211899</pub-id>
</mixed-citation>
</ref>
<ref id="CR61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fattori</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Raos</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Breveglieri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bosco</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Marzocchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>The dorsomedial pathway is not just for reaching: grasping neurons in the medial parieto-occipital cortex of the macaque monkey</article-title>
<source>J Neurosci</source>
<year>2010</year>
<volume>30</volume>
<fpage>342</fpage>
<lpage>349</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3800-09.2010</pub-id>
<pub-id pub-id-type="pmid">20053915</pub-id>
</mixed-citation>
</ref>
<ref id="CR62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Gesierich</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rozzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chersi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Parietal lobe: from action organization to intention understanding</article-title>
<source>Science</source>
<year>2005</year>
<volume>308</volume>
<fpage>662</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="doi">10.1126/science.1106138</pub-id>
<pub-id pub-id-type="pmid">15860620</pub-id>
</mixed-citation>
</ref>
<ref id="CR63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Frak</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Croteau</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bourbonnais</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Duval</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Duclos</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Simulation modifies prehension: evidence for a conjoined representation of the graspable features of an object and the action of grasping it</article-title>
<source>PLoS ONE</source>
<year>2007</year>
<volume>2</volume>
<fpage>e311</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0000311</pub-id>
<pub-id pub-id-type="pmid">17375197</pub-id>
</mixed-citation>
</ref>
<ref id="CR64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franz</surname>
<given-names>VH</given-names>
</name>
<name>
<surname>Hesse</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kollath</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Visual illusions, delayed grasping, and memory: no shift from dorsal to ventral control</article-title>
<source>Neuropsychologia</source>
<year>2009</year>
<volume>47</volume>
<fpage>1518</fpage>
<lpage>1531</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2008.08.029</pub-id>
<pub-id pub-id-type="pmid">18834894</pub-id>
</mixed-citation>
</ref>
<ref id="CR65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallivan</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Cavina-Pratesi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>4381</fpage>
<lpage>4391</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0377-09.2009</pub-id>
<pub-id pub-id-type="pmid">19357266</pub-id>
</mixed-citation>
</ref>
<ref id="CR66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gamberini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Passarelli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fattori</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zucchelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bakola</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey</article-title>
<source>J Comp Neurol</source>
<year>2009</year>
<volume>513</volume>
<fpage>622</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1002/cne.21980</pub-id>
<pub-id pub-id-type="pmid">19235224</pub-id>
</mixed-citation>
</ref>
<ref id="CR67">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gardner</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Babu</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sherwood</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Neurophysiology of prehension. III. Representation of object features in posterior parietal cortex of the macaque monkey</article-title>
<source>J Neurophysiol</source>
<year>2007</year>
<volume>98</volume>
<fpage>3708</fpage>
<lpage>3730</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00609.2007</pub-id>
<pub-id pub-id-type="pmid">17942625</pub-id>
</mixed-citation>
</ref>
<ref id="CR68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gardner</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Ro</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Babu</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Ghosh</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices</article-title>
<source>J Neurophysiol</source>
<year>2007</year>
<volume>97</volume>
<fpage>1656</fpage>
<lpage>1670</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01031.2006</pub-id>
<pub-id pub-id-type="pmid">17093113</pub-id>
</mixed-citation>
</ref>
<ref id="CR69">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerbella</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Belmalih</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Borra</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rozzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>141</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp087</pub-id>
<pub-id pub-id-type="pmid">19406905</pub-id>
</mixed-citation>
</ref>
<ref id="CR70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>González-Alvarez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Subramanian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pardhan</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Reaching and grasping with restricted peripheral vision</article-title>
<source>Ophthalmic Physiol Opt</source>
<year>2007</year>
<volume>27</volume>
<fpage>265</fpage>
<lpage>274</lpage>
<pub-id pub-id-type="doi">10.1111/j.1475-1313.2007.00476.x</pub-id>
<pub-id pub-id-type="pmid">17470239</pub-id>
</mixed-citation>
</ref>
<ref id="CR71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Jakobson</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>A neurological dissociation between perceiving objects and grasping them</article-title>
<source>Nature</source>
<year>1991</year>
<volume>349</volume>
<fpage>154</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="doi">10.1038/349154a0</pub-id>
<pub-id pub-id-type="pmid">1986306</pub-id>
</mixed-citation>
</ref>
<ref id="CR72">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Greenwald</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Knill</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>A comparison of visuomotor cue integration strategies for object placement and prehension</article-title>
<source>Vis Neurosci</source>
<year>2009</year>
<volume>26</volume>
<fpage>63</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1017/S0952523808080668</pub-id>
<pub-id pub-id-type="pmid">18759994</pub-id>
</mixed-citation>
</ref>
<ref id="CR73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haynes</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Rees</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Decoding mental states from brain activity in humans</article-title>
<source>Nat Rev Neurosci</source>
<year>2006</year>
<volume>7</volume>
<fpage>523</fpage>
<lpage>534</lpage>
<pub-id pub-id-type="doi">10.1038/nrn1931</pub-id>
<pub-id pub-id-type="pmid">16791142</pub-id>
</mixed-citation>
</ref>
<ref id="CR74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hendrix</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Mason</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Ebner</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey</article-title>
<source>J Neurophysiol</source>
<year>2009</year>
<volume>102</volume>
<fpage>132</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00016.2009</pub-id>
<pub-id pub-id-type="pmid">19403752</pub-id>
</mixed-citation>
</ref>
<ref id="CR75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elias</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Quaney</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2008</year>
<volume>22</volume>
<fpage>374</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="pmid">18223241</pub-id>
</mixed-citation>
</ref>
<ref id="CR76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hinkley</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Krubitzer</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Padberg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Disbrow</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Visual-manual exploration and posterior parietal cortex in humans</article-title>
<source>J Neurophysiol</source>
<year>2009</year>
<volume>102</volume>
<fpage>3433</fpage>
<lpage>3446</lpage>
<pub-id pub-id-type="doi">10.1152/jn.90785.2008</pub-id>
<pub-id pub-id-type="pmid">19812283</pub-id>
</mixed-citation>
</ref>
<ref id="CR77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iriki</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The neural origins and implications of imitation, mirror neurons and tool use</article-title>
<source>Curr Opin Neurobiol</source>
<year>2006</year>
<volume>16</volume>
<fpage>660</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2006.10.008</pub-id>
<pub-id pub-id-type="pmid">17085039</pub-id>
</mixed-citation>
</ref>
<ref id="CR78">
<mixed-citation publication-type="other">Jacobs S, Danielmeier C, Frey SH (2010) Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci (in press)</mixed-citation>
</ref>
<ref id="CR79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janssen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ombelet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Coding of shape and position in macaque lateral intraparietal area</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>6679</fpage>
<lpage>6690</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0499-08.2008</pub-id>
<pub-id pub-id-type="pmid">18579742</pub-id>
</mixed-citation>
</ref>
<ref id="CR80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeannerod</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The timing of natural prehension movements</article-title>
<source>J Mot Behav</source>
<year>1984</year>
<volume>16</volume>
<fpage>235</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">15151851</pub-id>
</mixed-citation>
</ref>
<ref id="CR81">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeannerod</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The formation of finger grip during prehension. A cortically mediated visuomotor pattern</article-title>
<source>Behav Brain Res</source>
<year>1986</year>
<volume>19</volume>
<fpage>99</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1016/0166-4328(86)90008-2</pub-id>
<pub-id pub-id-type="pmid">3964409</pub-id>
</mixed-citation>
</ref>
<ref id="CR82">
<mixed-citation publication-type="other">Jeannerod M (1988) The neural and behavioral organization of goal-directed movements. Clarendon Press, Oxford</mixed-citation>
</ref>
<ref id="CR83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeannerod</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The hand and the object: the role of posterior parietal cortex in forming motor representations</article-title>
<source>Can J Physiol Pharmacol</source>
<year>1994</year>
<volume>72</volume>
<fpage>535</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="pmid">7954083</pub-id>
</mixed-citation>
</ref>
<ref id="CR84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeannerod</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The representing brain: neural correlates of motor intention and imagery</article-title>
<source>Behav Brain Sci</source>
<year>1994</year>
<volume>17</volume>
<fpage>187</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1017/S0140525X00034026</pub-id>
</mixed-citation>
</ref>
<ref id="CR85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jeannerod</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Arbib</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Sakata</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Grasping objects: the cortical mechanisms of visuomotor transformation</article-title>
<source>Trends Neurosci</source>
<year>1995</year>
<volume>18</volume>
<fpage>314</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="doi">10.1016/0166-2236(95)93921-J</pub-id>
<pub-id pub-id-type="pmid">7571012</pub-id>
</mixed-citation>
</ref>
<ref id="CR86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata</article-title>
<source>Prog Brain Res</source>
<year>2003</year>
<volume>142</volume>
<fpage>127</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6123(03)42010-4</pub-id>
<pub-id pub-id-type="pmid">12693258</pub-id>
</mixed-citation>
</ref>
<ref id="CR87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Joly</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Vanduffel</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>The monkey ventral premotor cortex processes 3D shape from disparity</article-title>
<source>Neuroimage</source>
<year>2009</year>
<volume>47</volume>
<fpage>262</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2009.04.043</pub-id>
<pub-id pub-id-type="pmid">19376235</pub-id>
</mixed-citation>
</ref>
<ref id="CR88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karnath</surname>
<given-names>H-O</given-names>
</name>
<name>
<surname>Rüter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mandler</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Himmelbach</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The anatomy of object recognition—visual form agnosia caused by medial occipitotemporal stroke</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>5854</fpage>
<lpage>5862</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.5192-08.2009</pub-id>
<pub-id pub-id-type="pmid">19420252</pub-id>
</mixed-citation>
</ref>
<ref id="CR89">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keefe</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>The role of binocular vision in grasping: a small stimulus-set distorts results</article-title>
<source>Exp Brain Res</source>
<year>2009</year>
<volume>194</volume>
<fpage>435</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-009-1718-4</pub-id>
<pub-id pub-id-type="pmid">19198815</pub-id>
</mixed-citation>
</ref>
<ref id="CR90">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keisker</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hepp-Reymond</surname>
<given-names>M-C</given-names>
</name>
<name>
<surname>Blickenstorfer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kollias</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>Differential force scaling of fine-graded power grip force in the sensorimotor network</article-title>
<source>Hum Brain Mapp</source>
<year>2009</year>
<volume>30</volume>
<fpage>2453</fpage>
<lpage>2465</lpage>
<pub-id pub-id-type="doi">10.1002/hbm.20676</pub-id>
<pub-id pub-id-type="pmid">19172654</pub-id>
</mixed-citation>
</ref>
<ref id="CR91">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kermadi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tempini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rouiller</surname>
<given-names>EM</given-names>
</name>
</person-group>
<article-title>Effects of reversible inactivation of the supplementary motor area (SMA) on unimanual grasp and bimanual pull and grasp performance in monkeys</article-title>
<source>Somatosens Mot Res</source>
<year>1997</year>
<volume>14</volume>
<fpage>268</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1080/08990229770980</pub-id>
<pub-id pub-id-type="pmid">9443367</pub-id>
</mixed-citation>
</ref>
<ref id="CR92">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex</article-title>
<source>Behav Brain Res</source>
<year>2009</year>
<volume>202</volume>
<fpage>147</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbr.2009.03.023</pub-id>
<pub-id pub-id-type="pmid">19463695</pub-id>
</mixed-citation>
</ref>
<ref id="CR93">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kourtis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kwok</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Roach</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wing</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Praamstra</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Maintaining grip: anticipatory and reactive EEG responses to load perturbations</article-title>
<source>J Neurophysiol</source>
<year>2008</year>
<volume>99</volume>
<fpage>545</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01112.2006</pub-id>
<pub-id pub-id-type="pmid">18032560</pub-id>
</mixed-citation>
</ref>
<ref id="CR94">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kroliczak</surname>
<given-names>G</given-names>
</name>
<name>
<surname>McAdam</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Quinlan</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>The human dorsal stream adapts to real actions and 3D shape processing: a functional magnetic resonance imaging study</article-title>
<source>J Neurophysiol</source>
<year>2008</year>
<volume>100</volume>
<fpage>2627</fpage>
<lpage>2639</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01376.2007</pub-id>
<pub-id pub-id-type="pmid">18768646</pub-id>
</mixed-citation>
</ref>
<ref id="CR95">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lalazar</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vaadia</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Neural basis of sensorimotor learning: modifying internal models</article-title>
<source>Curr Opin Neurobiol</source>
<year>2008</year>
<volume>18</volume>
<fpage>573</fpage>
<lpage>581</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2008.11.003</pub-id>
<pub-id pub-id-type="pmid">19054663</pub-id>
</mixed-citation>
</ref>
<ref id="CR96">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lashley</surname>
<given-names>KS</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Jeffress</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>The problem of serial order in behavior</article-title>
<source>Cerebral mechanisms in behavior</source>
<year>1951</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley</publisher-name>
</mixed-citation>
</ref>
<ref id="CR97">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>Y-L</given-names>
</name>
<name>
<surname>Crabtree</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Norman</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Bingham</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Poor shape perception is the reason reaches-to-grasp are visually guided online</article-title>
<source>Percept Psychophys</source>
<year>2008</year>
<volume>70</volume>
<fpage>1032</fpage>
<lpage>1046</lpage>
<pub-id pub-id-type="doi">10.3758/PP.70.6.1032</pub-id>
<pub-id pub-id-type="pmid">18717389</pub-id>
</mixed-citation>
</ref>
<ref id="CR98">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lukos</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Ansuini</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Santello</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Anticipatory control of grasping: independence of sensorimotor memories for kinematics and kinetics</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>12765</fpage>
<lpage>12774</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.4335-08.2008</pub-id>
<pub-id pub-id-type="pmid">19036969</pub-id>
</mixed-citation>
</ref>
<ref id="CR99">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macfarlane</surname>
<given-names>NBW</given-names>
</name>
<name>
<surname>Graziano</surname>
<given-names>MSA</given-names>
</name>
</person-group>
<article-title>Diversity of grip in Macaca mulatta</article-title>
<source>Exp Brain Res</source>
<year>2009</year>
<volume>197</volume>
<fpage>255</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-009-1909-z</pub-id>
<pub-id pub-id-type="pmid">19565227</pub-id>
</mixed-citation>
</ref>
<ref id="CR100">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maratos</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Hillebrand</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>The spatial distribution and temporal dynamics of brain regions activated during the perception of object and non-object patterns</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>34</volume>
<fpage>371</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2006.09.017</pub-id>
<pub-id pub-id-type="pmid">17055298</pub-id>
</mixed-citation>
</ref>
<ref id="CR101">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marino</surname>
<given-names>BFM</given-names>
</name>
<name>
<surname>Stucchi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nava</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Haggard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Maravita</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Distorting the visual size of the hand affects hand pre-shaping during grasping</article-title>
<source>Exp Brain Res</source>
<year>2010</year>
<volume>202</volume>
<fpage>499</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-009-2143-4</pub-id>
<pub-id pub-id-type="pmid">20044746</pub-id>
</mixed-citation>
</ref>
<ref id="CR102">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martelloni</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carpaneto</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Characterization of EMG patterns from proximal arm muscles during object- and orientation-specific grasps</article-title>
<source>EEE Trans Biomed Eng</source>
<year>2009</year>
<volume>56</volume>
<fpage>2529</fpage>
<lpage>2536</lpage>
<pub-id pub-id-type="doi">10.1109/TBME.2009.2026470</pub-id>
</mixed-citation>
</ref>
<ref id="CR103">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mason</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Hendrix</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Ebner</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey</article-title>
<source>J Neurophysiol</source>
<year>2006</year>
<volume>95</volume>
<fpage>144</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00492.2005</pub-id>
<pub-id pub-id-type="pmid">16162833</pub-id>
</mixed-citation>
</ref>
<ref id="CR104">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melmoth</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Advantages of binocular vision for the control of reaching and grasping</article-title>
<source>Exp Brain Res</source>
<year>2006</year>
<volume>171</volume>
<fpage>371</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-005-0273-x</pub-id>
<pub-id pub-id-type="pmid">16323004</pub-id>
</mixed-citation>
</ref>
<ref id="CR105">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melmoth</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Finlay</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Grasping deficits and adaptations in adults with stereo vision losses</article-title>
<source>Invest Ophthalmol Vis Sci</source>
<year>2009</year>
<volume>50</volume>
<fpage>3711</fpage>
<lpage>3720</lpage>
<pub-id pub-id-type="doi">10.1167/iovs.08-3229</pub-id>
<pub-id pub-id-type="pmid">19339741</pub-id>
</mixed-citation>
</ref>
<ref id="CR106">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Milner</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<source>The visual brain in action</source>
<year>1995</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</mixed-citation>
</ref>
<ref id="CR107">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milner</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Dijkerman</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>McIntosh</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Rossetti</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pisella</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Delayed reaching and grasping in patients with optic ataxia</article-title>
<source>Prog Brain Res</source>
<year>2003</year>
<volume>142</volume>
<fpage>225</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6123(03)42016-5</pub-id>
<pub-id pub-id-type="pmid">12693264</pub-id>
</mixed-citation>
</ref>
<ref id="CR108">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milner</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Imamizu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawato</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Central control of grasp: manipulation of objects with complex and simple dynamics</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>36</volume>
<fpage>388</fpage>
<lpage>395</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.01.057</pub-id>
<pub-id pub-id-type="pmid">17451973</pub-id>
</mixed-citation>
</ref>
<ref id="CR109">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Higo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Oishi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yamane</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys</article-title>
<source>J Neurophysiol</source>
<year>2008</year>
<volume>99</volume>
<fpage>773</fpage>
<lpage>786</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01001.2007</pub-id>
<pub-id pub-id-type="pmid">18094104</pub-id>
</mixed-citation>
</ref>
<ref id="CR110">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishimura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Onoe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Morichika</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tsukada</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Isa</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Activation of parieto-frontal stream during reaching and grasping studied by positron emission tomography in monkeys</article-title>
<source>Neurosci Res</source>
<year>2007</year>
<volume>59</volume>
<fpage>243</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.1016/j.neures.2007.07.003</pub-id>
<pub-id pub-id-type="pmid">17719113</pub-id>
</mixed-citation>
</ref>
<ref id="CR111">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noppeney</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>The neural systems of tool and action semantics: a perspective from functional imaging</article-title>
<source>J Physiol Paris</source>
<year>2008</year>
<volume>102</volume>
<fpage>40</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1016/j.jphysparis.2008.03.009</pub-id>
<pub-id pub-id-type="pmid">18479891</pub-id>
</mixed-citation>
</ref>
<ref id="CR112">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noppeney</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>Penny</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Friston</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Two distinct neural mechanisms for category-selective responses</article-title>
<source>Cereb Cortex</source>
<year>2006</year>
<volume>16</volume>
<fpage>437</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhi123</pub-id>
<pub-id pub-id-type="pmid">15944370</pub-id>
</mixed-citation>
</ref>
<ref id="CR113">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Timmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Dexterity in cerebellar agenesis</article-title>
<source>Neuropsychologia</source>
<year>2007</year>
<volume>45</volume>
<fpage>696</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2006.08.011</pub-id>
<pub-id pub-id-type="pmid">16979674</pub-id>
</mixed-citation>
</ref>
<ref id="CR114">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Topka</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Timmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boecker</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The role of the cerebellum for predictive control of grasping</article-title>
<source>Cerebellum</source>
<year>2007</year>
<volume>6</volume>
<fpage>7</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1080/14734220600776379</pub-id>
<pub-id pub-id-type="pmid">17366262</pub-id>
</mixed-citation>
</ref>
<ref id="CR115">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Berner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Herrnberger</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kammer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Grön</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Schönfeldt-Lecuona</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting</article-title>
<source>Cortex</source>
<year>2009</year>
<volume>45</volume>
<fpage>473</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="doi">10.1016/j.cortex.2007.11.010</pub-id>
<pub-id pub-id-type="pmid">18400218</pub-id>
</mixed-citation>
</ref>
<ref id="CR116">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nowak</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Hufnagel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ameli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Timmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Interhemispheric transfer of predictive force control during grasping in cerebellar disorders</article-title>
<source>Cerebellum</source>
<year>2009</year>
<volume>8</volume>
<fpage>108</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1007/s12311-008-0081-5</pub-id>
<pub-id pub-id-type="pmid">19052829</pub-id>
</mixed-citation>
</ref>
<ref id="CR117">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Velay</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Visual objects can potentiate a grasping neural simulation which interferes with manual response execution</article-title>
<source>Acta Psychol (Amst)</source>
<year>2009</year>
<volume>130</volume>
<fpage>147</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1016/j.actpsy.2008.11.004</pub-id>
<pub-id pub-id-type="pmid">19124117</pub-id>
</mixed-citation>
</ref>
<ref id="CR118">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pitzalis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sereno</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Committeri</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fattori</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Galati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Patria</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Galletti</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Human V6: the medial motion area</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>411</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp112</pub-id>
<pub-id pub-id-type="pmid">19502476</pub-id>
</mixed-citation>
</ref>
<ref id="CR119">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prevosto</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Graf</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Ugolini</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>214</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp091</pub-id>
<pub-id pub-id-type="pmid">19465740</pub-id>
</mixed-citation>
</ref>
<ref id="CR120">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prodoehl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Corcos</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Vaillancourt</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Basal ganglia mechanisms underlying precision grip force control</article-title>
<source>Neurosci Biobehav Rev</source>
<year>2009</year>
<volume>33</volume>
<fpage>900</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="doi">10.1016/j.neubiorev.2009.03.004</pub-id>
<pub-id pub-id-type="pmid">19428499</pub-id>
</mixed-citation>
</ref>
<ref id="CR121">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quaney</surname>
<given-names>B</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Timberlake</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dodd</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Visuomotor training improves stroke-related ipsilesional upper extremity impairments</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2009</year>
<volume>24</volume>
<fpage>52</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="pmid">19710285</pub-id>
</mixed-citation>
</ref>
<ref id="CR122">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rabe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Brandauer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gizewski</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Timmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Size-weight illusion, anticipation, and adaptation of fingertip forces in patients with cerebellar degeneration</article-title>
<source>J Neurophysiol</source>
<year>2009</year>
<volume>101</volume>
<fpage>569</fpage>
<lpage>579</lpage>
<pub-id pub-id-type="doi">10.1152/jn.91068.2008</pub-id>
<pub-id pub-id-type="pmid">19036861</pub-id>
</mixed-citation>
</ref>
<ref id="CR123">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramayya</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Glasser</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Rilling</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>A DTI investigation of neural substrates supporting tool use</article-title>
<source>Cereb Cortex</source>
<year>2010</year>
<volume>20</volume>
<fpage>507</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhp141</pub-id>
<pub-id pub-id-type="pmid">19608779</pub-id>
</mixed-citation>
</ref>
<ref id="CR124">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Randerath</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Goldenberg</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hermsdörfer</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Grasping tools: effects of task and apraxia</article-title>
<source>Neuropsychologia</source>
<year>2009</year>
<volume>47</volume>
<fpage>497</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2008.10.005</pub-id>
<pub-id pub-id-type="pmid">18977235</pub-id>
</mixed-citation>
</ref>
<ref id="CR125">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raos</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Umilta</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gallese</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey</article-title>
<source>J Neurophysiol</source>
<year>2006</year>
<volume>95</volume>
<fpage>709</fpage>
<lpage>729</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00463.2005</pub-id>
<pub-id pub-id-type="pmid">16251265</pub-id>
</mixed-citation>
</ref>
<ref id="CR126">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reilly</surname>
<given-names>KT</given-names>
</name>
<name>
<surname>Mercier</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Cortical topography of human first dorsal interroseus during individuated and nonindividuated grip tasks</article-title>
<source>Hum Brain Mapp</source>
<year>2008</year>
<volume>29</volume>
<fpage>594</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1002/hbm.20421</pub-id>
<pub-id pub-id-type="pmid">17525982</pub-id>
</mixed-citation>
</ref>
<ref id="CR127">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rice</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation</article-title>
<source>J Neurosci</source>
<year>2006</year>
<volume>26</volume>
<fpage>8176</fpage>
<lpage>8182</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1641-06.2006</pub-id>
<pub-id pub-id-type="pmid">16885231</pub-id>
</mixed-citation>
</ref>
<ref id="CR128">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rice</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cross</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>On-line grasp control is mediated by the contralateral hemisphere</article-title>
<source>Brain Res</source>
<year>2007</year>
<volume>1175</volume>
<fpage>76</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1016/j.brainres.2007.08.009</pub-id>
<pub-id pub-id-type="pmid">17888413</pub-id>
</mixed-citation>
</ref>
<ref id="CR129">
<mixed-citation publication-type="other">Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale 153:146–157</mixed-citation>
</ref>
<ref id="CR130">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gentilucci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Matelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ponzoni-Maggi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Neurons related to goal-directed motor acts in inferior area 6 of the macaque monkey</article-title>
<source>Exp Brain Res</source>
<year>1987</year>
<volume>67</volume>
<fpage>220</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="doi">10.1007/BF00269468</pub-id>
<pub-id pub-id-type="pmid">3622679</pub-id>
</mixed-citation>
</ref>
<ref id="CR131">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzolatti</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Gentilucci</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Matelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ponzoni-Maggi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Neurons related to goal-directed motor acts in inferior area 6 of the macaque monkey</article-title>
<source>Exp Brain Res</source>
<year>1987</year>
<volume>67</volume>
<fpage>220</fpage>
<lpage>224</lpage>
<pub-id pub-id-type="doi">10.1007/BF00269468</pub-id>
<pub-id pub-id-type="pmid">3622679</pub-id>
</mixed-citation>
</ref>
<ref id="CR132">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gentilucci</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Camarda</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Gallese</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Luppino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Matelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a beta)</article-title>
<source>Exp Brain Res</source>
<year>1990</year>
<volume>82</volume>
<fpage>337</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="doi">10.1007/BF00231253</pub-id>
<pub-id pub-id-type="pmid">2286236</pub-id>
</mixed-citation>
</ref>
<ref id="CR133">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenbaum</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Vaughan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Barnes</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Jorgensen</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Time course of movement planning: selection of handgrips for object manipulation</article-title>
<source>J Exp Psychol Learn Mem Cogn</source>
<year>1992</year>
<volume>18</volume>
<fpage>1058</fpage>
<lpage>1073</lpage>
<pub-id pub-id-type="doi">10.1037/0278-7393.18.5.1058</pub-id>
<pub-id pub-id-type="pmid">1402710</pub-id>
</mixed-citation>
</ref>
<ref id="CR134">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenbaum</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Meulenbroek</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Vaughan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Coordination of reaching and grasping by capitalizing on obstacle avoidance and other constraints</article-title>
<source>Exp Brain Res</source>
<year>1999</year>
<volume>128</volume>
<fpage>92</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1007/s002210050823</pub-id>
<pub-id pub-id-type="pmid">10473746</pub-id>
</mixed-citation>
</ref>
<ref id="CR135">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rozzi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Bonini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fogassi</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas</article-title>
<source>Eur J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>1569</fpage>
<lpage>1588</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2008.06395.x</pub-id>
<pub-id pub-id-type="pmid">18691325</pub-id>
</mixed-citation>
</ref>
<ref id="CR136">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rushworth</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Buckley</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Walton</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Bannerman</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Functional organization of the medial frontal cortex</article-title>
<source>Curr Opin Neurobiol</source>
<year>2007</year>
<volume>17</volume>
<fpage>220</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2007.03.001</pub-id>
<pub-id pub-id-type="pmid">17350820</pub-id>
</mixed-citation>
</ref>
<ref id="CR137">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakata</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Taira</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kusunoki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tsutsui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shein</surname>
<given-names>WN</given-names>
</name>
<name>
<surname>Miyashita</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Neural representation of three-dimensional features of manipulation objects with stereopsis</article-title>
<source>Exp Brain Res</source>
<year>1999</year>
<volume>128</volume>
<fpage>160</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1007/s002210050831</pub-id>
<pub-id pub-id-type="pmid">10473754</pub-id>
</mixed-citation>
</ref>
<ref id="CR138">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schabrun</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Ridding</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Miles</surname>
<given-names>TS</given-names>
</name>
</person-group>
<article-title>Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study</article-title>
<source>Eur J Neurosci</source>
<year>2008</year>
<volume>27</volume>
<fpage>750</fpage>
<lpage>756</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2008.06039.x</pub-id>
<pub-id pub-id-type="pmid">18279327</pub-id>
</mixed-citation>
</ref>
<ref id="CR139">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmidlin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Brochier</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Maier</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Kirkwood</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>RN</given-names>
</name>
</person-group>
<article-title>Pronounced reduction of digit motor responses evoked from macaque ventral premotor cortex after reversible inactivation of the primary motor cortex hand area</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>5772</fpage>
<lpage>5783</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0944-08.2008</pub-id>
<pub-id pub-id-type="pmid">18509039</pub-id>
</mixed-citation>
</ref>
<ref id="CR140">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shadmehr</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Krakauer</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>A computational neuroanatomy for motor control</article-title>
<source>Exp Brain Res</source>
<year>2008</year>
<volume>185</volume>
<fpage>359</fpage>
<lpage>381</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-008-1280-5</pub-id>
<pub-id pub-id-type="pmid">18251019</pub-id>
</mixed-citation>
</ref>
<ref id="CR141">
<mixed-citation publication-type="other">Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci (in press)</mixed-citation>
</ref>
<ref id="CR142">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smeets</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Independent movements of the digits in grasping</article-title>
<source>Exp Brain Res</source>
<year>2001</year>
<volume>139</volume>
<fpage>92</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1007/s002210100748</pub-id>
<pub-id pub-id-type="pmid">11482847</pub-id>
</mixed-citation>
</ref>
<ref id="CR143">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sommerville</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Hildebrand</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Crane</surname>
<given-names>CC</given-names>
</name>
</person-group>
<article-title>Experience matters: the impact of doing versus watching on infants’ subsequent perception of tool-use events</article-title>
<source>Dev Psychol</source>
<year>2008</year>
<volume>44</volume>
<fpage>1249</fpage>
<lpage>1256</lpage>
<pub-id pub-id-type="doi">10.1037/a0012296</pub-id>
<pub-id pub-id-type="pmid">18793059</pub-id>
</mixed-citation>
</ref>
<ref id="CR144">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Soteropoulos</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>Cortico-cerebellar coherence during a precision grip task in the monkey</article-title>
<source>J Neurophysiol</source>
<year>2006</year>
<volume>95</volume>
<fpage>1194</fpage>
<lpage>1206</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00935.2005</pub-id>
<pub-id pub-id-type="pmid">16424458</pub-id>
</mixed-citation>
</ref>
<ref id="CR145">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spinks</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Kraskov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Brochier</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Umilta</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>RN</given-names>
</name>
</person-group>
<article-title>Selectivity for grasp in local field potential and single neuron activity recorded simultaneously from M1 and F5 in the awake macaque monkey</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>10961</fpage>
<lpage>10971</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1956-08.2008</pub-id>
<pub-id pub-id-type="pmid">18945904</pub-id>
</mixed-citation>
</ref>
<ref id="CR146">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spraker</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Corcos</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Vaillancourt</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Role of individual basal ganglia nuclei in force amplitude generation</article-title>
<source>J Neurophysiol</source>
<year>2007</year>
<volume>98</volume>
<fpage>821</fpage>
<lpage>834</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00239.2007</pub-id>
<pub-id pub-id-type="pmid">17567775</pub-id>
</mixed-citation>
</ref>
<ref id="CR147">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Srivastava</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Orban</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Mazière</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Janssen</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>A distinct representation of three-dimensional shape in macaque anterior intraparietal area: fast, metric, and coarse</article-title>
<source>J Neurosci</source>
<year>2009</year>
<volume>29</volume>
<fpage>10613</fpage>
<lpage>10626</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.6016-08.2009</pub-id>
<pub-id pub-id-type="pmid">19710314</pub-id>
</mixed-citation>
</ref>
<ref id="CR148">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Abeles</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Predicting movement from multiunit activity</article-title>
<source>J Neurosci</source>
<year>2007</year>
<volume>27</volume>
<fpage>8387</fpage>
<lpage>8394</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1321-07.2007</pub-id>
<pub-id pub-id-type="pmid">17670985</pub-id>
</mixed-citation>
</ref>
<ref id="CR149">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zohary</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Parietal mapping of visuomotor transformations during human tool grasping</article-title>
<source>Cereb Cortex</source>
<year>2008</year>
<volume>18</volume>
<fpage>2358</fpage>
<lpage>2368</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhm260</pub-id>
<pub-id pub-id-type="pmid">18252741</pub-id>
</mixed-citation>
</ref>
<ref id="CR150">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Asher</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Abeles</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site</article-title>
<source>J Neurophysiol</source>
<year>2007</year>
<volume>97</volume>
<fpage>3351</fpage>
<lpage>3364</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01328.2006</pub-id>
<pub-id pub-id-type="pmid">17360824</pub-id>
</mixed-citation>
</ref>
<ref id="CR151">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Drori</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Asher</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ben-Shaul</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Abeles</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Distinct movement parameters are represented by different neurons in the motor cortex</article-title>
<source>Eur J Neurosci</source>
<year>2007</year>
<volume>26</volume>
<fpage>1055</fpage>
<lpage>1066</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2007.05711.x</pub-id>
<pub-id pub-id-type="pmid">17714196</pub-id>
</mixed-citation>
</ref>
<ref id="CR152">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stark</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Globerson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Asher</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Abeles</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Correlations between groups of premotor neurons carry information about prehension</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>10618</fpage>
<lpage>10630</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3418-08.2008</pub-id>
<pub-id pub-id-type="pmid">18923038</pub-id>
</mixed-citation>
</ref>
<ref id="CR153">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taira</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mine</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Georgopoulos</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Murata</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sakata</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Parietal cortex neurons of the monkey related to the visual guidance of hand movement</article-title>
<source>Exp Brain Res</source>
<year>1990</year>
<volume>83</volume>
<fpage>29</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1007/BF00232190</pub-id>
<pub-id pub-id-type="pmid">2073947</pub-id>
</mixed-citation>
</ref>
<ref id="CR154">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rice</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Beyond grasping: representation of action in human anterior intraparietal sulcus</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>36</volume>
<issue>Suppl 2</issue>
<fpage>T77</fpage>
<lpage>T86</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.03.026</pub-id>
<pub-id pub-id-type="pmid">17499173</pub-id>
</mixed-citation>
</ref>
<ref id="CR155">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ortigue</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Adamovich</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>13615</fpage>
<lpage>13620</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3303-08.2008</pub-id>
<pub-id pub-id-type="pmid">19074035</pub-id>
</mixed-citation>
</ref>
<ref id="CR156">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tunik</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Houk</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Grafton</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Basal ganglia contribution to the initiation of corrective submovements</article-title>
<source>Neuroimage</source>
<year>2009</year>
<volume>47</volume>
<fpage>1757</fpage>
<lpage>1766</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2009.04.077</pub-id>
<pub-id pub-id-type="pmid">19422921</pub-id>
</mixed-citation>
</ref>
<ref id="CR157">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Umilta</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Brochier</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Spinks</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>RN</given-names>
</name>
</person-group>
<article-title>Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp</article-title>
<source>J Neurophysiol</source>
<year>2007</year>
<volume>98</volume>
<fpage>488</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="doi">10.1152/jn.01094.2006</pub-id>
<pub-id pub-id-type="pmid">17329624</pub-id>
</mixed-citation>
</ref>
<ref id="CR158">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Umiltà</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Escola</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Intskirveli</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Grammont</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rochat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Caruana</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jezzini</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gallese</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rizzolatti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>When pliers become fingers in the monkey motor system</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2008</year>
<volume>105</volume>
<fpage>2209</fpage>
<lpage>2213</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0705985105</pub-id>
<pub-id pub-id-type="pmid">18238904</pub-id>
</mixed-citation>
</ref>
<ref id="CR159">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaillancourt</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Mayka</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Thulborn</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Corcos</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans</article-title>
<source>Neuroimage</source>
<year>2004</year>
<volume>23</volume>
<fpage>175</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2004.04.040</pub-id>
<pub-id pub-id-type="pmid">15325364</pub-id>
</mixed-citation>
</ref>
<ref id="CR160">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaillancourt</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mayka</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Corcos</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>36</volume>
<fpage>793</fpage>
<lpage>803</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.03.002</pub-id>
<pub-id pub-id-type="pmid">17451971</pub-id>
</mixed-citation>
</ref>
<ref id="CR161">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vainio</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tucker</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Precision and power grip priming by observed grasping</article-title>
<source>Brain Cogn</source>
<year>2007</year>
<volume>65</volume>
<fpage>195</fpage>
<lpage>207</lpage>
<pub-id pub-id-type="doi">10.1016/j.bandc.2007.07.004</pub-id>
<pub-id pub-id-type="pmid">17766020</pub-id>
</mixed-citation>
</ref>
<ref id="CR162">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valyear</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Sharif</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Westwood</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study</article-title>
<source>Neuropsychologia</source>
<year>2006</year>
<volume>44</volume>
<fpage>218</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropsychologia.2005.05.004</pub-id>
<pub-id pub-id-type="pmid">15955539</pub-id>
</mixed-citation>
</ref>
<ref id="CR163">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valyear</surname>
<given-names>KF</given-names>
</name>
<name>
<surname>Cavina-Pratesi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stiglick</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Culham</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Does tool-related fMRI activity within the intraparietal sulcus reflect the plan to grasp?</article-title>
<source>Neuroimage</source>
<year>2007</year>
<volume>36</volume>
<issue>Suppl 2</issue>
<fpage>T94</fpage>
<lpage>T108</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2007.03.031</pub-id>
<pub-id pub-id-type="pmid">17499175</pub-id>
</mixed-citation>
</ref>
<ref id="CR164">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamp</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zaal</surname>
<given-names>FTJM</given-names>
</name>
</person-group>
<article-title>Prehension is really reaching and grasping</article-title>
<source>Exp Brain Res</source>
<year>2007</year>
<volume>182</volume>
<fpage>27</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-007-0968-2</pub-id>
<pub-id pub-id-type="pmid">17516058</pub-id>
</mixed-citation>
</ref>
<ref id="CR165">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verhagen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dijkerman</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Grol</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Toni</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Perceptuo-motor interactions during prehension movements</article-title>
<source>J Neurosci</source>
<year>2008</year>
<volume>28</volume>
<fpage>4726</fpage>
<lpage>4735</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0057-08.2008</pub-id>
<pub-id pub-id-type="pmid">18448649</pub-id>
</mixed-citation>
</ref>
<ref id="CR166">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiss</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Dafotakis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Metten</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Noth</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Distal and proximal prehension is differentially affected by Parkinson’s disease. The effect of conscious and subconscious load cues</article-title>
<source>J Neurol</source>
<year>2009</year>
<volume>256</volume>
<fpage>450</fpage>
<lpage>456</lpage>
<pub-id pub-id-type="doi">10.1007/s00415-009-0113-1</pub-id>
<pub-id pub-id-type="pmid">19266149</pub-id>
</mixed-citation>
</ref>
<ref id="CR167">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitwell</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Goodale</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension</article-title>
<source>Exp Brain Res</source>
<year>2008</year>
<volume>188</volume>
<fpage>603</fpage>
<lpage>611</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-008-1395-8</pub-id>
<pub-id pub-id-type="pmid">18443765</pub-id>
</mixed-citation>
</ref>
<ref id="CR168">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Ghahramani</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>Computational principles of movement neuroscience</article-title>
<source>Nat Neurosci</source>
<year>2000</year>
<volume>3</volume>
<issue>Suppl</issue>
<fpage>1212</fpage>
<lpage>1217</lpage>
<pub-id pub-id-type="doi">10.1038/81497</pub-id>
<pub-id pub-id-type="pmid">11127840</pub-id>
</mixed-citation>
</ref>
<ref id="CR169">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Goodbody</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Husain</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Maintaining internal representations: the role of the human superior parietal lobe</article-title>
<source>Nat Neurosci</source>
<year>1998</year>
<volume>1</volume>
<fpage>529</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="doi">10.1038/2245</pub-id>
<pub-id pub-id-type="pmid">10196553</pub-id>
</mixed-citation>
</ref>
<ref id="CR170">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Distinctive neural mechanisms supporting visual object individuation and identification</article-title>
<source>J Cogn Neurosci</source>
<year>2009</year>
<volume>21</volume>
<fpage>511</fpage>
<lpage>518</lpage>
<pub-id pub-id-type="doi">10.1162/jocn.2008.21024</pub-id>
<pub-id pub-id-type="pmid">18510449</pub-id>
</mixed-citation>
</ref>
<ref id="CR171">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zatsiorsky</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Latash</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Multifinger prehension: an overview</article-title>
<source>J Mot Behav</source>
<year>2008</year>
<volume>40</volume>
<fpage>446</fpage>
<lpage>476</lpage>
<pub-id pub-id-type="doi">10.3200/JMBR.40.5.446-476</pub-id>
<pub-id pub-id-type="pmid">18782719</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000911 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000911 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:2903689
   |texte=   The cognitive neuroscience of prehension: recent developments
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:20532487" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024