Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling human perception of orientation in altered gravity

Identifieur interne : 000222 ( Pmc/Curation ); précédent : 000221; suivant : 000223

Modeling human perception of orientation in altered gravity

Auteurs : Torin K. Clark [États-Unis] ; Michael C. Newman [États-Unis] ; Charles M. Oman [États-Unis] ; Daniel M. Merfeld [États-Unis] ; Laurence R. Young [États-Unis]

Source :

RBID : PMC:4419856

Abstract

Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.


Url:
DOI: 10.3389/fnsys.2015.00068
PubMed: 25999822
PubMed Central: 4419856

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4419856

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling human perception of orientation in altered gravity</title>
<author>
<name sortKey="Clark, Torin K" sort="Clark, Torin K" uniqKey="Clark T" first="Torin K." last="Clark">Torin K. Clark</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School</institution>
<country>Boston, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Newman, Michael C" sort="Newman, Michael C" uniqKey="Newman M" first="Michael C." last="Newman">Michael C. Newman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<institution>National Aerospace Training and Research Center</institution>
<country>Southampton, PA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oman, Charles M" sort="Oman, Charles M" uniqKey="Oman C" first="Charles M." last="Oman">Charles M. Oman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M." last="Merfeld">Daniel M. Merfeld</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School</institution>
<country>Boston, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Young, Laurence R" sort="Young, Laurence R" uniqKey="Young L" first="Laurence R." last="Young">Laurence R. Young</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25999822</idno>
<idno type="pmc">4419856</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419856</idno>
<idno type="RBID">PMC:4419856</idno>
<idno type="doi">10.3389/fnsys.2015.00068</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000222</idno>
<idno type="wicri:Area/Pmc/Curation">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Modeling human perception of orientation in altered gravity</title>
<author>
<name sortKey="Clark, Torin K" sort="Clark, Torin K" uniqKey="Clark T" first="Torin K." last="Clark">Torin K. Clark</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School</institution>
<country>Boston, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Newman, Michael C" sort="Newman, Michael C" uniqKey="Newman M" first="Michael C." last="Newman">Michael C. Newman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">
<institution>National Aerospace Training and Research Center</institution>
<country>Southampton, PA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Oman, Charles M" sort="Oman, Charles M" uniqKey="Oman C" first="Charles M." last="Oman">Charles M. Oman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Merfeld, Daniel M" sort="Merfeld, Daniel M" uniqKey="Merfeld D" first="Daniel M." last="Merfeld">Daniel M. Merfeld</name>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School</institution>
<country>Boston, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Young, Laurence R" sort="Young, Laurence R" uniqKey="Young L" first="Laurence R." last="Young">Laurence R. Young</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea></wicri:regionArea>
<wicri:regionArea># see nlm:aff region in country</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Systems Neuroscience</title>
<idno type="eISSN">1662-5137</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelaki, D E" uniqKey="Angelaki D">D. E. Angelaki</name>
</author>
<author>
<name sortKey="Shaikh, A G" uniqKey="Shaikh A">A. G. Shaikh</name>
</author>
<author>
<name sortKey="Green, A M" uniqKey="Green A">A. M. Green</name>
</author>
<author>
<name sortKey="Dickman, J D" uniqKey="Dickman J">J. D. Dickman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aubert, H" uniqKey="Aubert H">H. Aubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borah, J" uniqKey="Borah J">J. Borah</name>
</author>
<author>
<name sortKey="Young, L R" uniqKey="Young L">L. R. Young</name>
</author>
<author>
<name sortKey="Curry, R E" uniqKey="Curry R">R. E. Curry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bortolami, S B" uniqKey="Bortolami S">S. B. Bortolami</name>
</author>
<author>
<name sortKey="Rocca, S" uniqKey="Rocca S">S. Rocca</name>
</author>
<author>
<name sortKey="Daros, S" uniqKey="Daros S">S. Daros</name>
</author>
<author>
<name sortKey="Dizio, P" uniqKey="Dizio P">P. Dizio</name>
</author>
<author>
<name sortKey="Lackner, J R" uniqKey="Lackner J">J. R. Lackner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chelette, T L" uniqKey="Chelette T">T. L. Chelette</name>
</author>
<author>
<name sortKey="Martin, E J" uniqKey="Martin E">E. J. Martin</name>
</author>
<author>
<name sortKey="Albery, W B" uniqKey="Albery W">W. B. Albery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, T K" uniqKey="Clark T">T. K. Clark</name>
</author>
<author>
<name sortKey="Newman, M C" uniqKey="Newman M">M. C. Newman</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
<author>
<name sortKey="Young, L R" uniqKey="Young L">L. R. Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, M M" uniqKey="Cohen M">M. M. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colenbrander, A" uniqKey="Colenbrander A">A. Colenbrander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Correia, M J" uniqKey="Correia M">M. J. Correia</name>
</author>
<author>
<name sortKey="Hixson, W C" uniqKey="Hixson W">W. C. Hixson</name>
</author>
<author>
<name sortKey="Niven, J I" uniqKey="Niven J">J. I. Niven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Correia, M J" uniqKey="Correia M">M. J. Correia</name>
</author>
<author>
<name sortKey="Hixson, W C" uniqKey="Hixson W">W. C. Hixson</name>
</author>
<author>
<name sortKey="Niven, J I" uniqKey="Niven J">J. I. Niven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corvera, J" uniqKey="Corvera J">J. Corvera</name>
</author>
<author>
<name sortKey="Hallpike, C S" uniqKey="Hallpike C">C. S. Hallpike</name>
</author>
<author>
<name sortKey="Schuster, E H J" uniqKey="Schuster E">E. H. J. Schuster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curthoys, I S" uniqKey="Curthoys I">I. S. Curthoys</name>
</author>
<author>
<name sortKey="Betts, G A" uniqKey="Betts G">G. A. Betts</name>
</author>
<author>
<name sortKey="Burgess, A M" uniqKey="Burgess A">A. M. Burgess</name>
</author>
<author>
<name sortKey="Macdougall, H G" uniqKey="Macdougall H">H. G. MacDougall</name>
</author>
<author>
<name sortKey="Cartwright, A D" uniqKey="Cartwright A">A. D. Cartwright</name>
</author>
<author>
<name sortKey="Halmagyi, G M" uniqKey="Halmagyi G">G. M. Halmagyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, M J" uniqKey="Dai M">M. J. Dai</name>
</author>
<author>
<name sortKey="Curthoys, I S" uniqKey="Curthoys I">I. S. Curthoys</name>
</author>
<author>
<name sortKey="Halmagyi, G M" uniqKey="Halmagyi G">G. M. Halmagyi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Winkel, K N" uniqKey="De Winkel K">K. N. De Winkel</name>
</author>
<author>
<name sortKey="Clement, G" uniqKey="Clement G">G. Clement</name>
</author>
<author>
<name sortKey="Groen, E L" uniqKey="Groen E">E. L. Groen</name>
</author>
<author>
<name sortKey="Werkhoven, P J" uniqKey="Werkhoven P">P. J. Werkhoven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyde, R T" uniqKey="Dyde R">R. T. Dyde</name>
</author>
<author>
<name sortKey="Jenkin, M R" uniqKey="Jenkin M">M. R. Jenkin</name>
</author>
<author>
<name sortKey="Jenkin, H L" uniqKey="Jenkin H">H. L. Jenkin</name>
</author>
<author>
<name sortKey="Zacher, J E" uniqKey="Zacher J">J. E. Zacher</name>
</author>
<author>
<name sortKey="Harris, L R" uniqKey="Harris L">L. R. Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glasauer, S" uniqKey="Glasauer S">S. Glasauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glasauer, S" uniqKey="Glasauer S">S. Glasauer</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
<author>
<name sortKey="Fernandez, C" uniqKey="Fernandez C">C. Fernandez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Green, A M" uniqKey="Green A">A. M. Green</name>
</author>
<author>
<name sortKey="Angelaki, D E" uniqKey="Angelaki D">D. E. Angelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haslwanter, T" uniqKey="Haslwanter T">T. Haslwanter</name>
</author>
<author>
<name sortKey="Jaeger, R" uniqKey="Jaeger R">R. Jaeger</name>
</author>
<author>
<name sortKey="Mayr, S" uniqKey="Mayr S">S. Mayr</name>
</author>
<author>
<name sortKey="Fetter, M" uniqKey="Fetter M">M. Fetter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holly, J E" uniqKey="Holly J">J. E. Holly</name>
</author>
<author>
<name sortKey="Davis, S M" uniqKey="Davis S">S. M. Davis</name>
</author>
<author>
<name sortKey="Sullivan, K E" uniqKey="Sullivan K">K. E. Sullivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holly, J E" uniqKey="Holly J">J. E. Holly</name>
</author>
<author>
<name sortKey="Mccollum, G" uniqKey="Mccollum G">G. McCollum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, H" uniqKey="Jia H">H. Jia</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L. Yu</name>
</author>
<author>
<name sortKey="Bi, H" uniqKey="Bi H">H. Bi</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Xie, S" uniqKey="Xie S">S. Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalman, R E" uniqKey="Kalman R">R. E. Kalman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalman, R E" uniqKey="Kalman R">R. E. Kalman</name>
</author>
<author>
<name sortKey="Bucy, R S" uniqKey="Bucy R">R. S. Bucy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karmali, F" uniqKey="Karmali F">F. Karmali</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laurens, J" uniqKey="Laurens J">J. Laurens</name>
</author>
<author>
<name sortKey="Droulez, J" uniqKey="Droulez J">J. Droulez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luenburger, D G" uniqKey="Luenburger D">D. G. Luenburger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macneilage, P R" uniqKey="Macneilage P">P. R. Macneilage</name>
</author>
<author>
<name sortKey="Ganesan, N" uniqKey="Ganesan N">N. Ganesan</name>
</author>
<author>
<name sortKey="Angelaki, D E" uniqKey="Angelaki D">D. E. Angelaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
<author>
<name sortKey="Young, L R" uniqKey="Young L">L. R. Young</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Shelhammer, M J" uniqKey="Shelhammer M">M. J. Shelhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
<author>
<name sortKey="Zupan, L H" uniqKey="Zupan L">L. H. Zupan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
<author>
<name sortKey="Zupan, L" uniqKey="Zupan L">L. Zupan</name>
</author>
<author>
<name sortKey="Peterka, R J" uniqKey="Peterka R">R. J. Peterka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, E F" uniqKey="Miller E">E. F. Miller</name>
</author>
<author>
<name sortKey="Graybiel, A" uniqKey="Graybiel A">A. Graybiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H. Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H. Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H. Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mittelstaedt, H" uniqKey="Mittelstaedt H">H. Mittelstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, G E" uniqKey="Muller G">G. E. Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newman, M C" uniqKey="Newman M">M. C. Newman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noble, C E" uniqKey="Noble C">C. E. Noble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Lichtenberg, B K" uniqKey="Lichtenberg B">B. K. Lichtenberg</name>
</author>
<author>
<name sortKey="Money, K E" uniqKey="Money K">K. E. Money</name>
</author>
<author>
<name sortKey="Mccoy, R K" uniqKey="Mccoy R">R. K. McCoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ormsby, C C" uniqKey="Ormsby C">C. C. Ormsby</name>
</author>
<author>
<name sortKey="Young, L R" uniqKey="Young L">L. R. Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paloski, W H" uniqKey="Paloski W">W. H. Paloski</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Bloomberg, J J" uniqKey="Bloomberg J">J. J. Bloomberg</name>
</author>
<author>
<name sortKey="Reschke, M F" uniqKey="Reschke M">M. F. Reschke</name>
</author>
<author>
<name sortKey="Wood, S J" uniqKey="Wood S">S. J. Wood</name>
</author>
<author>
<name sortKey="Harm, D L" uniqKey="Harm D">D. L. Harm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, S" uniqKey="Park S">S. Park</name>
</author>
<author>
<name sortKey="Gianna Poulin, C" uniqKey="Gianna Poulin C">C. Gianna-Poulin</name>
</author>
<author>
<name sortKey="Black, F O" uniqKey="Black F">F. O. Black</name>
</author>
<author>
<name sortKey="Wood, S" uniqKey="Wood S">S. Wood</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parker, D E" uniqKey="Parker D">D. E. Parker</name>
</author>
<author>
<name sortKey="Reschke, M F" uniqKey="Reschke M">M. F. Reschke</name>
</author>
<author>
<name sortKey="Arrott, A P" uniqKey="Arrott A">A. P. Arrott</name>
</author>
<author>
<name sortKey="Homick, J L" uniqKey="Homick J">J. L. Homick</name>
</author>
<author>
<name sortKey="Lichtenberg, B K" uniqKey="Lichtenberg B">B. K. Lichtenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rader, A A" uniqKey="Rader A">A. A. Rader</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schone, H" uniqKey="Schone H">H. Schone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schone, H" uniqKey="Schone H">H. Schone</name>
</author>
<author>
<name sortKey="Parker, D E" uniqKey="Parker D">D. E. Parker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schone, H" uniqKey="Schone H">H. Schone</name>
</author>
<author>
<name sortKey="Parker, D E" uniqKey="Parker D">D. E. Parker</name>
</author>
<author>
<name sortKey="Mortag, H G" uniqKey="Mortag H">H. G. Mortag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selva, P" uniqKey="Selva P">P. Selva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Selva, P" uniqKey="Selva P">P. Selva</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vingerhoets, R A A" uniqKey="Vingerhoets R">R. A. A. Vingerhoets</name>
</author>
<author>
<name sortKey="De Vrijer, M" uniqKey="De Vrijer M">M. de Vrijer</name>
</author>
<author>
<name sortKey="Van Gisbergen, J A M" uniqKey="Van Gisbergen J">J. A. M. van Gisbergen</name>
</author>
<author>
<name sortKey="Medendorp, W P" uniqKey="Medendorp W">W. P. Medendorp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vingerhoets, R A A" uniqKey="Vingerhoets R">R. A. A. Vingerhoets</name>
</author>
<author>
<name sortKey="Van Gisbergen, J A M" uniqKey="Van Gisbergen J">J. A. M. van Gisbergen</name>
</author>
<author>
<name sortKey="Medendorp, W P" uniqKey="Medendorp W">W. P. Medendorp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wade, S W" uniqKey="Wade S">S. W. Wade</name>
</author>
<author>
<name sortKey="Curthoys, I S" uniqKey="Curthoys I">I. S. Curthoys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Young, L R" uniqKey="Young L">L. R. Young</name>
</author>
<author>
<name sortKey="Oman, C M" uniqKey="Oman C">C. M. Oman</name>
</author>
<author>
<name sortKey="Watt, D G D" uniqKey="Watt D">D. G. D. Watt</name>
</author>
<author>
<name sortKey="Money, K E" uniqKey="Money K">K. E. Money</name>
</author>
<author>
<name sortKey="Lichtenberg, B K" uniqKey="Lichtenberg B">B. K. Lichtenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zupan, L H" uniqKey="Zupan L">L. H. Zupan</name>
</author>
<author>
<name sortKey="Merfeld, D M" uniqKey="Merfeld D">D. M. Merfeld</name>
</author>
<author>
<name sortKey="Darlot, C" uniqKey="Darlot C">C. Darlot</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Syst Neurosci</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Syst Neurosci</journal-id>
<journal-id journal-id-type="publisher-id">Front. Syst. Neurosci.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Systems Neuroscience</journal-title>
</journal-title-group>
<issn pub-type="epub">1662-5137</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25999822</article-id>
<article-id pub-id-type="pmc">4419856</article-id>
<article-id pub-id-type="doi">10.3389/fnsys.2015.00068</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Neuroscience</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Modeling human perception of orientation in altered gravity</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Clark</surname>
<given-names>Torin K.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/192211"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Newman</surname>
<given-names>Michael C.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Oman</surname>
<given-names>Charles M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/232049"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Merfeld</surname>
<given-names>Daniel M.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/121240"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Young</surname>
<given-names>Laurence R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://community.frontiersin.org/people/u/19454"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology</institution>
<country>Cambridge, MA, USA</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Jenks Vestibular Psychology Laboratory, Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School</institution>
<country>Boston, MA, USA</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>National Aerospace Training and Research Center</institution>
<country>Southampton, PA, USA</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by: Ajitkumar Mulavara, Universities Space Research Association, USA</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by: Kara H. Beaton, Johns Hopkins University School of Medicine, USA; Paul MacNeilage, University Hospital of Munich, Germany</p>
</fn>
<corresp id="fn001">*Correspondence: Torin K. Clark, Man Vehicle Laboratory, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 70 Vassar St., Rm. 37-219, Cambridge, MA 02139, USA
<email xlink:type="simple">tkc@mit.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>05</day>
<month>5</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>9</volume>
<elocation-id>68</elocation-id>
<history>
<date date-type="received">
<day>31</day>
<month>1</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>12</day>
<month>4</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Clark, Newman, Oman, Merfeld and Young.</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.</p>
</abstract>
<kwd-group>
<kwd>orientation perception</kwd>
<kwd>hyper-gravity</kwd>
<kwd>vestibular</kwd>
<kwd>mathematical model</kwd>
<kwd>observer</kwd>
</kwd-group>
<counts>
<fig-count count="7"></fig-count>
<table-count count="2"></table-count>
<equation-count count="4"></equation-count>
<ref-count count="63"></ref-count>
<page-count count="13"></page-count>
<word-count count="10092"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec sec-type="introduction" id="s1">
<title>Introduction</title>
<p>Astronauts experience a series of altered gravity environments during space exploration missions: hyper-gravity during launch and re-entry, microgravity while on orbit or in transit, and hypo-gravity if landing on the moon or in the future on Mars. It is well-known that altered gravity affects sensorimotor function (Young et al.,
<xref rid="B62" ref-type="bibr">1984</xref>
; Parker et al.,
<xref rid="B52" ref-type="bibr">1985</xref>
). However, the effect of altered gravity on orientation perception remains poorly quantified. For example, astronauts often anecdotally report a sensation of tumbling upside down, or an “inversion illusion,” upon initial exposure to microgravity (Oman et al.,
<xref rid="B48" ref-type="bibr">1986</xref>
; Paloski et al.,
<xref rid="B50" ref-type="bibr">2008</xref>
), but to our knowledge these perceptions have not been quantified.</p>
<p>In addition, mathematical models of dynamic orientation perception are limited to normal Earth 1 G environments. To consider the effect of altered gravity in mathematical models of orientation perception, we first focus on hyper-gravity (i.e., >1 Earth G normally experienced) and then considering hypo-gravity (i.e., <1 Earth G). Since many hyper-gravity experiments use centrifugation, here and throughout we use “G” to refer to the net gravito-inertial force (GIF), or the combination of gravity and linear acceleration. Since by Einstein's equivalence principle forces of gravity and acceleration are ambiguous, we often refer to the net GIF level as the “gravity level.” One-G is equal to the 9.81 m/s
<sup>2</sup>
of gravitational acceleration regularly experienced on Earth.</p>
<p>Previous experimental efforts have focused on perception of
<italic>static</italic>
tilts in hyper-gravity in the dark (Noble,
<xref rid="B44" ref-type="bibr">1949</xref>
; Colenbrander,
<xref rid="B8" ref-type="bibr">1963</xref>
; Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Miller and Graybiel,
<xref rid="B37" ref-type="bibr">1966</xref>
; Schone and Parker,
<xref rid="B55" ref-type="bibr">1967</xref>
; Schone et al.,
<xref rid="B56" ref-type="bibr">1967</xref>
; Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
; Chelette et al.,
<xref rid="B5" ref-type="bibr">1995</xref>
; Jia et al.,
<xref rid="B27" ref-type="bibr">2002</xref>
). In most of these studies, a short-radius centrifuge was used to create a hyper-gravity environment and then subjects reported their static roll tilt perceptions using a subjective visual vertical (SVV) task (Aubert,
<xref rid="B2" ref-type="bibr">1861</xref>
). Subjects typically overestimated their roll tilt angle in hyper-gravity.</p>
<p>For pitch tilt perception, other studies found that hyper-gravity caused a perception of being pitched nose up when the actual pitch angle was <30° forward (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
). When pitched nose down by roughly 30°, perception was unaffected by hyper-gravity. At this orientation, the approximate plane of the utricular component of the otolith organs is roughly perpendicular to the increased stimulation in hyper-gravity (Corvera et al.,
<xref rid="B11" ref-type="bibr">1958</xref>
; Curthoys et al.,
<xref rid="B12" ref-type="bibr">1999</xref>
).</p>
<p>To explain these results, there have been several models proposed for static orientation perception in hyper-gravity (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
). First, Schöne hypothesized perceived tilt (e.g., pitch or roll) to be proportional to the shear force stimulation in the utricular plane. We note that the concept of a utricular “plane” is a simplification, since the utricular maculae are actually three-dimensional surfaces. For roll tilt, this relationship is given in Equation (1), where θ is roll tilt angle (either perceived or actual),
<italic>G</italic>
is the magnitude of the gravitational environment, or GIF, in Earth G's, and
<italic>K</italic>
is the proportionality constant.</p>
<disp-formula id="E1">
<label>(1)</label>
<mml:math id="M1">
<mml:mrow>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mi>K</mml:mi>
<mml:mo></mml:mo>
<mml:mi>G</mml:mi>
<mml:mo></mml:mo>
<mml:mi>s</mml:mi>
<mml:mi>i</mml:mi>
<mml:mi>n</mml:mi>
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:math>
</disp-formula>
<p>The proportionality coefficient was initially estimated as 64°/G of shear force stimulation based upon pitch perception measures (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
), however later data for roll tilt appear to support an estimate of 50–60°/G (Schone and Parker,
<xref rid="B55" ref-type="bibr">1967</xref>
; Schone et al.,
<xref rid="B56" ref-type="bibr">1967</xref>
). Here we fix
<italic>K</italic>
= 60°/G. Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) found the “utricular shear hypothesis” to be a poor fit; specifically, different combinations of angle and gravity level which yielded the same utricular shear force [
<italic>G</italic>
<sup>*</sup>
sin(θ)] were perceived as different angles of tilt. A “tangent model” was found to be a better empirical fit (Equation 2) (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
).</p>
<disp-formula id="E2">
<label>(2)</label>
<mml:math id="M2">
<mml:mrow>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mtext>atan</mml:mtext>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo></mml:mo>
<mml:mi>tan</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
<p>They hypothesized that the tangent model accounted for the “utricular compression component” influencing the otolith response. Alternatively Schöne et al. proposed the utricular shear hypothesis remains valid, but that it approaches a physiological limit at shear force magnitudes >1 G (Schone and Parker,
<xref rid="B55" ref-type="bibr">1967</xref>
; Schone et al.,
<xref rid="B56" ref-type="bibr">1967</xref>
; Ormsby and Young,
<xref rid="B49" ref-type="bibr">1976</xref>
).</p>
<p>Mittelstaedt proposed another model (Mittelstaedt,
<xref rid="B38" ref-type="bibr">1983a</xref>
,
<xref rid="B39" ref-type="bibr">b</xref>
) for static tilt perception which postulated perception was driven by two distinct entities: graviceptor (e.g., otolith) cues and an “idiotropic vector” which draws perceptual reports toward the subject's body axis. The model was originally proposed to explain perceptual biases in 1 G (i.e., A- and E-effects) (Aubert,
<xref rid="B2" ref-type="bibr">1861</xref>
; Muller,
<xref rid="B42" ref-type="bibr">1916</xref>
), however by incorporating the complexities of non-linear transduction (Fernandez and Goldberg,
<xref rid="B18" ref-type="bibr">1976b</xref>
) and the pitched up morphology of the utricle and saccule (Corvera et al.,
<xref rid="B11" ref-type="bibr">1958</xref>
; Curthoys et al.,
<xref rid="B12" ref-type="bibr">1999</xref>
), the model can produce overestimation in hyper-gravity. See the Appendix of Clark et al. (
<xref rid="B6" ref-type="bibr">2015</xref>
) for details on model implementation. Building upon the concepts of non-linear otolith function, Dai and colleagues proposed a model to predict tilt perception over a range of altered gravity levels and orientations (Dai et al.,
<xref rid="B13" ref-type="bibr">1989</xref>
). More recently, a model was developed to predict static orientation perception in altered gravity environments using otolith and tactile cues (Bortolami et al.,
<xref rid="B4" ref-type="bibr">2006</xref>
).</p>
<p>However, each of these models only considers
<italic>static</italic>
tilts in hyper-gravity. Several mathematical models have been proposed for
<italic>dynamic</italic>
orientation perception, as reviewed by Macneilage et al. (
<xref rid="B33" ref-type="bibr">2008</xref>
). Concepts from engineering estimation and control theory have been employed such as Kalman filters (Borah et al.,
<xref rid="B3" ref-type="bibr">1988</xref>
), extended and unscented Kalman filters (Selva,
<xref rid="B57" ref-type="bibr">2009</xref>
), and particle filters (Laurens and Droulez,
<xref rid="B31" ref-type="bibr">2007</xref>
; Karmali and Merfeld,
<xref rid="B30" ref-type="bibr">2012</xref>
). In the integration of cues from the semicircular canals and otolith organs, it has been hypothesized that the central nervous system (CNS) employs internal models (Merfeld et al.,
<xref rid="B36" ref-type="bibr">1999</xref>
; Green and Angelaki,
<xref rid="B23" ref-type="bibr">2004</xref>
) as well as an understanding of three-dimensional rotations (Glasauer,
<xref rid="B20" ref-type="bibr">1992</xref>
; Holly and McCollum,
<xref rid="B26" ref-type="bibr">1996</xref>
; Holly et al.,
<xref rid="B25" ref-type="bibr">2011</xref>
).</p>
<p>One of the better validated models is the “observer”-family of models (Merfeld et al.,
<xref rid="B34" ref-type="bibr">1993</xref>
; Merfeld and Zupan,
<xref rid="B35" ref-type="bibr">2002</xref>
; Zupan et al.,
<xref rid="B63" ref-type="bibr">2002</xref>
; Vingerhoets et al.,
<xref rid="B60" ref-type="bibr">2007</xref>
,
<xref rid="B59" ref-type="bibr">2009</xref>
; Newman,
<xref rid="B43" ref-type="bibr">2009</xref>
; Rader et al.,
<xref rid="B53" ref-type="bibr">2009</xref>
), which have been used to predict a wide range of illusory perceptions. The model is based upon the “observer” concept from estimation theory (Kalman,
<xref rid="B28" ref-type="bibr">1960</xref>
; Kalman and Bucy,
<xref rid="B29" ref-type="bibr">1961</xref>
; Luenburger,
<xref rid="B32" ref-type="bibr">1971</xref>
) which uses an internal model to predict and evaluate feedback measurements (Oman,
<xref rid="B45" ref-type="bibr">1982</xref>
,
<xref rid="B46" ref-type="bibr">1990</xref>
). While effective for a wide range of motion stimuli in 1 G, the observer models do not predict overestimation in hyper-gravity, even for static tilts. Instead, for any altered gravity environment the observer model predicts near veridical perceptions of tilt, limiting their application to a 1 G environment. However, we recently proposed a modification to the observer model, which allows for it to predict the static and dynamic overestimation of roll tilt experimentally observed across a range of conditions (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). The modification is based upon the hypothesis that the CNS treats otolith stimulation in the utricular plane different than stimulation out of the utricular plane.</p>
<p>In the remainder of this paper, first in the methods we detail our two modified models: the modified utricular shear model for
<italic>static</italic>
orientation perception and the modified observer model that can make predictions for
<italic>static and dynamic</italic>
orientation perception. In the results, data for static roll tilt perception in hyper-gravity are compared to previous mathematical models. Finding systematic errors between the previous models and roll tilt perception in hyper-gravity, we next compare to our modified utricular shear model and modified observer model.</p>
<p>We then transition to pitch tilt perception in hyper-gravity, comparing the modified observer and modified utricular shear models to previous available data. As a novel contribution of this paper, we show the modified observer model predictions for pitch tilt in hyper-gravity which emphasizes the criticality of the hypothesized differential weighting in the pitched-up utricular plane.</p>
<p>Finally, the modified models are simulated in hypo-gravity environments, including lunar and Martian gravity levels. Novel model predictions are first made for roll tilt and then for pitch tilt, across a range of tilt angles and hypo-gravity levels.</p>
<p>To summarize the various models considered and their performance in each different condition (static vs. dynamic tilts, 1 G vs. hyper-G vs. hypo-G, and roll vs. pitch) we provide Table
<xref ref-type="table" rid="T1">1</xref>
as reference. We note that none of the models considered make meaningful predictions in microgravity (i.e., 0 G), where “orientation” is no longer relative to the direction of gravity, and thus this altered gravity environment is omitted from Table
<xref ref-type="table" rid="T1">1</xref>
. We also do not consider yaw tilts (e.g., supine subject in a bbq-style rotation) or combinations of different axes. The shaded boxes denote specific conditions considered in the current paper.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>
<bold>Summary of previous and current models for orientation perception in altered gravity</bold>
.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-i0001"></graphic>
<table-wrap-foot>
<p>
<italic>√, Quality fit of the data; X, systematic errors in fitting the available data; O, model can make predictions but either the original authors do not present them or we do not consider them here; O?, model can make quantitative predictions but they are not presented here and have not yet been experimentally validated; √surd?, model makes predictions which we present here but have not yet been experimentally validated; empty, model cannot make predictions or we would not expect the predictions to be valid; gray shaded, presented in the current paper</italic>
.</p>
</table-wrap-foot>
</table-wrap>
<p>It is well-known that exposure to altered gravity drives sensorimotor adaptation and a reinterpretation of sensory orientation cues (Young et al.,
<xref rid="B62" ref-type="bibr">1984</xref>
; Parker et al.,
<xref rid="B52" ref-type="bibr">1985</xref>
). In fact, we recently observed less dynamic overestimation of roll tilt in hyper-gravity on a second presentation (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). However, like almost all earlier sensory integration models of spatial orientation, the models considered here do not have adaptive mechanisms to reproduce this effect, so we will only aim to model perception on initial exposure to an altered gravity environment.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and methods</title>
<p>We recently completed an experiment studying roll tilt perception in hyper-gravity (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). In this experiment, subjects reported roll tilt perception using a haptic task, in which they aligned a hand-held bar with their perceived horizontal (Wade and Curthoys,
<xref rid="B61" ref-type="bibr">1997</xref>
; Bortolami et al.,
<xref rid="B4" ref-type="bibr">2006</xref>
; Park et al.,
<xref rid="B51" ref-type="bibr">2006</xref>
). We measured at roll tilts of −20, 10, 20, and 40° (by our convention positive angles corresponded to tilts to the left; however we found no evidence of left/right asymmetries) and net gravito-inertial levels (G-levels) of 1, 1.5, and 2 G's. This previous experiment was approved by the Environmental Tectonics Corporation/NASTAR Center's Internal Review Board and MIT's Committee on the Use of Humans as Experimental Subjects. Using this dataset, here we evaluate several previously proposed models for static orientation perception in hyper-gravity. Specifically, we consider the utricular shear model (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Schone and Parker,
<xref rid="B55" ref-type="bibr">1967</xref>
; Schone et al.,
<xref rid="B56" ref-type="bibr">1967</xref>
), tangent model (Correia et al.,
<xref rid="B9" ref-type="bibr">1965</xref>
,
<xref rid="B10" ref-type="bibr">1968</xref>
), and Mittelstaedt's idiotropic vector model (Mittelstaedt,
<xref rid="B38" ref-type="bibr">1983a</xref>
,
<xref rid="B39" ref-type="bibr">b</xref>
). To differentiate our recent dataset from other experiments studying static tilt perception in hyper-gravity, we refer to this study as our “current study.”</p>
<sec>
<title>Modified utricular shear model</title>
<p>As will be seen (Figure
<xref ref-type="fig" rid="F1">1</xref>
) prior models do not fit our current study data well (static roll tilt in hyper-gravity). Alternatively we propose a “modified utricular shear” model. The model is empirical and
<italic>ad hoc</italic>
, but we provide some justification here. There is evidence showing the change in the otolith afferent firing rates are approximately proportional to the force acting along the neuron's polarization direction in monkeys (Fernandez and Goldberg,
<xref rid="B17" ref-type="bibr">1976a</xref>
,
<xref rid="B18" ref-type="bibr">b</xref>
,
<xref rid="B19" ref-type="bibr">c</xref>
). Hence it was logical for the proposed model to be of the form
<italic>G</italic>
<sup>*</sup>
sin(θ), since that is the physical quantity causing changes in firing rates. On a micro-level, θ may refer to the angle between the gravity force and an individual neuron's polarization direction. However, at a population level, θ may refer to the roll angle for example, where each neuron's gain is proportional to how closely its polarization direction is aligned with stimulation from roll tilt. Thus, we began with the traditional utricular shear model (Equation 1), but rearranged it into 1 G and hyper-G terms and then added an additional free parameter (
<italic>M</italic>
) to the hyper-gravity term. This model allows for the 1 G and hyper-gravity perceptions to be fit separately, unlike the traditional utricular shear model. However, both hyper gravity levels across all angles still must be fit with a single free parameter. We fit the model to our current dataset (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
), using a hierarchical regression with subject as the identifier. Model fit parameters are provided in Table
<xref ref-type="table" rid="T2">2</xref>
.</p>
<disp-formula id="E3">
<label>(3)</label>
<mml:math id="M3">
<mml:mrow>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:msub>
<mml:mi>ρ</mml:mi>
<mml:mi>i</mml:mi>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:mi>K</mml:mi>
<mml:mo></mml:mo>
<mml:mi>sin</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mi>M</mml:mi>
<mml:mo></mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>G</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</disp-formula>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Comparison of previous static models for hyper-gravity roll tilt perception to experimental data</bold>
. Data are means ± 1 SE (
<italic>N</italic>
= 48 per point). Utricular shear model (solid line) uses
<italic>K</italic>
= 60°/G. The tangent model is shown as the dotted line. The Mittelstaedt model (dash-dot line) uses all parameters as defined in Mittelstaedt (
<xref rid="B38" ref-type="bibr">1983a</xref>
).
<bold>(A</bold>
<bold>C)</bold>
Show perceived roll angle;
<bold>(D</bold>
<bold>F)</bold>
Show the same information but as error in perceived roll angle (perceived–actual). By our convention positive angles are tilts to the left.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0001"></graphic>
</fig>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>
<bold>Modified utricular shear model for static roll tilt</bold>
.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<bold>Coefficient</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Units</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Estimate</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Standard error</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>Z-values</bold>
</th>
<th align="center" rowspan="1" colspan="1">
<bold>
<italic>p</italic>
-Values</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<overline>ρ
<sub>
<italic>i</italic>
</sub>
</overline>
</td>
<td align="left" rowspan="1" colspan="1">Degrees (°)</td>
<td align="center" rowspan="1" colspan="1">−0.29</td>
<td align="center" rowspan="1" colspan="1">0.83</td>
<td align="center" rowspan="1" colspan="1">−0.34</td>
<td align="center" rowspan="1" colspan="1">0.73</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>K</italic>
</td>
<td align="left" rowspan="1" colspan="1">Degress/G (°/G)</td>
<td align="center" rowspan="1" colspan="1">64.6</td>
<td align="center" rowspan="1" colspan="1">1.53</td>
<td align="center" rowspan="1" colspan="1">42.1</td>
<td align="center" rowspan="1" colspan="1"><0.0005</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>M</italic>
</td>
<td align="left" rowspan="1" colspan="1">Unitless</td>
<td align="center" rowspan="1" colspan="1">0.26</td>
<td align="center" rowspan="1" colspan="1">0.035</td>
<td align="center" rowspan="1" colspan="1">7.48</td>
<td align="center" rowspan="1" colspan="1"><0.0005</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>In Section Comparison of Static Pitch Tilt in Hyper-Gravity to Modified Utricular Shear and Modified Observer Model, the modified utricular shear model is compared to previous pitch tilt perception data in hyper-gravity. To make this comparison, we must account for the pitched up orientation of the utricular plane (θ
<sub>utricule</sub>
). This is done as in the traditional utricular shear model and the resulting formulation for pitch (δ) is provided in Equation (4).</p>
<disp-formula id="E4">
<label>(4)</label>
<mml:math id="M4">
<mml:mrow>
<mml:msub>
<mml:mi>δ</mml:mi>
<mml:mrow>
<mml:mi>p</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>r</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mi>K</mml:mi>
<mml:mo></mml:mo>
<mml:mi>sin</mml:mi>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:msub>
<mml:mi>δ</mml:mi>
<mml:mrow>
<mml:mi>a</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>t</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>u</mml:mi>
<mml:mi>t</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>i</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>u</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>[</mml:mo>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:mi>M</mml:mi>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
<mml:mo>]</mml:mo>
</mml:mrow>
<mml:mo></mml:mo>
<mml:msub>
<mml:mi>θ</mml:mi>
<mml:mrow>
<mml:mi>u</mml:mi>
<mml:mi>t</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>i</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>u</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</disp-formula>
<p>The pitched up angle of the utricular plane (θ
<sub>utricule</sub>
) is defined in Table
<xref ref-type="supplementary-material" rid="SM1">A2</xref>
in Supplementary Material. In the application of the modified utricular shear model to pitch tilt perception (
<bold>Figures 3, 6, 7</bold>
), the fitted parameters (
<italic>K</italic>
,
<italic>M</italic>
) are taken from the roll tilt fits and applied directly.</p>
</sec>
<sec>
<title>Modified observer model summary</title>
<p>We recently proposed a modification (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
) to a previously proposed model for dynamic orientation perception (Merfeld et al.,
<xref rid="B34" ref-type="bibr">1993</xref>
; Merfeld and Zupan,
<xref rid="B35" ref-type="bibr">2002</xref>
). Details of the model and the modification are provided in the Supplementary Appendix. These details are particularly critical for the complexities of the pitch tilt simulations included herein. In brief, we build upon the hypothesis from Clark et al. (
<xref rid="B6" ref-type="bibr">2015</xref>
) that linear acceleration feedback errors are differentially weighted whether they are in the utricular plane or perpendicular to it. Here we consider the implications of the utricular plane being pitched up relative to the head level orientation. The utricular orientation becomes relevant for pitch tilt perceptions in altered gravity. The modified model was evaluated in a series of altered gravity environments and the model predictions were compared to experimental data when available. We emphasize that the observer model can predict orientation perception during
<italic>dynamic</italic>
motions and in fact matches experimental perceptions of dynamic roll tilt in hyper-gravity (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). However, to our knowledge there is not quantitative data for
<italic>dynamic</italic>
perception of orientation in other altered gravity paradigms (e.g., pitch tilt, hypo-gravity, etc.). Thus, here we simulate the modified observer model and calculate
<italic>static</italic>
perceptions (details below) in two novel paradigms. The model was simulated with static pitch tilt in hyper-gravity and compared to previous studies (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
). Finally, the model was simulated with static roll tilt and static pitch tilt in various hypo-gravity environments to make quantitative hypotheses for future experimentation.</p>
</sec>
</sec>
<sec sec-type="results" id="s3">
<title>Results</title>
<sec>
<title>Comparison of static roll tilt in hyper-gravity to previous models</title>
<p>Previous models for static roll tilt perception are often compared to data by plotting perceived angle vs. actual angle. We use this approach to compare our experimental data (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
) to model predictions for the utricular shear model (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
), tangent model (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
), and Mittelstaedt's idiotropic vector model (Mittelstaedt,
<xref rid="B38" ref-type="bibr">1983a</xref>
) in Figures
<xref ref-type="fig" rid="F1">1A–C</xref>
(Figure
<xref ref-type="fig" rid="F1">1A</xref>
= 1 G, Figure
<xref ref-type="fig" rid="F1">1B</xref>
= 1.5 G, and Figure
<xref ref-type="fig" rid="F1">1C</xref>
= 2 G). However, the perceived angle in any condition is primarily determined by the actual angle, making the additional effects of hyper-gravity and the specific model difficult to observe when plotted in this format. Thus, we also plot the
<italic>error</italic>
in the perceived angle (perceived–actual angle) as a function of the actual angle. The comparisons between the three previous static models and our experimental data are also provided in the error format in Figure
<xref ref-type="fig" rid="F1">1</xref>
(Figure
<xref ref-type="fig" rid="F1">1D</xref>
= 1 G, Figure
<xref ref-type="fig" rid="F1">1E</xref>
= 1.5 G, and Figure
<xref ref-type="fig" rid="F1">1F</xref>
= 2 G).</p>
<p>All three models approximately fit the dataset in 1 G across the angles tested; however none of the models appropriately explains the perceptions observed in hyper-gravity. This is accentuated when viewing the perceptual errors (Figures
<xref ref-type="fig" rid="F1">1D–F</xref>
). In particular, both the utricular shear and tangent model predict much greater overestimation in hyper-gravity than was measured. In the utricular shear model, the free “
<italic>K</italic>
” parameter (Equation 1) can be reduced to better fit the hyper-gravity static perceptions. However, this can only be done at the expense of incorrectly predicting the 1 G responses. Specifically, a smaller
<italic>K</italic>
parameter (Equation 1) leads to the utricular shear model predicting substantial underestimation of roll tilt in 1 G that is inconsistent with the near veridical perceptions observed. To quantify the quality of the fits between each of the models and the current data for roll tilt in 1, 1.5, and 2 G's the coefficient of determination (
<italic>R</italic>
<sup>2</sup>
) was calculated between the model predictions and the mean responses, in terms of perceptual errors, across subjects for each angle and gravity level combination. For the tangent model
<italic>R</italic>
<sup>2</sup>
= 0.06 and for the utricular shear model
<italic>R</italic>
<sup>2</sup>
= −2.8 (negative values correspond to the model fitting the data worse than the global mean), further confirming the poor fits.</p>
<p>The Mittelstaedt model does better, approximately fitting the current dataset in hyper-gravity for small tilt angles (10 and 20°). However, the model predicts a decreased amount of overestimation for larger angles (e.g., 40°). Yet the overestimation in hyper-gravity that we previously observed at 40° tilt is significantly larger than at 10 or 20°. Thus, the “shape” of the Mittelstaedt model, particularly when viewing the perceptual errors, does not match the experimental data well. The coefficient of determination for the Mittelsatedt model was
<italic>R</italic>
<sup>2</sup>
= 0.57. It should be mentioned, and will be shown later, that the lack of fit is not an issue with the current dataset (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
) being in disagreement with previous datasets (Colenbrander,
<xref rid="B8" ref-type="bibr">1963</xref>
; Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Miller and Graybiel,
<xref rid="B37" ref-type="bibr">1966</xref>
; Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
) upon which these models were developed. In fact, this dataset matches previous datasets quite well considering the differing methodologies (SVV vs. haptic task). Instead the previous data only appears to fit the previous models relatively well when viewing perceived angle, which is dominated by the change in actual angle, as opposed to error in perceived angle.</p>
</sec>
<sec>
<title>Comparison of static roll tilt in hyper-gravity to modified utricular shear and modified observer model</title>
<p>Since the previously proposed models fail to sufficiently explain the overestimation measured in hyper-gravity, we propose an alternative model, the modified utricular shear model (Equation 3). The model is fit to our current dataset (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
), using a hierarchical regression with subject as the identifier and the results are provided in Table
<xref ref-type="table" rid="T2">2</xref>
.</p>
<p>For small angles, to achieve an accurate perception in 1 G, the
<italic>K</italic>
coefficient should be 57.3°/G (180/π). Our fit has a slightly larger estimate (64.6°/G) which yields slight overestimation at small angles, but less underestimation at larger angles in 1 G. The
<italic>K</italic>
coefficient estimate is very similar to a previous traditional utricular shear fit of 64°/G (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
).</p>
<p>The estimated value of
<italic>M</italic>
= 0.26 implies that the overestimation seen in hyper-gravity is only about 26% of that which would be expected from the traditional utricular shear model. The model fits the current data quite well-across all of the gravity-levels and angles tested. It also, at least qualitatively, fits data from many of the previous SVV experiments well, as seen in Figure
<xref ref-type="fig" rid="F2">2</xref>
(black lines). Here we focus exclusively on errors in perceived roll tilt to accentuate any differences between the model fit and the experimental data. The coefficient of determination for the modified utricular shear model was
<italic>R</italic>
<sup>2</sup>
= 0.97, a dramatic improvement upon previous models (only data from the current dataset were included in the
<italic>R</italic>
<sup>2</sup>
calculation to allow for direct comparison to the
<italic>R</italic>
<sup>2</sup>
-values for previous models).</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Comparison of current and previous static roll tilt perception to modified utricular shear model and modified observer model predictions</bold>
. Comparisons are made at
<bold>(A)</bold>
1 G,
<bold>(B)</bold>
1.5 G, and
<bold>(C)</bold>
2 G. Many of the previous studies only provide means, in which case no error bars are included here.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0002"></graphic>
</fig>
<p>Prior experiments used a different psychophysical task for measuring perceived roll (i.e., SVV), different motion devices, and tested at larger angles than the current dataset to which the proposed modified utricular shear model was fit. The match between the model predictions and available data provides support that the model empirically predicts static roll perceptions over a large range of angles and hyper-gravity levels.</p>
<p>The modified observer model was previously fit to the current data for roll tilt in hyper-gravity (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). However, for comparison, Figure
<xref ref-type="fig" rid="F2">2</xref>
overlays the modified observer model predictions (gray lines) with the modified utricular shear model and other datasets. Across the angles and hyper-gravity levels considered, the two models mimic each other substantially and therefore both match the available data quite well. For the modified observer model
<italic>R</italic>
<sup>2</sup>
= 0.93, indicating an excellent fit. While the coefficient of determination is slightly better for the modified utricular shear model than the modified observer model, we emphasize that the modified utricular shear model was directly fit to all of the current data while the added parameter from the modified observer model was fit to just one particular case (20° tilt in 2 G's, see Supplementary Appendix for details).</p>
</sec>
<sec>
<title>Comparison of static pitch tilt in hyper-gravity to modified utricular shear and modified observer model</title>
<p>We now transition to static
<italic>pitch</italic>
tilt perception in hyper-gravity. Pitch perception errors in hyper-gravity are not symmetric about upright like roll errors. Specifically, pitch in hyper-gravity is characterized by perceiving oneself as being pitched nose up relative to actual orientation when upright, pitched up, or when pitched nose down by <30° (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
). To directly compare to the most complete hyper-gravic static pitch perception dataset (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
), the modified observer and modified utricular shear models were simulated for pitch angles of −30, −15, 0, 15, and 30° (negative pitch angles correspond to nose down) and gravity levels of 1, 1.25, 1.5, 1.75, and 2 G's (Figure
<xref ref-type="fig" rid="F3">3</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Modified model predictions for static pitch tilt perception in hyper-gravity</bold>
. Modified observer model predictions (solid gray lines with small gray symbols) and modified utricular shear model (solid black lines with small black shapes) are compared to previous experimental reports from Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) (filled black symbols) and Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) (unfilled black symbols). Head pitch angle is signified by symbol shape: 30° (•), 15° (■), 0° (◊), −15° (▲), and −30° (▼). The plot is formatted to mimic Figure 1 of Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
). Error bars were not originally provided.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0003"></graphic>
</fig>
<p>As desired, the modified observer and modified utricular shear models predict qualitatively different static perceptions for pitch than for roll. Whereas roll tilt perception is symmetric about upright (0° roll tilt), pitch perception is asymmetric. In particular, at upright (0° of pitch tilt) there is a noticeable effect of gravity; hyper-gravity produces a perception of being pitched nose up. Increasing hyper-gravity levels causing a sensation of nose-up pitch relative to the 1 G level is a trend that exists for all of the angles simulated except for −30° (pitched nose down). At this orientation, increasing gravity level has a negligible effect on the veridical pitch perception. Each of these characteristics is observed in the two previous experimental datasets (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
).</p>
<p>To quantify the quality of the fit between the models' predictions and the perceptions, we again calculate the coefficients of determination (
<italic>R</italic>
<sup>2</sup>
). To match the analysis for roll tilt, these are calculated using the perceptual
<italic>errors</italic>
(Note that Figure
<xref ref-type="fig" rid="F3">3</xref>
shows the perceived
<italic>angles</italic>
and predicted perceived
<italic>angles</italic>
and not the perceived
<italic>errors</italic>
to mimic the format of Figure 1 from Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
). Also note that the perceived angles in each previous dataset (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
) are estimated from the published figures, so these coefficients of determination are approximate. Both models fit the Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
dataset quite well (
<italic>R</italic>
<sup>2</sup>
= 0.72 for the modified observer model and
<italic>R</italic>
<sup>2</sup>
= 0.65 for the modified utricular shear model). Remember that neither model is explicitly “fit” to these data; instead the models are fit to roll tilt in hyper-gravity and are now simply applied to pitch tilt in hyper-gravity. The model fits to the Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) dataset are not quite as clean (
<italic>R</italic>
<sup>2</sup>
= 0.29 for the modified observer model and
<italic>R</italic>
<sup>2</sup>
= 0.45 for the modified utricular shear model). However, most of the lack of fit is due to an offset for upright perception (0° pitch) across each gravity level (unfilled diamonds in Figure
<xref ref-type="fig" rid="F3">3</xref>
). In fact, it would be impossible for any model to fit both the Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) and the Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) data well, since the two datasets diverge in this condition. The major effect of increasing levels of hyper-gravity causing an increasingly pitched nose up perception is observed in both models' predictions.</p>
<p>The asymmetry in the observer model's static pitch predictions, as well as those for the modified utricular shear model, can be attributed to the assumed utricular plane orientation. Only in orientations where increasing the gravity level modifies the stimulation of the otoliths in the utricular plane, will the perceptual response change with gravity level. For roll tilt, the null orientation where changes in gravity magnitude do not effect perception is upright. For pitch, nose down pitch equal to θ
<sub>utricle</sub>
= 30° will yield accurate pitch perceptions even in hyper-gravity. Hence, the assumed orientation of the utricular plane is essential to the model's performance, including its asymmetry. It was assumed the plane was level in roll and pitched up 30° relative to the head fixed coordinate frame based upon morphological studies. The Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) and Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) data in pitch support the view that the perceptual asymmetry is tied to the utricular plane and thus also supports our assumption that the modified observer processing asymmetry originates in differential weighting of head fixed utricular vs. saccular information.</p>
</sec>
<sec>
<title>Model predictions of static roll tilt in hypo-gravity</title>
<p>We now transition to considering the model predictions of orientation perception in hypo-gravity (i.e., gravity environments <1 Earth G). Since the previous models (utricular shear, tangent, and idiotropic vector models) have systematic errors in
<italic>hyper-gravity</italic>
roll tilt perception, we do not further consider them for
<italic>hypo-gravity</italic>
, where presumably they would also have systematic errors.</p>
<p>First, we focus on the modified observer model predictions in hypo-gravity for roll tilt perception. Without the modification detailed above, previous versions of the observer model predicted veridical static roll tilt perceptions in hypo-gravity. To test the modified observer model's predictions it was simulated with the example 20° static roll tilt at various gravity levels (Figure
<xref ref-type="fig" rid="F4">4</xref>
).</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Modified observer model predictions for static roll tilt perception across gravity levels</bold>
. At <1 G (hypo-gravity), the model predicts underestimation of roll tilt angle. Lunar (~1/6 G) and Martian (~3/8 G) are highlighted (diamond and triangle, respectively).</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0004"></graphic>
</fig>
<p>As intended, the modified observer model simulated the static overestimation in hyper-gravity and the near accurate static perception in 1 G (marked with a square in Figure
<xref ref-type="fig" rid="F4">4</xref>
). However, the modified model now makes a novel prediction:
<italic>underestimation</italic>
of static roll tilt in hypo-gravity (0 <
<inline-formula>
<mml:math id="M5">
<mml:mrow>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mover accent="true">
<mml:mi>g</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>|</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math>
</inline-formula>
< 1). The amount of predicted underestimation was more extreme for lower gravity levels. Of particular interest are the lunar (~1/6 G) and Martian (~3/8 G) hypo-gravity levels, which are specially marked in Figure
<xref ref-type="fig" rid="F4">4</xref>
. At very low gravity levels (e.g., 0.05 G), the perception of the 20° roll tilt approaches ~13.2° or underestimation of ~34% of the actual angle. This amount of underestimation is similar to the amount of overestimation observed in 2 G. Note that simulating the model at exactly 0 G results in a singularity when the gravity vector is normalized by its magnitude, and was not simulated.</p>
<p>To provide quantitative hypotheses to allow for direct comparison with future experiments, we simulated the modified observer model for static roll tilt in hypo-gravity across a range of conditions. The modified observer model's predicted error in roll tilt (perceived–actual, as above) at 0.05, 0.5, and 1 G's across a range of angles is shown in Figure
<xref ref-type="fig" rid="F5">5A</xref>
.</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Modified model predictions for static roll tilt perception in hypo-gravity. (A)</bold>
Shows the modified observer model predictions.
<bold>(B)</bold>
Shows the modified utricular shear model predictions. Both models predict underestimation of roll tilt (negative errors for positive tilt angles) for acute angles in hypo-gravity.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0005"></graphic>
</fig>
<p>The amount of underestimation predicted by the modified observer model depends upon both roll tilt angle and hypo-gravity level. The magnitude of underestimation peaks at approximately 50° of roll tilt for each case of hypo-gravity simulated. For a particular angle, the underestimation is roughly proportional to the difference in G-level between the hypo-gravity level and 1 G. Thus, 0.05 G yields roughly twice as much predicted underestimation as 0.5 G.</p>
<p>For comparison, Figure
<xref ref-type="fig" rid="F5">5B</xref>
shows the modified utricular shear model's predictions for static roll tilt in hypo-gravity. First, note that in 1 G (circles) the model predicts slight overestimation (same prediction shown in Figure
<xref ref-type="fig" rid="F2">2A</xref>
). However, in hypo-gravity (e.g., 0.5 G (triangles) and 0.05 G (diamonds)) the modified utricular shear model also predicts underestimation of roll tilt. The amount of underestimation is similar, though general less, for the modified utricular shear model. Since the modified utricular shear model was explicitly fit to hyper-gravity perception for angles no >40°, this model's predictions in hypo-gravity are only shown up to 40°. Unlike the modified observer model, the modified utricular shear model, if simulated at larger roll tilt angles (50–90°), predicts increasing underestimation (not shown).</p>
</sec>
<sec>
<title>Model predictions of static pitch tilt in hypo-gravity</title>
<p>As a final novel prediction, the modified models are simulated for static pitch tilt in hypo-gravity. Specifically, we consider the same pitch tilt angles for hyper-gravity (−30, −15, 0, 15, and 30° of head tilt, where again negative pitch angles correspond to nose down), but now simulate at several hypo-gravity levels (0.05, 0.25, 0.5, 0.75 G) as well as at 1 G. The modified utricular shear and modified observer model predictions for static pitch tilt perception in hypo-gravity are presented in Figure
<xref ref-type="fig" rid="F6">6</xref>
with gravity level on the ordinate (mimicking Figures 1, 3 from Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
).</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>Model predictions for static pitch tilt perception in hypo-gravity</bold>
. Modified observer model predictions (solid gray lines with gray symbols) and modified utricular shear model (solid black lines with black shapes) are presented. Head pitch angle is signified by symbol shape: 30° (•), 15° (■), 0° (◊), −15° (▲), and −30° (▼).</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0006"></graphic>
</fig>
<p>First, the modified models predict nearly accurate perceptions in 1 G (far right of Figure
<xref ref-type="fig" rid="F6">6</xref>
, also shown in far left of Figure
<xref ref-type="fig" rid="F3">3</xref>
). However, going from right to left across Figure
<xref ref-type="fig" rid="F6">6</xref>
shows that hypo-gravity causes a predicted perception of feeling pitched nose down relative to the actual angle. For example, the modified observer model simulated at 30° of nose up pitch (top gray line in Figure
<xref ref-type="fig" rid="F6">6</xref>
) in 1 G (far right end of line) shows an accurate pitch perception of 30°. However, at 0.05 G (far left end of top gray line) the modified observer model predicts a pitch perception of only 16.75° pitched nose up, or an error of −13.25° in which the simulated subject feels pitched nose down relative to their actual pitch angle. Note that in this example the simulated subject still feels pitched nose up (by 16.75°), just not as much as he/she actually is (30°).</p>
<p>In hypo-gravity these predicted perceptual errors persist until pitched nose down at −30°. At this orientation, as detailed previously for hyper-gravity, the utricular plane is perpendicular to the direction of gravity and the predicted perception in independent of the magnitude of gravity. The exact predictions for pitch perception in hypo-gravity vary slightly between the modified utricular shear and modified observer models. However, both modified models predict the major effect of perceptual errors of feeling pitched nose down relative to actual pitch angle in hypo-gravity.</p>
<p>To further clarify the effect of pitch tilt angle in hypo-gravity the same simulation predictions from Figure
<xref ref-type="fig" rid="F6">6</xref>
are plotted in Figure
<xref ref-type="fig" rid="F7">7</xref>
, now with angle of the actual pitch tilt on the abscissa. To mimic Figure
<xref ref-type="fig" rid="F5">5</xref>
(roll tilt in hypo-gravity), here we only consider hypo-gravity levels of 0.05, 0.5, and 1 G. Note that the ordinate shows the perceived pitch angle, and not the error in perceived pitch angle, to more clearly show the direction of the predicted perceptual errors.</p>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>
<bold>Modified model predictions for static pitch tilt perception in hypo-gravity. (A)</bold>
Shows the modified observer model predictions.
<bold>(B)</bold>
Shows the modified utricular shear model predictions. The unity line (y = x) corresponds to accurate perception. Both models predict misperceptions of feeling pitched nose down relative to actual angle in hypo-gravity (predicted pitch perception is more negative than unity line). The exception is at an actual pitch angle of −30° (nose down), where perceptions are accurate at all hypo-gravity levels.</p>
</caption>
<graphic xlink:href="fnsys-09-00068-g0007"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="s4">
<title>Discussion</title>
<p>We considered several models for tilt perception in altered gravity. First, the previously proposed utricular shear, tangent, and idiotropic vector models were unable to fit measured hyper-gravity static roll tilt perceptions. We proposed a modified version of the utricular shear model for static roll tilt perception that not only matched our recent dataset to which it was fit (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
), but qualitatively fit previous results across a wide range of conditions. To address dynamic perception in altered gravity we recently proposed a modification to the observer model, detailed herein. The modification was based upon the hypothesis that the CNS weights errors in expected otolith sensory signals differentially whether they are in or perpendicular to the utricular plane. We further demonstrate that the modified observer model is able to predict roll tilt perceptions in hyper-gravity across the range of conditions considered. By assuming the utricular plane is pitched up by approximately 30° relative to the head horizontal plane, the modified observer model was able to match the available experimental perception data for static pitch tilts in hyper-gravity. Making a similar assumption about utricular plane orientation allowed for the modified utricular shear model to match data for static pitch tilt in hyper-gravity. Finally, we simulated the modified utricular shear and modified observer models for static roll tilt and static pitch tilt in hypo-gravity, making quantitative predictions across a range of conditions.</p>
<sec>
<title>Previous models, modified utricular shear model, and modified observer model for static roll tilt in hyper-gravity</title>
<p>The current data could not be fit well-with any of the previously proposed models we considered (utricular shear, tangent, and Mittelstaedt's “idiotropic vector” model). The failures of these models to quantitatively fit the current data were primarily due to incongruences between the models and the data as opposed to the current data and previous SVV hyper-gravity roll tilt perception data (Colenbrander,
<xref rid="B8" ref-type="bibr">1963</xref>
; Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Miller and Graybiel,
<xref rid="B37" ref-type="bibr">1966</xref>
; Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
), which generally match quite well (a quantitative comparison is provided in Figure
<xref ref-type="fig" rid="F2">2</xref>
). The utricular shear and tangent models were previously only compared to data in terms of perceived angle vs. actual angle, which masks the effect of hyper-gravity with the variation in angle. When we compared to data in terms of perceptual
<italic>errors</italic>
(perceived–actual angle), extenuating the effect of hyper-gravity, quality of the fit becomes more evident (Figures
<xref ref-type="fig" rid="F1">1D–F</xref>
). Mittelstaedt's model was previously only qualitatively compared to the observed effect of hyper-gravity on roll tilt perception (Mittelstaedt,
<xref rid="B38" ref-type="bibr">1983a</xref>
).</p>
<p>We proposed a modified version of the utricular shear model that, with two free parameters, not only fit the current data across three gravity levels and four angles we tested (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
), but also qualitatively fit previous data even at gravity and angle combinations which the model was not specifically trained upon. The model is a simple empirical fit, but does indicate that the amount of overestimation in hyper-gravity is only about 26% of that expected from the traditional utricular shear model. As to the underlying physiological explanation for this reduction in overestimation of roll tilt in hyper-gravity, we can only speculate. We hypothesize it may be due to the CNS utilizing information from other static graviceptors (e.g., otolith cues out of the utricular plane, proprioceptive, tactile, somatosensory, or potentially trunk graviceptors).</p>
<p>We recently modified an existing, dynamic, canal–otolith interaction model with the hypothesis that the CNS treats otolith stimulation in the utricular plane differently than that out of plane. The modified observer model was previously considered for static roll tilt in hyper-gravity (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). Here we extend the comparison to a wider range of roll tilt angles and find the modified observer model matches the available data quite well (Figure
<xref ref-type="fig" rid="F2">2</xref>
).</p>
</sec>
<sec>
<title>Modified utricular shear and modified observer models for static pitch tilt in hyper-gravity</title>
<p>For
<italic>roll</italic>
tilt perception in hyper-gravity, as previously considered (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
), the importance of pitched-up orientation of the utricular plane is not explicitly apparent. Specifically, the differential weighting could occur between the head horizontal plane (x–y) and vertical direction (z) and the model predictions for roll tilt would be unaffected. This is because in roll tilt the otolith shear stimulus is in the direction of both the y and y' axes, which are aligned.</p>
<p>The criticality of the differential weighting being in the utricular plane becomes apparent when considering
<italic>pitch</italic>
tilt perception in hyper-gravity. Here the shear stimulus is in the direction of the x' axis and the x' and x axes are misaligned by 30°. Matching the available experimental data (Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Cohen,
<xref rid="B7" ref-type="bibr">1973</xref>
), the model predicts a perception of being pitched nose up relative to the actual pitch angle in hyper-gravity (Figure
<xref ref-type="fig" rid="F3">3</xref>
). The exception to this is for pitched nose down orientations of at least 30°. At this orientation, the utricular plane (pitched up relative to head-level by approximately 30°) is aligned perpendicularly with the increasing GIF; hyper-gravity causes compressive forces to the utricular membrane as opposed to additional utricular shear.</p>
<p>Data from Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) and Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) do not provide standard errors to their measures. However, the two independent data sets are in close agreement (Figure
<xref ref-type="fig" rid="F3">3</xref>
) and Schone (
<xref rid="B54" ref-type="bibr">1964</xref>
) shows a similar effect of hyper-gravity on static pitch perception. In Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) and Schone (
<xref rid="B54" ref-type="bibr">1964</xref>
) whole-body tilts were performed, while in Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) the tilts were head-on-body suggesting that proprioception in the neck is not the primary cause of the pitch perception asymmetry in hyper-gravity. The Correia et al. (
<xref rid="B10" ref-type="bibr">1968</xref>
) and Cohen (
<xref rid="B7" ref-type="bibr">1973</xref>
) data sets do differ when the subject is upright (Figure
<xref ref-type="fig" rid="F3">3</xref>
), but only by an offset that is independent of gravity level; the effect of hyper-gravity causing a pitch nose up perception is similar between the studies. Together these datasets are consistent with the hyper-gravity pitch predictions from the observer model with the hypothesis that the CNS treats otolith stimulation in the utricular plane (pitched up by 30°) differently than out of plane stimulation. By making a similar assumption about the pitched up orientation of the utricular plane, the modified utricular shear model was able to predict the available data for static pitch tilt in hyper-gravity.</p>
</sec>
<sec>
<title>Modified utricular shear and modified observer models for static roll and pitch tilt in hypo-gravity</title>
<p>Finally, the modified observer model and modified utricular shear model were simulated with static roll tilt in hypo-gravity leading to a novel prediction: underestimation of roll tilt in hypo-gravity. For the modified observer model, the amount of underestimation was greater for more extreme (smaller) hypo-gravity levels, and peaked at approximately 45–50° of roll tilt. The modified utricular shear model also predicted underestimation in hypo-gravity with more underestimation at more extreme hypo-gravity levels. We only present the modified utricular shear model predictions up to 40° to stay within the angle limits to which the model was fit in hyper-gravity (Figure
<xref ref-type="fig" rid="F5">5B</xref>
). Predictions for roll tilt angles >40° may be considered outside of the scope of the modified utricular shear model.</p>
<p>To our knowledge there have been two attempts at quantifying static roll perception in hypo-gravity (Dyde et al.,
<xref rid="B15" ref-type="bibr">2009</xref>
; De Winkel et al.,
<xref rid="B14" ref-type="bibr">2012</xref>
), but neither directly address the predictions in Figures
<xref ref-type="fig" rid="F4">4</xref>
,
<xref ref-type="fig" rid="F5">5</xref>
. In the experiments, subjects only reported perceptions when upright (roll = 0°) or on their side (roll = +90 or −90°). At upright, the model predicts accurate upright static perception independent of gravity level, in agreement with the hypo-gravity experiments. Similarly, at 90° of roll tilt, the model prediction of static perception is accurate across the range of hypo-gravity levels. Only at acute angles of roll tilt do the modified models predict underestimation of static roll tilt in hypo-gravity. Future experiments should test a wide range of hypo-gravity levels and angles to test the validity of these model predictions in this relevant altered gravity regime. Until then, the model predictions, extrapolated to hypo-gravity, can be used as a reasonable preliminary estimate of static roll tilt perception.</p>
<p>The modified models were also simulated for static pitch tilt in hypo-gravity. The models predict a sensation of being pitched nose down relative actual pitch angle. Note this effect in hypo-gravity is opposite of that in hyper-gravity where the perception is pitch nose up relative to actual orientation. Due to the pitched up orientation of the utricular plane, the modified models make a peculiar prediction for extreme hypo-gravity levels (e.g., 0.05 G): at small pitch nose up orientations (e.g., +5°) both models predict a pitch nose-down perception (in our example, approximately −7° for the modified observer model and −4° for the modified utricular shear model, see Figure
<xref ref-type="fig" rid="F7">7</xref>
). Thus, the
<italic>direction</italic>
of pitch tilt can be misperceived in hypo-gravity. Note that for roll tilt in altered gravity the misperceptions are only
<italic>gain</italic>
errors (overestimation in hyper-gravity and underestimation in hypo-gravity), while direction is correct. A similar direction error is predicted for pitch tilt in hyper-gravity except it occurs for small pitch nose down tilts being misperceived as pitch nose up. To our knowledge static pitch tilt perception in hypo-gravity has not been quantified. Again, the modified models' predictions can be used as initial estimates for static pitch tilt in hypo-gravity.</p>
<p>There is some previous evidence (De Winkel et al.,
<xref rid="B14" ref-type="bibr">2012</xref>
) that at small hypo-gravity levels, the magnitude of gravity is too small to be used as a reference. Beyond this level, in the prior experiment the SVV generally aligned with the body longitudinal axis, as is common in microgravity. The threshold at which gravity is no longer used as a reference for perceptual orientation was seen to vary substantially among subjects, but on average was 0.3 G's (De Winkel et al.,
<xref rid="B14" ref-type="bibr">2012</xref>
). The gravity magnitude threshold effect is not present in the current modified model simulations. In the modified observer model, as long as the magnitude of gravity is >zero, near accurate perceptions are predicted at upright and 90° of roll tilt, while acute angles result in underestimation. The previously proposed concept of an “idiotropic vector” (Mittelstaedt,
<xref rid="B40" ref-type="bibr">1986</xref>
,
<xref rid="B41" ref-type="bibr">1989</xref>
; Vingerhoets et al.,
<xref rid="B59" ref-type="bibr">2009</xref>
), which drives perceptions toward the body longitudinal axis, could be added to the modified observer model to capture the low hypo-gravity threshold effect when appropriate.</p>
</sec>
<sec>
<title>Application of the models for astronaut orientation perception</title>
<p>These novel models (modified utricular shear and modified observer) quantitatively match available tilt perception data in altered gravity. These advancements provide a substantial added capability for mathematical models of orientation perception. The modified utricular shear model provides a simple, one-equation prediction of static roll or pitch tilt in altered gravity. The modified observer model is more complex to evaluate, but while here we only simulated it for
<italic>static</italic>
tilts, it is capable of simulating
<italic>dynamic</italic>
motion profiles that involve sensory integration between otolith and semicircular canal cues. While previous models were either limited to static tilts (Schone,
<xref rid="B54" ref-type="bibr">1964</xref>
; Correia et al.,
<xref rid="B10" ref-type="bibr">1968</xref>
; Mittelstaedt,
<xref rid="B38" ref-type="bibr">1983a</xref>
; Dai et al.,
<xref rid="B13" ref-type="bibr">1989</xref>
; Bortolami et al.,
<xref rid="B4" ref-type="bibr">2006</xref>
) or 1 Earth G environments (Borah et al.,
<xref rid="B3" ref-type="bibr">1988</xref>
; Merfeld et al.,
<xref rid="B34" ref-type="bibr">1993</xref>
; Holly and McCollum,
<xref rid="B26" ref-type="bibr">1996</xref>
; Glasauer and Merfeld,
<xref rid="B21" ref-type="bibr">1997</xref>
; Haslwanter et al.,
<xref rid="B24" ref-type="bibr">2000</xref>
; Merfeld and Zupan,
<xref rid="B35" ref-type="bibr">2002</xref>
; Angelaki et al.,
<xref rid="B1" ref-type="bibr">2004</xref>
; Laurens and Droulez,
<xref rid="B31" ref-type="bibr">2007</xref>
; Vingerhoets et al.,
<xref rid="B60" ref-type="bibr">2007</xref>
; Macneilage et al.,
<xref rid="B33" ref-type="bibr">2008</xref>
; Selva and Oman,
<xref rid="B58" ref-type="bibr">2012</xref>
), the modified observer model extends dynamic orientation perception models to altered gravity environments. In fact the modified observer model has been validated for perception of
<italic>dynamic</italic>
roll tilt in hyper-gravity (Clark et al.,
<xref rid="B6" ref-type="bibr">2015</xref>
). Future experiments are required to further validate predictions for dynamic perceptions in altered gravity. The observer model could be used to predict astronaut perceptions in an altered gravity environment, such as the moon or Mars, during complex motions, such as vehicle landing profiles.</p>
<p>However, there are a few limitations. First, the models assume the simulated subject has normal vestibular function (i.e., is adapted to a 1 Earth G environment). Yet, astronauts in microgravity undergo sensorimotor reinterpretation and adaptation (Young et al.,
<xref rid="B62" ref-type="bibr">1984</xref>
; Parker et al.,
<xref rid="B52" ref-type="bibr">1985</xref>
). Thus, an astronaut's orientation perception when landing on the Moon (~1/6 G) is likely to be affected by the three or more days of microgravity exposure during transit. These models do not attempt to capture prior adaptation to microgravity or any other altered gravity environment. Given the lack of quantitative data for orientation perception after microgravity adaptation, it would be difficult to validate any potential implementations of capturing this process in either of the modified models.</p>
<p>Second, while the modified observer model fits the available data well for roll and pitch tilt perception in hyper-gravity, it has not been validated for more complex motions or other aspects of orientation perception. Specifically the modified observer model has not been validated for (1) yaw rotation or azimuth perception in altered gravity, (2) translation perception in altered gravity, and (3) cases of visual-vestibular interaction in altered gravity.</p>
<p>Interestingly the modified observer model predicts an illusory perception of linear acceleration in hyper-gravity corresponding to vertical translation. The unmodified observer model also makes this prediction in hyper-gravity. This is the result of the presumption that the CNS utilizes an internal model of the physical law
<inline-formula>
<mml:math id="M6">
<mml:mrow>
<mml:mover accent="true">
<mml:mover accent="true">
<mml:mi>a</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mo>=</mml:mo>
<mml:mover accent="true">
<mml:mover accent="true">
<mml:mi>f</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mo></mml:mo>
<mml:mover accent="true">
<mml:mover accent="true">
<mml:mi>g</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>^</mml:mo>
</mml:mover>
</mml:mrow>
</mml:math>
</inline-formula>
while assuming
<inline-formula>
<mml:math id="M7">
<mml:mrow>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mover accent="true">
<mml:mover accent="true">
<mml:mi>g</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mo>|</mml:mo>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:math>
</inline-formula>
. In hyper-gravity the magnitude of the estimated GIF
<inline-formula>
<mml:math id="M8">
<mml:mrow>
<mml:mo stretchy="false">(</mml:mo>
<mml:mover accent="true">
<mml:mover accent="true">
<mml:mi>f</mml:mi>
<mml:mo></mml:mo>
</mml:mover>
<mml:mo>^</mml:mo>
</mml:mover>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
</mml:math>
</inline-formula>
is >1, but the magnitude of the estimate of gravity is fixed to 1 such that the excess magnitude is attributed to an estimated linear acceleration. Yet in post-experimental debrief subjects did not report illusory sensations of translation. These effects may have been quenched by subject knowledge of the device limitations (i.e., centrifuge cab could not translate) or non-vestibular cues that are not included in the observer model (e.g., proprioceptive or somatosensory cues). A similar illusory linear acceleration is also predicted in hypo-gravity, however the direction is opposite.</p>
<p>The Newman (
<xref rid="B43" ref-type="bibr">2009</xref>
) version of the observer model included pathways for visual cues and was able to mimic perceptions from many visual–vestibular interaction paradigms. The current observer model includes those pathways but deactivates them to simulate perceptions in the dark. The visual pathways can be activated and the modified observer model can predict perceptions for visual-vestibular paradigms in altered gravity. However, to our knowledge there is not a quantitative experimental dataset upon which to validate any of these predictions.</p>
</sec>
<sec>
<title>Conflict of interest statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</sec>
</body>
<back>
<ack>
<p>We thank Kevin Duda, Paul DiZio, and Faisal Karmali for reviewing preliminary drafts of this manuscript and helpful suggestions. This work was supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC9-58 (TC, CO, LY) and via NIDCD/NIH R01 DC04158 (DM). We also thank Bill Mitchell and NASTAR Center for additional project support. The authors declare no competing financial interests.</p>
</ack>
<sec sec-type="supplementary-material" id="s5">
<title>Supplementary material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fnsys.2015.00068/abstract">http://journal.frontiersin.org/article/10.3389/fnsys.2015.00068/abstract</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Presentation1.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Angelaki</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Shaikh</surname>
<given-names>A. G.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Dickman</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Neurons compute internal models of the physical laws of motion</article-title>
.
<source>Nature</source>
<volume>430</volume>
,
<fpage>560</fpage>
<lpage>564</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature02754</pub-id>
<pub-id pub-id-type="pmid">15282606</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aubert</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1861</year>
).
<article-title>Eine scheinbare bedeutende drehung von objekten bei neigung des kopfes nach rechts oder links</article-title>
.
<source>Arch. Pathol. Anat</source>
.
<volume>20</volume>
,
<fpage>381</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="doi">10.1007/BF02355256</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borah</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>L. R.</given-names>
</name>
<name>
<surname>Curry</surname>
<given-names>R. E.</given-names>
</name>
</person-group>
(
<year>1988</year>
).
<article-title>Optimal estimator model for human spatial orientation</article-title>
.
<source>Ann. N.Y. Acad. Sci</source>
.
<volume>545</volume>
,
<fpage>51</fpage>
<lpage>73</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1749-6632.1988.tb19555.x</pub-id>
<pub-id pub-id-type="pmid">3071213</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bortolami</surname>
<given-names>S. B.</given-names>
</name>
<name>
<surname>Rocca</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Daros</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dizio</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lackner</surname>
<given-names>J. R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Mechanisms of human static spatial orientation</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>173</volume>
,
<fpage>374</fpage>
<lpage>388</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00221-006-0387-9</pub-id>
<pub-id pub-id-type="pmid">16628400</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chelette</surname>
<given-names>T. L.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Albery</surname>
<given-names>W. B.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>The effect of head tilt on perception of self-orientation while in a greater than one G environment</article-title>
.
<source>J. Vestib. Res</source>
.
<volume>5</volume>
,
<fpage>1</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1016/0957-4271(95)90653-L</pub-id>
<pub-id pub-id-type="pmid">7711943</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clark</surname>
<given-names>T. K.</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>M. C.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>L. R.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Human perceptual overestimation of whole-body roll tilt in hyper-gravity</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>113</volume>
,
<fpage>2062</fpage>
<lpage>2077</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00095.2014</pub-id>
<pub-id pub-id-type="pmid">25540216</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>M. M.</given-names>
</name>
</person-group>
(
<year>1973</year>
).
<article-title>Elevator illusion–influences of otolith organ activity and neck proprioception</article-title>
.
<source>Percept. Psychophys</source>
.
<volume>14</volume>
,
<fpage>401</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.3758/BF03211174</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colenbrander</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1963</year>
).
<article-title>Eye and otoliths</article-title>
.
<source>Aeromed. Acta</source>
<volume>9</volume>
,
<fpage>45</fpage>
<lpage>91</lpage>
.
<pub-id pub-id-type="pmid">14284242</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Correia</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Hixson</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Niven</surname>
<given-names>J. I.</given-names>
</name>
</person-group>
(
<year>1965</year>
).
<source>Otolith Shear and Visual Perception of Force Direction: Discrepancies and a Proposed Resolution</source>
.
<publisher-loc>Pensacola, FL</publisher-loc>
:
<publisher-name>Naval Aerospace Medical Institute</publisher-name>
.</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Correia</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Hixson</surname>
<given-names>W. C.</given-names>
</name>
<name>
<surname>Niven</surname>
<given-names>J. I.</given-names>
</name>
</person-group>
(
<year>1968</year>
).
<article-title>On predictive equations for subjective judgments of vertical and horizon in a force field</article-title>
.
<source>Acta Otolaryngol</source>
.
<volume>230</volume>
,
<fpage>1</fpage>
<lpage>20</lpage>
.
<pub-id pub-id-type="doi">10.3109/00016486809122119</pub-id>
<pub-id pub-id-type="pmid">5650275</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corvera</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hallpike</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Schuster</surname>
<given-names>E. H. J.</given-names>
</name>
</person-group>
(
<year>1958</year>
).
<article-title>A new method for the anatomical reconstruction of the human macular planes</article-title>
.
<source>Acta Otolayngol</source>
.
<volume>49</volume>
,
<fpage>4</fpage>
<lpage>16</lpage>
.
<pub-id pub-id-type="doi">10.3109/00016485809134722</pub-id>
<pub-id pub-id-type="pmid">13508213</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curthoys</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Betts</surname>
<given-names>G. A.</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>MacDougall</surname>
<given-names>H. G.</given-names>
</name>
<name>
<surname>Cartwright</surname>
<given-names>A. D.</given-names>
</name>
<name>
<surname>Halmagyi</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>The planes of the utricular and saccular maculae of the guinea pig</article-title>
.
<source>Ann. N.Y. Acad. Sci</source>
.
<volume>871</volume>
,
<fpage>27</fpage>
<lpage>34</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1749-6632.1999.tb09173.x</pub-id>
<pub-id pub-id-type="pmid">10372061</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>M. J.</given-names>
</name>
<name>
<surname>Curthoys</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Halmagyi</surname>
<given-names>G. M.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>A model of otolith stimulation</article-title>
.
<source>Biol. Cybern</source>
.
<volume>60</volume>
,
<fpage>185</fpage>
<lpage>194</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00207286</pub-id>
<pub-id pub-id-type="pmid">2923923</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Winkel</surname>
<given-names>K. N.</given-names>
</name>
<name>
<surname>Clement</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Groen</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>Werkhoven</surname>
<given-names>P. J.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>The perception of verticality in lunar and Martian gravity conditions</article-title>
.
<source>Neurosci. Lett</source>
.
<volume>529</volume>
,
<fpage>7</fpage>
<lpage>11</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.neulet.2012.09.026</pub-id>
<pub-id pub-id-type="pmid">22999922</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyde</surname>
<given-names>R. T.</given-names>
</name>
<name>
<surname>Jenkin</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Jenkin</surname>
<given-names>H. L.</given-names>
</name>
<name>
<surname>Zacher</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>L. R.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>The effect of altered gravity states on the perception of orientation</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>194</volume>
,
<fpage>647</fpage>
<lpage>660</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00221-009-1741-5</pub-id>
<pub-id pub-id-type="pmid">19305984</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1971</year>
).
<article-title>Physiology of peripheral neurons innervating semicircular canals of squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>34</volume>
,
<fpage>661</fpage>
<lpage>675</lpage>
.
<pub-id pub-id-type="pmid">5000363</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1976a</year>
).
<article-title>Physiology of peripheral neurons innervating otolith organs of squirrel-monkey. II. Directional selectivity and force-response relations</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>39</volume>
,
<fpage>985</fpage>
<lpage>995</lpage>
.
<pub-id pub-id-type="pmid">824413</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1976b</year>
).
<article-title>Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugation</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>39</volume>
,
<fpage>970</fpage>
<lpage>984</lpage>
.
<pub-id pub-id-type="pmid">824412</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>J. M.</given-names>
</name>
</person-group>
(
<year>1976c</year>
).
<article-title>Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>39</volume>
,
<fpage>996</fpage>
<lpage>1008</lpage>
.
<pub-id pub-id-type="pmid">824414</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glasauer</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>1992</year>
).
<article-title>Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith</article-title>
.
<source>Ann. N.Y. Acad. Sci</source>
.
<volume>656</volume>
,
<fpage>847</fpage>
<lpage>849</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1749-6632.1992.tb25272.x</pub-id>
<pub-id pub-id-type="pmid">1599198</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Glasauer</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Modelling three dimensional vestibular responses during complex motion stimulation,</article-title>
in
<source>Thee-dimensional Kinematics of Eye, Head and Limb Movements</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Fetter</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haslwanter</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Misslisch</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<publisher-loc>Amsterdam</publisher-loc>
:
<publisher-name>Harwood Academic Publishers</publisher-name>
),
<fpage>387</fpage>
<lpage>398</lpage>
.</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goldberg</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Fernandez</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>1971</year>
).
<article-title>Physiology of peripheral neurons innervating semicircular canals of squirrel monkey. I. Resting discharge and response to constant angular accelerations</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>34</volume>
,
<fpage>635</fpage>
<lpage>660</lpage>
.
<pub-id pub-id-type="pmid">5000362</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Green</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Angelaki</surname>
<given-names>D. E.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>An integrative neural network for detecting inertial motion and head orientation</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>92</volume>
,
<fpage>905</fpage>
<lpage>925</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.01234.2003</pub-id>
<pub-id pub-id-type="pmid">15056677</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haslwanter</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jaeger</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mayr</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Fetter</surname>
<given-names>M.</given-names>
</name>
</person-group>
(
<year>2000</year>
).
<article-title>Three-dimensional eye-movement responses to off-vertical axis rotations in humans</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>134</volume>
,
<fpage>96</fpage>
<lpage>106</lpage>
.
<pub-id pub-id-type="doi">10.1007/s002210000418</pub-id>
<pub-id pub-id-type="pmid">11026731</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holly</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>K. E.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Differences between perception and eye movements during complex motions</article-title>
.
<source>J. Vestib. Res</source>
.
<volume>21</volume>
,
<fpage>193</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="doi">10.3233/VES-2011-0416</pub-id>
<pub-id pub-id-type="pmid">21846952</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holly</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>McCollum</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>The shape of self-motion perception. 2. Framework and principles for simple and complex motion</article-title>
.
<source>Neuroscience</source>
<volume>70</volume>
,
<fpage>487</fpage>
<lpage>513</lpage>
.
<pub-id pub-id-type="doi">10.1016/0306-4522(95)00355-X</pub-id>
<pub-id pub-id-type="pmid">8848155</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xie</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Perception of the cabin attitude changes in hypergravity</article-title>
.
<source>Aviat. Space Environ. Med</source>
.
<volume>73</volume>
,
<fpage>191</fpage>
<lpage>193</lpage>
.
<pub-id pub-id-type="pmid">11908883</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalman</surname>
<given-names>R. E.</given-names>
</name>
</person-group>
(
<year>1960</year>
).
<article-title>A new approach to linear filtering and prediction problems</article-title>
.
<source>J. Basic Eng</source>
.
<volume>82D</volume>
,
<fpage>35</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1115/1.3662552</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalman</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Bucy</surname>
<given-names>R. S.</given-names>
</name>
</person-group>
(
<year>1961</year>
).
<article-title>New results in linear filtering and prediction problems</article-title>
.
<source>J. Basic Eng</source>
.
<volume>83D</volume>
,
<fpage>95</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1115/1.3658902</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karmali</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>A distributed, dynamic, parallel computational model: the role of noise in velocity storage</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>108</volume>
,
<fpage>390</fpage>
<lpage>405</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00883.2011</pub-id>
<pub-id pub-id-type="pmid">22514288</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laurens</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Droulez</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Bayesian processing of vestibular information</article-title>
.
<source>Biol. Cybern</source>
.
<volume>96</volume>
,
<fpage>389</fpage>
<lpage>404</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00422-006-0133-1</pub-id>
<pub-id pub-id-type="pmid">17146661</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luenburger</surname>
<given-names>D. G.</given-names>
</name>
</person-group>
(
<year>1971</year>
).
<article-title>An introduction to observers</article-title>
.
<source>IEEE Trans. Automat. Control</source>
<volume>16</volume>
,
<fpage>596</fpage>
<lpage>602</lpage>
<pub-id pub-id-type="doi">10.1109/TAC.1971.1099826</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macneilage</surname>
<given-names>P. R.</given-names>
</name>
<name>
<surname>Ganesan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Angelaki</surname>
<given-names>D. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>100</volume>
,
<fpage>2981</fpage>
<lpage>2996</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.90677.2008</pub-id>
<pub-id pub-id-type="pmid">18842952</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>L. R.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Shelhammer</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
(
<year>1993</year>
).
<article-title>A multidimensional model of the effect of gravity on the spatial orientation of the monkey</article-title>
.
<source>J. Vestib. Res</source>
.
<volume>3</volume>
,
<fpage>141</fpage>
<lpage>161</lpage>
.
<pub-id pub-id-type="pmid">8275250</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Zupan</surname>
<given-names>L. H.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>87</volume>
,
<fpage>819</fpage>
<lpage>833</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00485.2001</pub-id>
<pub-id pub-id-type="pmid">11826049</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Zupan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peterka</surname>
<given-names>R. J.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Humans use internal models to estimate gravity and linear acceleration</article-title>
.
<source>Nature</source>
<volume>398</volume>
,
<fpage>615</fpage>
<lpage>618</lpage>
.
<pub-id pub-id-type="doi">10.1038/19303</pub-id>
<pub-id pub-id-type="pmid">10217143</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>E. F.</given-names>
</name>
<name>
<surname>Graybiel</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1966</year>
).
<article-title>Magnitude of gravitoinertial force an independent variable in egocentric visual localization of horizontal</article-title>
.
<source>J. Exp. Psychol</source>
.
<volume>71</volume>
,
<fpage>452</fpage>
<lpage>460</lpage>
.
<pub-id pub-id-type="doi">10.1037/h0022954</pub-id>
<pub-id pub-id-type="pmid">5908830</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittelstaedt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1983a</year>
).
<article-title>A new solution to the problem of the subjective vertical</article-title>
.
<source>Naturwissenschaften</source>
<volume>70</volume>
,
<fpage>272</fpage>
<lpage>281</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00404833</pub-id>
<pub-id pub-id-type="pmid">6877388</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mittelstaedt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1983b</year>
).
<article-title>Towards understanding the flow of information between objective and subjective space,</article-title>
in
<source>Neuroethology and Behavioral Physiology</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Huber</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Markl</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<publisher-loc>Berlin</publisher-loc>
:
<publisher-name>Springer-Verlag</publisher-name>
),
<fpage>382</fpage>
<lpage>402</lpage>
.</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittelstaedt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>The subjective vertical as a function of visual and extraretinal cues</article-title>
.
<source>Acta Psychol</source>
.
<volume>63</volume>
,
<fpage>63</fpage>
<lpage>85</lpage>
.
<pub-id pub-id-type="doi">10.1016/0001-6918(86)90043-0</pub-id>
<pub-id pub-id-type="pmid">3591446</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mittelstaedt</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<article-title>The role of the pitched-up orientation of the otoliths in two recent models of the subjective vertical</article-title>
.
<source>Biol. Cybern</source>
.
<volume>61</volume>
,
<fpage>405</fpage>
<lpage>416</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF02414902</pub-id>
<pub-id pub-id-type="pmid">2790069</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
(
<year>1916</year>
).
<article-title>Uber das aubertsche phanomen</article-title>
.
<source>Z. Sinnesphysiol</source>
.
<volume>49</volume>
,
<fpage>109</fpage>
<lpage>246</lpage>
.</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Newman</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<source>A Multisensory Observer Model for Human Spatial Orientation Perception</source>
.
<publisher-loc>Cambridge, MA</publisher-loc>
:
<publisher-name>S. M. Massachusetts Institute of Technology</publisher-name>
.</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noble</surname>
<given-names>C. E.</given-names>
</name>
</person-group>
(
<year>1949</year>
).
<article-title>The perception of the vertical. III. The visual vertical as a function of centrifugal and gravitational forces</article-title>
.
<source>J. Exp. Psychol</source>
.
<volume>39</volume>
,
<fpage>839</fpage>
<lpage>850</lpage>
.
<pub-id pub-id-type="doi">10.1037/h0057452</pub-id>
<pub-id pub-id-type="pmid">15398594</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>1982</year>
).
<article-title>A heuristic mathematical-model for the dynamics of sensory conflict and motion sickness</article-title>
.
<source>Acta Otolaryngol</source>
.
<volume>392</volume>
,
<fpage>3</fpage>
<lpage>44</lpage>
.
<pub-id pub-id-type="pmid">6303041</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>1990</year>
).
<article-title>Motion sickness – a synthesis and evaluation of the sensory conflict theory</article-title>
.
<source>Can. J. Physiol. Pharmacol</source>
.
<volume>68</volume>
,
<fpage>294</fpage>
<lpage>303</lpage>
.
<pub-id pub-id-type="doi">10.1139/y90-044</pub-id>
<pub-id pub-id-type="pmid">2178753</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Sensory conflict in motion sickness: an observer theory approach,</article-title>
in
<source>Pictorial Communication in Virtual and Real Environments</source>
, eds
<person-group person-group-type="editor">
<name>
<surname>Ellis</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>M. K.</given-names>
</name>
<name>
<surname>Grunwald</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<publisher-loc>London</publisher-loc>
:
<publisher-name>Taylor and Francis</publisher-name>
),
<fpage>362</fpage>
<lpage>367</lpage>
.</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Lichtenberg</surname>
<given-names>B. K.</given-names>
</name>
<name>
<surname>Money</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>McCoy</surname>
<given-names>R. K.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>Mit Canadian vestibular experiments on the spacelab-1 mission.4. Space motion sickness – symptoms, stimuli, and predictability</article-title>
.
<source>Exp. Brain Res</source>
.
<volume>64</volume>
,
<fpage>316</fpage>
<lpage>334</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00237749</pub-id>
<pub-id pub-id-type="pmid">3803476</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ormsby</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>L. R.</given-names>
</name>
</person-group>
(
<year>1976</year>
).
<article-title>Perception of static orientation in a constant gravito-inertial environment</article-title>
.
<source>Aviat. Space Environ. Med</source>
.
<volume>47</volume>
,
<fpage>159</fpage>
<lpage>164</lpage>
.
<pub-id pub-id-type="pmid">1082746</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paloski</surname>
<given-names>W. H.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Bloomberg</surname>
<given-names>J. J.</given-names>
</name>
<name>
<surname>Reschke</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Harm</surname>
<given-names>D. L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence</article-title>
.
<source>J. Gravit. Physiol</source>
.
<volume>15</volume>
,
<fpage>1</fpage>
<lpage>29</lpage>
.</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gianna-Poulin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Black</surname>
<given-names>F. O.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Roll rotation cues influence roll tilt perception assayed using a somatosensory technique</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>96</volume>
,
<fpage>486</fpage>
<lpage>491</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.01163.2005</pub-id>
<pub-id pub-id-type="pmid">16571732</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parker</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Reschke</surname>
<given-names>M. F.</given-names>
</name>
<name>
<surname>Arrott</surname>
<given-names>A. P.</given-names>
</name>
<name>
<surname>Homick</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Lichtenberg</surname>
<given-names>B. K.</given-names>
</name>
</person-group>
(
<year>1985</year>
).
<article-title>Otolith tilt-translation reinterpretation following prolonged weightlessness – implications for preflight training</article-title>
.
<source>Aviat. Space Environ. Med</source>
.
<volume>56</volume>
,
<fpage>601</fpage>
<lpage>606</lpage>
.
<pub-id pub-id-type="pmid">3874622</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rader</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Motion perception during variable-radius swing motion in darkness</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>102</volume>
,
<fpage>2232</fpage>
<lpage>2244</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.00116.2009</pub-id>
<pub-id pub-id-type="pmid">19625542</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schone</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>1964</year>
).
<article-title>On the role of gravity in human spatial orientation</article-title>
.
<source>Aerosp. Med</source>
.
<volume>35</volume>
,
<fpage>764</fpage>
<lpage>772</lpage>
.
<pub-id pub-id-type="pmid">14215796</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schone</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>D. E.</given-names>
</name>
</person-group>
(
<year>1967</year>
).
<article-title>Inversion of the effect of increased gravity on the subjective vertical</article-title>
.
<source>Naturwissenschaften</source>
<volume>54</volume>
,
<fpage>288</fpage>
<lpage>289</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00620896</pub-id>
<pub-id pub-id-type="pmid">5589927</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schone</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Mortag</surname>
<given-names>H. G.</given-names>
</name>
</person-group>
(
<year>1967</year>
).
<article-title>Subjective vertical as a function of body position and gravity magnitude</article-title>
.
<source>Natrwissenschaften</source>
<volume>54</volume>
,
<fpage>288</fpage>
.
<pub-id pub-id-type="doi">10.1007/BF00620895</pub-id>
<pub-id pub-id-type="pmid">5589926</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Selva</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<source>Modeling of the Vestibular System and Nonlinear Models for Human Spatial Orientation Perception</source>
.
<publisher-loc>Cambridge, MA</publisher-loc>
:
<publisher-name>Ph.D. L'Universite de Toulouse</publisher-name>
.</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Selva</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Relationships between Observer and Kalman Filter models for human dynamic spatial orientation</article-title>
.
<source>J. Vestib. Res</source>
.
<volume>22</volume>
,
<fpage>69</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.3233/VES-2012-0451</pub-id>
<pub-id pub-id-type="pmid">23000607</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vingerhoets</surname>
<given-names>R. A. A.</given-names>
</name>
<name>
<surname>de Vrijer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>van Gisbergen</surname>
<given-names>J. A. M.</given-names>
</name>
<name>
<surname>Medendorp</surname>
<given-names>W. P.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Fusion of visual and vestibular tilt cues in the perception of visual vertical</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>101</volume>
,
<fpage>1321</fpage>
<lpage>1333</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.90725.2008</pub-id>
<pub-id pub-id-type="pmid">19118112</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vingerhoets</surname>
<given-names>R. A. A.</given-names>
</name>
<name>
<surname>van Gisbergen</surname>
<given-names>J. A. M.</given-names>
</name>
<name>
<surname>Medendorp</surname>
<given-names>W. P.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Verticality perception during off-vertical axis rotation</article-title>
.
<source>J. Neurophysiol</source>
.
<volume>97</volume>
,
<fpage>3256</fpage>
<lpage>3268</lpage>
.
<pub-id pub-id-type="doi">10.1152/jn.01333.2006</pub-id>
<pub-id pub-id-type="pmid">17329621</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wade</surname>
<given-names>S. W.</given-names>
</name>
<name>
<surname>Curthoys</surname>
<given-names>I. S.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>The effect of ocular torsional position on perception of the roll-tilt of visual stimuli</article-title>
.
<source>Vision Res</source>
.
<volume>37</volume>
,
<fpage>1071</fpage>
<lpage>1078</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0042-6989(96)00252-0</pub-id>
<pub-id pub-id-type="pmid">9196725</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Young</surname>
<given-names>L. R.</given-names>
</name>
<name>
<surname>Oman</surname>
<given-names>C. M.</given-names>
</name>
<name>
<surname>Watt</surname>
<given-names>D. G. D.</given-names>
</name>
<name>
<surname>Money</surname>
<given-names>K. E.</given-names>
</name>
<name>
<surname>Lichtenberg</surname>
<given-names>B. K.</given-names>
</name>
</person-group>
(
<year>1984</year>
).
<article-title>Spatial orientation in weightlessness and readaptation to earth's gravity</article-title>
.
<source>Science</source>
<volume>225</volume>
,
<fpage>205</fpage>
<lpage>208</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.6610215</pub-id>
<pub-id pub-id-type="pmid">6610215</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zupan</surname>
<given-names>L. H.</given-names>
</name>
<name>
<surname>Merfeld</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Darlot</surname>
<given-names>C.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements</article-title>
.
<source>Biol. Cybern</source>
.
<volume>86</volume>
,
<fpage>209</fpage>
<lpage>230</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00422-001-0290-1</pub-id>
<pub-id pub-id-type="pmid">12068787</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4419856
   |texte=   Modeling human perception of orientation in altered gravity
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:25999822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024