Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using the PhysX engine for Physics-based Virtual Surgery with Force Feedback

Identifieur interne : 000F27 ( Pmc/Corpus ); précédent : 000F26; suivant : 000F28

Using the PhysX engine for Physics-based Virtual Surgery with Force Feedback

Auteurs : Anderson Maciel ; Tansel Halic ; Zhonghua Lu ; Luciana P. Nedel ; Suvranu De

Source :

RBID : PMC:2810833

Abstract

Background

The development of modern surgical simulators is highly challenging as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models which are computationally very demanding. This poses a major problem since real time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real time graphics and haptics, offer significant barriers to their use in interactive simulation environments.

Methods

In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA’s PhysX physics library. Hence, models that are undergoing relatively low frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real time tissue response and force feedback.

Results

Our simulator integrates a bimanual haptic interface for force-feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the Laparoscopic Adjustable Gastric Banding (LAGB) procedure as a case study.

Conclusions

To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods which are not always compatible with the interaction level required for such trainers. We have shown that combining different modeling strategies for behavior, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.


Url:
DOI: 10.1002/rcs.266
PubMed: 19449317
PubMed Central: 2810833

Links to Exploration step

PMC:2810833***** Acces problem to record *****\

Le document en format XML


Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000F27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2810833
   |texte=   Using the PhysX engine for Physics-based Virtual Surgery with Force Feedback
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:19449317" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024