Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neural coding in barrel cortex during whisker-guided locomotion

Identifieur interne : 002822 ( Pmc/Checkpoint ); précédent : 002821; suivant : 002823

Neural coding in barrel cortex during whisker-guided locomotion

Auteurs : Nicholas James Sofroniew [États-Unis] ; Yurii A. Vlasov [États-Unis] ; Samuel Andrew Hires [États-Unis] ; Jeremy Freeman [États-Unis] ; Karel Svoboda [États-Unis]

Source :

RBID : PMC:4764557

Abstract

Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits.

DOI:http://dx.doi.org/10.7554/eLife.12559.001


Url:
DOI: 10.7554/eLife.12559
PubMed: 26701910
PubMed Central: 4764557


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4764557

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neural coding in barrel cortex during whisker-guided locomotion</title>
<author>
<name sortKey="Sofroniew, Nicholas James" sort="Sofroniew, Nicholas James" uniqKey="Sofroniew N" first="Nicholas James" last="Sofroniew">Nicholas James Sofroniew</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vlasov, Yurii A" sort="Vlasov, Yurii A" uniqKey="Vlasov Y" first="Yurii A" last="Vlasov">Yurii A. Vlasov</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>IBM Thomas J. Watson Research Center</institution>
,
<addr-line>New York</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Andrew Hires, Samuel" sort="Andrew Hires, Samuel" uniqKey="Andrew Hires S" first="Samuel" last="Andrew Hires">Samuel Andrew Hires</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Freeman, Jeremy" sort="Freeman, Jeremy" uniqKey="Freeman J" first="Jeremy" last="Freeman">Jeremy Freeman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Svoboda, Karel" sort="Svoboda, Karel" uniqKey="Svoboda K" first="Karel" last="Svoboda">Karel Svoboda</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26701910</idno>
<idno type="pmc">4764557</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764557</idno>
<idno type="RBID">PMC:4764557</idno>
<idno type="doi">10.7554/eLife.12559</idno>
<date when="????">????</date>
<idno type="wicri:Area/Pmc/Corpus">000583</idno>
<idno type="wicri:Area/Pmc/Curation">000583</idno>
<idno type="wicri:Area/Pmc/Checkpoint">002822</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Neural coding in barrel cortex during whisker-guided locomotion</title>
<author>
<name sortKey="Sofroniew, Nicholas James" sort="Sofroniew, Nicholas James" uniqKey="Sofroniew N" first="Nicholas James" last="Sofroniew">Nicholas James Sofroniew</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vlasov, Yurii A" sort="Vlasov, Yurii A" uniqKey="Vlasov Y" first="Yurii A" last="Vlasov">Yurii A. Vlasov</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">
<institution>IBM Thomas J. Watson Research Center</institution>
,
<addr-line>New York</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Andrew Hires, Samuel" sort="Andrew Hires, Samuel" uniqKey="Andrew Hires S" first="Samuel" last="Andrew Hires">Samuel Andrew Hires</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Freeman, Jeremy" sort="Freeman, Jeremy" uniqKey="Freeman J" first="Jeremy" last="Freeman">Jeremy Freeman</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Svoboda, Karel" sort="Svoboda, Karel" uniqKey="Svoboda K" first="Karel" last="Svoboda">Karel Svoboda</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="????">????</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.001">http://dx.doi.org/10.7554/eLife.12559.001</ext-link>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adesnik, H" uniqKey="Adesnik H">H Adesnik</name>
</author>
<author>
<name sortKey="Bruns, W" uniqKey="Bruns W">W Bruns</name>
</author>
<author>
<name sortKey="Taniguchi, H" uniqKey="Taniguchi H">H Taniguchi</name>
</author>
<author>
<name sortKey="Huang, Zj" uniqKey="Huang Z">ZJ Huang</name>
</author>
<author>
<name sortKey="Scanziani, M" uniqKey="Scanziani M">M Scanziani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andermann, Ml" uniqKey="Andermann M">ML Andermann</name>
</author>
<author>
<name sortKey="Moore, Ci" uniqKey="Moore C">CI Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrew Hires, S" uniqKey="Andrew Hires S">S Andrew Hires</name>
</author>
<author>
<name sortKey="Gutnisky, Da" uniqKey="Gutnisky D">DA Gutnisky</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anjum, F" uniqKey="Anjum F">F Anjum</name>
</author>
<author>
<name sortKey="Turni, H" uniqKey="Turni H">H Turni</name>
</author>
<author>
<name sortKey="Mulder, Pgh" uniqKey="Mulder P">PGH Mulder</name>
</author>
<author>
<name sortKey="Van Der Burg, J" uniqKey="Van Der Burg J">J van der Burg</name>
</author>
<author>
<name sortKey="Brecht, M" uniqKey="Brecht M">M Brecht</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Armstrong James, M" uniqKey="Armstrong James M">M Armstrong-James</name>
</author>
<author>
<name sortKey="Fox, K" uniqKey="Fox K">K Fox</name>
</author>
<author>
<name sortKey="Das Gupta, A" uniqKey="Das Gupta A">A Das-Gupta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Birdwell, Ja" uniqKey="Birdwell J">JA Birdwell</name>
</author>
<author>
<name sortKey="Solomon, Jh" uniqKey="Solomon J">JH Solomon</name>
</author>
<author>
<name sortKey="Thajchayapong, M" uniqKey="Thajchayapong M">M Thajchayapong</name>
</author>
<author>
<name sortKey="Taylor, Ma" uniqKey="Taylor M">MA Taylor</name>
</author>
<author>
<name sortKey="Cheely, M" uniqKey="Cheely M">M Cheely</name>
</author>
<author>
<name sortKey="Towal, Rb" uniqKey="Towal R">RB Towal</name>
</author>
<author>
<name sortKey="Conradt, J" uniqKey="Conradt J">J Conradt</name>
</author>
<author>
<name sortKey="Hartmann, Mjz" uniqKey="Hartmann M">MJZ Hartmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosman, Lwj" uniqKey="Bosman L">LWJ Bosman</name>
</author>
<author>
<name sortKey="Houweling, Ar" uniqKey="Houweling A">AR Houweling</name>
</author>
<author>
<name sortKey="Owens, Cb" uniqKey="Owens C">CB Owens</name>
</author>
<author>
<name sortKey="Tanke, N" uniqKey="Tanke N">N Tanke</name>
</author>
<author>
<name sortKey="Shevchouk, Ot" uniqKey="Shevchouk O">OT Shevchouk</name>
</author>
<author>
<name sortKey="Rahmati, N" uniqKey="Rahmati N">N Rahmati</name>
</author>
<author>
<name sortKey="Teunissen, Wht" uniqKey="Teunissen W">WHT Teunissen</name>
</author>
<author>
<name sortKey="Ju, C" uniqKey="Ju C">C Ju</name>
</author>
<author>
<name sortKey="Gong, W" uniqKey="Gong W">W Gong</name>
</author>
<author>
<name sortKey="Koekkoek, Ske" uniqKey="Koekkoek S">SKE Koekkoek</name>
</author>
<author>
<name sortKey="De Zeeuw, Ci" uniqKey="De Zeeuw C">CI De Zeeuw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brecht, M" uniqKey="Brecht M">M Brecht</name>
</author>
<author>
<name sortKey="Preilowski, B" uniqKey="Preilowski B">B Preilowski</name>
</author>
<author>
<name sortKey="Merzenich, Mm" uniqKey="Merzenich M">MM Merzenich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brumberg, Jc" uniqKey="Brumberg J">JC Brumberg</name>
</author>
<author>
<name sortKey="Pinto, Dj" uniqKey="Pinto D">DJ Pinto</name>
</author>
<author>
<name sortKey="Simons, Dj" uniqKey="Simons D">DJ Simons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, T W" uniqKey="Chen T">T-W Chen</name>
</author>
<author>
<name sortKey="Wardill, Tj" uniqKey="Wardill T">TJ Wardill</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Pulver, Sr" uniqKey="Pulver S">SR Pulver</name>
</author>
<author>
<name sortKey="Renninger, Sl" uniqKey="Renninger S">SL Renninger</name>
</author>
<author>
<name sortKey="Baohan, A" uniqKey="Baohan A">A Baohan</name>
</author>
<author>
<name sortKey="Schreiter, Er" uniqKey="Schreiter E">ER Schreiter</name>
</author>
<author>
<name sortKey="Kerr, Ra" uniqKey="Kerr R">RA Kerr</name>
</author>
<author>
<name sortKey="Orger, Mb" uniqKey="Orger M">MB Orger</name>
</author>
<author>
<name sortKey="Jayaraman, V" uniqKey="Jayaraman V">V Jayaraman</name>
</author>
<author>
<name sortKey="Looger, Ll" uniqKey="Looger L">LL Looger</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Kim, Ds" uniqKey="Kim D">DS Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, A" uniqKey="Cheng A">A Cheng</name>
</author>
<author>
<name sortKey="Goncalves, Jt" uniqKey="Goncalves J">JT Gonçalves</name>
</author>
<author>
<name sortKey="Golshani, P" uniqKey="Golshani P">P Golshani</name>
</author>
<author>
<name sortKey="Arisaka, K" uniqKey="Arisaka K">K Arisaka</name>
</author>
<author>
<name sortKey="Portera Cailliau, C" uniqKey="Portera Cailliau C">C Portera-Cailliau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, Jd" uniqKey="Cohen J">JD Cohen</name>
</author>
<author>
<name sortKey="Castro Alamancos, Ma" uniqKey="Castro Alamancos M">MA Castro-Alamancos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crochet, S" uniqKey="Crochet S">S Crochet</name>
</author>
<author>
<name sortKey="Poulet, Jfa" uniqKey="Poulet J">JFA Poulet</name>
</author>
<author>
<name sortKey="Kremer, Y" uniqKey="Kremer Y">Y Kremer</name>
</author>
<author>
<name sortKey="Petersen, Cch" uniqKey="Petersen C">CCH Petersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curtis, Jc" uniqKey="Curtis J">JC Curtis</name>
</author>
<author>
<name sortKey="Kleinfeld, D" uniqKey="Kleinfeld D">D Kleinfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Czeiger, D" uniqKey="Czeiger D">D Czeiger</name>
</author>
<author>
<name sortKey="White, El" uniqKey="White E">EL White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Kock, Cpj" uniqKey="De Kock C">CPJ De Kock</name>
</author>
<author>
<name sortKey="Bruno, Rm" uniqKey="Bruno R">RM Bruno</name>
</author>
<author>
<name sortKey="Spors, H" uniqKey="Spors H">H Spors</name>
</author>
<author>
<name sortKey="Sakmann, B" uniqKey="Sakmann B">B Sakmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diamond, Me" uniqKey="Diamond M">ME Diamond</name>
</author>
<author>
<name sortKey="Von Heimendahl, M" uniqKey="Von Heimendahl M">M von Heimendahl</name>
</author>
<author>
<name sortKey="Knutsen, Pm" uniqKey="Knutsen P">PM Knutsen</name>
</author>
<author>
<name sortKey="Kleinfeld, D" uniqKey="Kleinfeld D">D Kleinfeld</name>
</author>
<author>
<name sortKey="Ahissar, E" uniqKey="Ahissar E">E Ahissar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorfl, J" uniqKey="Dorfl J">J Dörfl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldmeyer, D" uniqKey="Feldmeyer D">D Feldmeyer</name>
</author>
<author>
<name sortKey="Brecht, M" uniqKey="Brecht M">M Brecht</name>
</author>
<author>
<name sortKey="Helmchen, F" uniqKey="Helmchen F">F Helmchen</name>
</author>
<author>
<name sortKey="Petersen, Cch" uniqKey="Petersen C">CCH Petersen</name>
</author>
<author>
<name sortKey="Poulet, Jfa" uniqKey="Poulet J">JFA Poulet</name>
</author>
<author>
<name sortKey="Staiger, Jf" uniqKey="Staiger J">JF Staiger</name>
</author>
<author>
<name sortKey="Luhmann, Hj" uniqKey="Luhmann H">HJ Luhmann</name>
</author>
<author>
<name sortKey="Schwarz, C" uniqKey="Schwarz C">C Schwarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, J" uniqKey="Freeman J">J Freeman</name>
</author>
<author>
<name sortKey="Vladimirov, N" uniqKey="Vladimirov N">N Vladimirov</name>
</author>
<author>
<name sortKey="Kawashima, T" uniqKey="Kawashima T">T Kawashima</name>
</author>
<author>
<name sortKey="Mu, Y" uniqKey="Mu Y">Y Mu</name>
</author>
<author>
<name sortKey="Sofroniew, Nj" uniqKey="Sofroniew N">NJ Sofroniew</name>
</author>
<author>
<name sortKey="Bennett, Dv" uniqKey="Bennett D">DV Bennett</name>
</author>
<author>
<name sortKey="Rosen, J" uniqKey="Rosen J">J Rosen</name>
</author>
<author>
<name sortKey="Yang, C T" uniqKey="Yang C">C-T Yang</name>
</author>
<author>
<name sortKey="Looger, Ll" uniqKey="Looger L">LL Looger</name>
</author>
<author>
<name sortKey="Ahrens, Mb" uniqKey="Ahrens M">MB Ahrens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ganguli, D" uniqKey="Ganguli D">D Ganguli</name>
</author>
<author>
<name sortKey="Simoncelli, Ep" uniqKey="Simoncelli E">EP Simoncelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Zv" uniqKey="Guo Z">ZV Guo</name>
</author>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Komiyama, T" uniqKey="Komiyama T">T Komiyama</name>
</author>
<author>
<name sortKey="Ophir, E" uniqKey="Ophir E">E Ophir</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Bonardi, C" uniqKey="Bonardi C">C Bonardi</name>
</author>
<author>
<name sortKey="Morandell, K" uniqKey="Morandell K">K Morandell</name>
</author>
<author>
<name sortKey="Gutnisky, D" uniqKey="Gutnisky D">D Gutnisky</name>
</author>
<author>
<name sortKey="Peron, S" uniqKey="Peron S">S Peron</name>
</author>
<author>
<name sortKey="Xu, Ning Long" uniqKey="Xu N">Ning-long Xu</name>
</author>
<author>
<name sortKey="Cox, J" uniqKey="Cox J">J Cox</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Simon, Sa" uniqKey="Simon S">SA Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Zv" uniqKey="Guo Z">ZV Guo</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Ophir, E" uniqKey="Ophir E">E Ophir</name>
</author>
<author>
<name sortKey="Gutnisky, D" uniqKey="Gutnisky D">D Gutnisky</name>
</author>
<author>
<name sortKey="Ting, Jt" uniqKey="Ting J">JT Ting</name>
</author>
<author>
<name sortKey="Feng, G" uniqKey="Feng G">G Feng</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harvey, Cd" uniqKey="Harvey C">CD Harvey</name>
</author>
<author>
<name sortKey="Coen, P" uniqKey="Coen P">P Coen</name>
</author>
<author>
<name sortKey="Tank, Dw" uniqKey="Tank D">DW Tank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Pammer, L" uniqKey="Pammer L">L Pammer</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Golomb, D" uniqKey="Golomb D">D Golomb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Gutnisky, Da" uniqKey="Gutnisky D">DA Gutnisky</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hooks, Bm" uniqKey="Hooks B">BM Hooks</name>
</author>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Zhang, Y X" uniqKey="Zhang Y">Y-X Zhang</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Petreanu, L" uniqKey="Petreanu L">L Petreanu</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Shepherd, Gmg" uniqKey="Shepherd G">GMG Shepherd</name>
</author>
<author>
<name sortKey="Petersen, Ccch" uniqKey="Petersen C">CCCH Petersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Gutnisky, Da" uniqKey="Gutnisky D">DA Gutnisky</name>
</author>
<author>
<name sortKey="Peron, S" uniqKey="Peron S">S Peron</name>
</author>
<author>
<name sortKey="O Onnor, Dh" uniqKey="O Onnor D">DH O’Connor</name>
</author>
<author>
<name sortKey="Wiegert, Js" uniqKey="Wiegert J">JS Wiegert</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L Tian</name>
</author>
<author>
<name sortKey="Oertner, Tg" uniqKey="Oertner T">TG Oertner</name>
</author>
<author>
<name sortKey="Looger, Ll" uniqKey="Looger L">LL Looger</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hutson, Ka" uniqKey="Hutson K">KA Hutson</name>
</author>
<author>
<name sortKey="Masterton, Rb" uniqKey="Masterton R">RB Masterton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ibrahim, L" uniqKey="Ibrahim L">L Ibrahim</name>
</author>
<author>
<name sortKey="Wright, Ea" uniqKey="Wright E">EA Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, Gb" uniqKey="Keller G">GB Keller</name>
</author>
<author>
<name sortKey="Bonhoeffer, T" uniqKey="Bonhoeffer T">T Bonhoeffer</name>
</author>
<author>
<name sortKey="Hubener, M" uniqKey="Hubener M">M Hübener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerr, Jnd" uniqKey="Kerr J">JND Kerr</name>
</author>
<author>
<name sortKey="De Kock, Cpj" uniqKey="De Kock C">CPJ de Kock</name>
</author>
<author>
<name sortKey="Greenberg, Ds" uniqKey="Greenberg D">DS Greenberg</name>
</author>
<author>
<name sortKey="Bruno, Rm" uniqKey="Bruno R">RM Bruno</name>
</author>
<author>
<name sortKey="Sakmann, B" uniqKey="Sakmann B">B Sakmann</name>
</author>
<author>
<name sortKey="Helmchen, F" uniqKey="Helmchen F">F Helmchen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knutsen, Pm" uniqKey="Knutsen P">PM Knutsen</name>
</author>
<author>
<name sortKey="Pietr, M" uniqKey="Pietr M">M Pietr</name>
</author>
<author>
<name sortKey="Ahissar, E" uniqKey="Ahissar E">E Ahissar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knutsen, Pm" uniqKey="Knutsen P">PM Knutsen</name>
</author>
<author>
<name sortKey="Ahissar, E" uniqKey="Ahissar E">E Ahissar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krupa, Dj" uniqKey="Krupa D">DJ Krupa</name>
</author>
<author>
<name sortKey="Wiest, Mc" uniqKey="Wiest M">MC Wiest</name>
</author>
<author>
<name sortKey="Shuler, Mg" uniqKey="Shuler M">MG Shuler</name>
</author>
<author>
<name sortKey="Laubach, M" uniqKey="Laubach M">M Laubach</name>
</author>
<author>
<name sortKey="Nicolelis, Ma" uniqKey="Nicolelis M">MA Nicolelis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lefort, S" uniqKey="Lefort S">S Lefort</name>
</author>
<author>
<name sortKey="Tomm, C" uniqKey="Tomm C">C Tomm</name>
</author>
<author>
<name sortKey="Floyd Sarria, J C" uniqKey="Floyd Sarria J">J-C Floyd Sarria</name>
</author>
<author>
<name sortKey="Petersen, Cch" uniqKey="Petersen C">CCH Petersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madisen, L" uniqKey="Madisen L">L Madisen</name>
</author>
<author>
<name sortKey="Zwingman, Ta" uniqKey="Zwingman T">TA Zwingman</name>
</author>
<author>
<name sortKey="Sunkin, Sm" uniqKey="Sunkin S">SM Sunkin</name>
</author>
<author>
<name sortKey="Oh, Sw" uniqKey="Oh S">SW Oh</name>
</author>
<author>
<name sortKey="Zariwala, Ha" uniqKey="Zariwala H">HA Zariwala</name>
</author>
<author>
<name sortKey="Gu, H" uniqKey="Gu H">H Gu</name>
</author>
<author>
<name sortKey="Ng, Ll" uniqKey="Ng L">LL Ng</name>
</author>
<author>
<name sortKey="Palmiter, Rd" uniqKey="Palmiter R">RD Palmiter</name>
</author>
<author>
<name sortKey="Hawrylycz, Mj" uniqKey="Hawrylycz M">MJ Hawrylycz</name>
</author>
<author>
<name sortKey="Jones, Ar" uniqKey="Jones A">AR Jones</name>
</author>
<author>
<name sortKey="Lein, Es" uniqKey="Lein E">ES Lein</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madisen, L" uniqKey="Madisen L">L Madisen</name>
</author>
<author>
<name sortKey="Mao, T" uniqKey="Mao T">T Mao</name>
</author>
<author>
<name sortKey="Koch, H" uniqKey="Koch H">H Koch</name>
</author>
<author>
<name sortKey="Zhuo, Jia Min" uniqKey="Zhuo J">Jia-min Zhuo</name>
</author>
<author>
<name sortKey="Berenyi, A" uniqKey="Berenyi A">A Berenyi</name>
</author>
<author>
<name sortKey="Fujisawa, S" uniqKey="Fujisawa S">S Fujisawa</name>
</author>
<author>
<name sortKey="Hsu, Y Wa" uniqKey="Hsu Y">Y-WA Hsu</name>
</author>
<author>
<name sortKey="Garcia, Aj" uniqKey="Garcia A">AJ Garcia</name>
</author>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Zanella, S" uniqKey="Zanella S">S Zanella</name>
</author>
<author>
<name sortKey="Kidney, J" uniqKey="Kidney J">J Kidney</name>
</author>
<author>
<name sortKey="Gu, H" uniqKey="Gu H">H Gu</name>
</author>
<author>
<name sortKey="Mao, Y" uniqKey="Mao Y">Y Mao</name>
</author>
<author>
<name sortKey="Hooks, Bm" uniqKey="Hooks B">BM Hooks</name>
</author>
<author>
<name sortKey="Boyden, Es" uniqKey="Boyden E">ES Boyden</name>
</author>
<author>
<name sortKey="Buzsaki, G" uniqKey="Buzsaki G">G Buzsáki</name>
</author>
<author>
<name sortKey="Ramirez, Jm" uniqKey="Ramirez J">JM Ramirez</name>
</author>
<author>
<name sortKey="Jones, Ar" uniqKey="Jones A">AR Jones</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Han, X" uniqKey="Han X">X Han</name>
</author>
<author>
<name sortKey="Turner, Ee" uniqKey="Turner E">EE Turner</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitchinson, B" uniqKey="Mitchinson B">B Mitchinson</name>
</author>
<author>
<name sortKey="Grant, Ra" uniqKey="Grant R">RA Grant</name>
</author>
<author>
<name sortKey="Arkley, K" uniqKey="Arkley K">K Arkley</name>
</author>
<author>
<name sortKey="Rankov, V" uniqKey="Rankov V">V Rankov</name>
</author>
<author>
<name sortKey="Perkon, I" uniqKey="Perkon I">I Perkon</name>
</author>
<author>
<name sortKey="Prescott, Tj" uniqKey="Prescott T">TJ Prescott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyashita, T" uniqKey="Miyashita T">T Miyashita</name>
</author>
<author>
<name sortKey="Feldman, De" uniqKey="Feldman D">DE Feldman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Ci" uniqKey="Moore C">CI Moore</name>
</author>
<author>
<name sortKey="Nelson, Sb" uniqKey="Nelson S">SB Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Clack, Ng" uniqKey="Clack N">NG Clack</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Komiyama, T" uniqKey="Komiyama T">T Komiyama</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Peron, Sp" uniqKey="Peron S">SP Peron</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Guo, Zv" uniqKey="Guo Z">ZV Guo</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N Li</name>
</author>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
<author>
<name sortKey="Sun, Q Q" uniqKey="Sun Q">Q-Q Sun</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohki, K" uniqKey="Ohki K">K Ohki</name>
</author>
<author>
<name sortKey="Chung, S" uniqKey="Chung S">S Chung</name>
</author>
<author>
<name sortKey="Ch Ng, Yh" uniqKey="Ch Ng Y">YH Ch'ng</name>
</author>
<author>
<name sortKey="Kara, P" uniqKey="Kara P">P Kara</name>
</author>
<author>
<name sortKey="Reid, Rc" uniqKey="Reid R">RC Reid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olsen, Sr" uniqKey="Olsen S">SR Olsen</name>
</author>
<author>
<name sortKey="Bortone, Ds" uniqKey="Bortone D">DS Bortone</name>
</author>
<author>
<name sortKey="Adesnik, H" uniqKey="Adesnik H">H Adesnik</name>
</author>
<author>
<name sortKey="Scanziani, M" uniqKey="Scanziani M">M Scanziani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pammer, L" uniqKey="Pammer L">L Pammer</name>
</author>
<author>
<name sortKey="O Connor, Dh" uniqKey="O Connor D">DH O'Connor</name>
</author>
<author>
<name sortKey="Hires, Sa" uniqKey="Hires S">SA Hires</name>
</author>
<author>
<name sortKey="Clack, Ng" uniqKey="Clack N">NG Clack</name>
</author>
<author>
<name sortKey="Huber, D" uniqKey="Huber D">D Huber</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peron, S" uniqKey="Peron S">S Peron</name>
</author>
<author>
<name sortKey="Chen, T W" uniqKey="Chen T">T-W Chen</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peron, Sp" uniqKey="Peron S">SP Peron</name>
</author>
<author>
<name sortKey="Freeman, J" uniqKey="Freeman J">J Freeman</name>
</author>
<author>
<name sortKey="Iyer, V" uniqKey="Iyer V">V Iyer</name>
</author>
<author>
<name sortKey="Guo, C" uniqKey="Guo C">C Guo</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pluta, S" uniqKey="Pluta S">S Pluta</name>
</author>
<author>
<name sortKey="Naka, A" uniqKey="Naka A">A Naka</name>
</author>
<author>
<name sortKey="Veit, J" uniqKey="Veit J">J Veit</name>
</author>
<author>
<name sortKey="Telian, G" uniqKey="Telian G">G Telian</name>
</author>
<author>
<name sortKey="Yao, L" uniqKey="Yao L">L Yao</name>
</author>
<author>
<name sortKey="Hakim, R" uniqKey="Hakim R">R Hakim</name>
</author>
<author>
<name sortKey="Taylor, D" uniqKey="Taylor D">D Taylor</name>
</author>
<author>
<name sortKey="Adesnik, H" uniqKey="Adesnik H">H Adesnik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pouille, F" uniqKey="Pouille F">F Pouille</name>
</author>
<author>
<name sortKey="Marin Burgin, A" uniqKey="Marin Burgin A">A Marin-Burgin</name>
</author>
<author>
<name sortKey="Adesnik, H" uniqKey="Adesnik H">H Adesnik</name>
</author>
<author>
<name sortKey="Atallah, Bv" uniqKey="Atallah B">BV Atallah</name>
</author>
<author>
<name sortKey="Scanziani, M" uniqKey="Scanziani M">M Scanziani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saleem, Ab" uniqKey="Saleem A">AB Saleem</name>
</author>
<author>
<name sortKey="Ayaz, A" uniqKey="Ayaz A">A Ayaz</name>
</author>
<author>
<name sortKey="Jeffery, Kj" uniqKey="Jeffery K">KJ Jeffery</name>
</author>
<author>
<name sortKey="Harris, Kd" uniqKey="Harris K">KD Harris</name>
</author>
<author>
<name sortKey="Carandini, M" uniqKey="Carandini M">M Carandini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, Tr" uniqKey="Sato T">TR Sato</name>
</author>
<author>
<name sortKey="Schall, Jd" uniqKey="Schall J">JD Schall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shepherd, Gm" uniqKey="Shepherd G">GM Shepherd</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simons, Dj" uniqKey="Simons D">DJ Simons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simons, Dj" uniqKey="Simons D">DJ Simons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simons, Dj" uniqKey="Simons D">DJ Simons</name>
</author>
<author>
<name sortKey="Carvell, Ge" uniqKey="Carvell G">GE Carvell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simons, D" uniqKey="Simons D">D Simons</name>
</author>
<author>
<name sortKey="Carvell, G" uniqKey="Carvell G">G Carvell</name>
</author>
<author>
<name sortKey="Hershey, Ae" uniqKey="Hershey A">AE Hershey</name>
</author>
<author>
<name sortKey="Bryant, Dp" uniqKey="Bryant D">DP Bryant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sofroniew, Nj" uniqKey="Sofroniew N">NJ Sofroniew</name>
</author>
<author>
<name sortKey="Cohen, Jd" uniqKey="Cohen J">JD Cohen</name>
</author>
<author>
<name sortKey="Lee, Ak" uniqKey="Lee A">AK Lee</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sofroniew, Nj" uniqKey="Sofroniew N">NJ Sofroniew</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sprague, Jm" uniqKey="Sprague J">JM Sprague</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuttgen, Mc" uniqKey="Stuttgen M">MC Stuttgen</name>
</author>
<author>
<name sortKey="Kullmann, S" uniqKey="Kullmann S">S Kullmann</name>
</author>
<author>
<name sortKey="Schwarz, C" uniqKey="Schwarz C">C Schwarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suter, Ba" uniqKey="Suter B">BA Suter</name>
</author>
<author>
<name sortKey="O Connor, T" uniqKey="O Connor T">T O'Connor</name>
</author>
<author>
<name sortKey="Iyer, V" uniqKey="Iyer V">V Iyer</name>
</author>
<author>
<name sortKey="Petreanu, Lt" uniqKey="Petreanu L">LT Petreanu</name>
</author>
<author>
<name sortKey="Hooks, Bm" uniqKey="Hooks B">BM Hooks</name>
</author>
<author>
<name sortKey="Kiritani, T" uniqKey="Kiritani T">T Kiritani</name>
</author>
<author>
<name sortKey="Svoboda, K" uniqKey="Svoboda K">K Svoboda</name>
</author>
<author>
<name sortKey="Shepherd, Gm" uniqKey="Shepherd G">GM Shepherd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szwed, M" uniqKey="Szwed M">M Szwed</name>
</author>
<author>
<name sortKey="Bagdasarian, K" uniqKey="Bagdasarian K">K Bagdasarian</name>
</author>
<author>
<name sortKey="Blumenfeld, B" uniqKey="Blumenfeld B">B Blumenfeld</name>
</author>
<author>
<name sortKey="Barak, O" uniqKey="Barak O">O Barak</name>
</author>
<author>
<name sortKey="Derdikman, D" uniqKey="Derdikman D">D Derdikman</name>
</author>
<author>
<name sortKey="Ahissar, E" uniqKey="Ahissar E">E Ahissar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Loos, H" uniqKey="Van Der Loos H">H Van der Loos</name>
</author>
<author>
<name sortKey="Woolsey, Ta" uniqKey="Woolsey T">TA Woolsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vincent, Sb" uniqKey="Vincent S">SB Vincent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Voigts, J" uniqKey="Voigts J">J Voigts</name>
</author>
<author>
<name sortKey="Herman, Dh" uniqKey="Herman D">DH Herman</name>
</author>
<author>
<name sortKey="Celikel, T" uniqKey="Celikel T">T Celikel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, S" uniqKey="Zhao S">S Zhao</name>
</author>
<author>
<name sortKey="Ting, Jt" uniqKey="Ting J">JT Ting</name>
</author>
<author>
<name sortKey="Atallah, He" uniqKey="Atallah H">HE Atallah</name>
</author>
<author>
<name sortKey="Qiu, L" uniqKey="Qiu L">L Qiu</name>
</author>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J Tan</name>
</author>
<author>
<name sortKey="Gloss, B" uniqKey="Gloss B">B Gloss</name>
</author>
<author>
<name sortKey="Augustine, Gj" uniqKey="Augustine G">GJ Augustine</name>
</author>
<author>
<name sortKey="Deisseroth, K" uniqKey="Deisseroth K">K Deisseroth</name>
</author>
<author>
<name sortKey="Luo, M" uniqKey="Luo M">M Luo</name>
</author>
<author>
<name sortKey="Graybiel, Am" uniqKey="Graybiel A">AM Graybiel</name>
</author>
<author>
<name sortKey="Feng, G" uniqKey="Feng G">G Feng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zucker, E" uniqKey="Zucker E">E Zucker</name>
</author>
<author>
<name sortKey="Welker, Wi" uniqKey="Welker W">WI Welker</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">eLife</journal-id>
<journal-id journal-id-type="iso-abbrev">Elife</journal-id>
<journal-id journal-id-type="hwp">eLife</journal-id>
<journal-id journal-id-type="publisher-id">eLife</journal-id>
<journal-title-group>
<journal-title>eLife</journal-title>
</journal-title-group>
<issn pub-type="epub">2050-084X</issn>
<publisher>
<publisher-name>eLife Sciences Publications, Ltd</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26701910</article-id>
<article-id pub-id-type="pmc">4764557</article-id>
<article-id pub-id-type="publisher-id">12559</article-id>
<article-id pub-id-type="doi">10.7554/eLife.12559</article-id>
<article-categories>
<subj-group subj-group-type="display-channel">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Neuroscience</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Neural coding in barrel cortex during whisker-guided locomotion</article-title>
</title-group>
<contrib-group>
<contrib id="author-44857" contrib-type="author">
<name>
<surname>Sofroniew</surname>
<given-names>Nicholas James</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="author-notes" rid="equal-contrib"></xref>
<xref ref-type="other" rid="par-1"></xref>
<xref ref-type="fn" rid="con1"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-45693" contrib-type="author">
<name>
<surname>Vlasov</surname>
<given-names>Yurii A</given-names>
</name>
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-5864-3346</contrib-id>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="author-notes" rid="equal-contrib"></xref>
<xref ref-type="other" rid="par-1"></xref>
<xref ref-type="other" rid="par-2"></xref>
<xref ref-type="fn" rid="con2"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-28244" contrib-type="author">
<name>
<surname>Andrew Hires</surname>
<given-names>Samuel</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="par-1"></xref>
<xref ref-type="fn" rid="con3"></xref>
<xref ref-type="fn" rid="conf1"></xref>
<xref ref-type="author-notes" rid="pa1"></xref>
</contrib>
<contrib id="author-20260" contrib-type="author">
<name>
<surname>Freeman</surname>
<given-names>Jeremy</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="other" rid="par-1"></xref>
<xref ref-type="fn" rid="con4"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<contrib id="author-1328" contrib-type="author">
<name>
<surname>Svoboda</surname>
<given-names>Karel</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
<xref ref-type="other" rid="par-1"></xref>
<xref ref-type="fn" rid="con5"></xref>
<xref ref-type="fn" rid="conf1"></xref>
</contrib>
<aff id="aff1">
<label>1</label>
<institution>Janelia Research Campus, Howard Hughes Medical Institute</institution>
,
<addr-line>Ashburn</addr-line>
,
<country>United States</country>
</aff>
<aff id="aff2">
<label>2</label>
<institution>IBM Thomas J. Watson Research Center</institution>
,
<addr-line>New York</addr-line>
,
<country>United States</country>
</aff>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Nelson</surname>
<given-names>Sacha B</given-names>
</name>
<role>Reviewing editor</role>
<aff id="aff3">
<institution>Brandeis University</institution>
,
<country>United States</country>
</aff>
</contrib>
</contrib-group>
<author-notes>
<corresp id="cor1">
<email>svobodak@janelia.hhmi.org</email>
</corresp>
<fn fn-type="present-address" id="pa1">
<label></label>
<p>Biological Sciences, University of Southern California, Los Angeles, United States.</p>
</fn>
<fn fn-type="con" id="equal-contrib">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
</author-notes>
<pub-date date-type="pub" publication-format="electronic">
<day>23</day>
<month>12</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>4</volume>
<elocation-id>e12559</elocation-id>
<history>
<date date-type="received">
<day>24</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>21</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015, Sofroniew et al</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Sofroniew et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This article is distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use and redistribution provided that the original author and source are credited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="elife-12559.pdf"></self-uri>
<abstract>
<p>Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.001">http://dx.doi.org/10.7554/eLife.12559.001</ext-link>
</p>
</abstract>
<abstract abstract-type="executive-summary">
<title>eLife digest</title>
<p>Mice are primarily nocturnal animals that rely on their whiskers to navigate dark underground burrows and winding corridors. When a whisker touches an object, cells called neurons at the base of the whiskers produce electrical signals that are relayed to other neurons in an area of the brain called the barrel cortex. However, it is not clear how information is encoded in these electrical signals, in part, because it is technically challenging to collect data about neuron activity and behavior while the mice move around.</p>
<p>To overcome these difficulties, Sofroniew, Vlasov et al. used a touch-based (or 'tactile') virtual reality system to study how mice navigate along corridors. The system simulated the contact the whiskers would have with the walls of a winding corridor. This was achieved by moving the walls with motors while holding the mouse still enough to be able to measure the activity of neurons in the barrel cortex and observe the behavior of the animal.</p>
<p>The experiments show that the electrical signals in the barrel cortex encode information about motion as well as the distance between the mouse and the wall. For example, some neurons in the barrel cortex were only activated when a mouse was a particular distance from the walls. The experiments suggest that the barrel cortex processes signals received from several whiskers to build an overall picture of the locations and shapes of objects.</p>
<p>Sofroniew, Vlasov et al. also used a technique called optogenetics to deliberately activate particular neurons in a manner that mimics their activity patterns during interactions with walls. In the absence of walls, the optogenetic stimuli guided the behavior of the mice so that they tracked along the paths of 'illusory' corridors. Together, these findings reveal the neural code in the barrel cortex that allows mice to navigate by touch.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.002">http://dx.doi.org/10.7554/eLife.12559.002</ext-link>
</p>
</abstract>
<kwd-group kwd-group-type="author-keywords">
<title>Author Keywords</title>
<kwd>whiskers</kwd>
<kwd>barrel cortex</kwd>
<kwd>navigation</kwd>
<kwd>calcium imaging</kwd>
<kwd>electrophysiologygy</kwd>
<kwd>head-fixed</kwd>
</kwd-group>
<kwd-group kwd-group-type="research-organism">
<title>Research Organism</title>
<kwd>Mouse</kwd>
</kwd-group>
<funding-group>
<award-group id="par-1">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000011</institution-id>
<institution>Howard Hughes Medical Institute</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Sofroniew</surname>
<given-names>Nicholas James</given-names>
</name>
<name>
<surname>Vlasov</surname>
<given-names>Yurii A</given-names>
</name>
<name>
<surname>Andrew Hires</surname>
<given-names>Samuel</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>Jeremy</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>Karel</given-names>
</name>
</principal-award-recipient>
</award-group>
<award-group id="par-2">
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100004316</institution-id>
<institution>International Business Machines Corporation</institution>
</institution-wrap>
</funding-source>
<principal-award-recipient>
<name>
<surname>Vlasov</surname>
<given-names>Yurii A</given-names>
</name>
</principal-award-recipient>
</award-group>
<funding-statement>The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.</funding-statement>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>elife-xml-version</meta-name>
<meta-value>2.5</meta-value>
</custom-meta>
<custom-meta specific-use="meta-only">
<meta-name>Author impact statement</meta-name>
<meta-value>A tactile virtual reality system reveals the neural codes in the barrel cortex that underlie wall-tracking in mice.</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="s1">
<title>Introduction</title>
<p>Animals must understand the spatial relationships of objects in their environment for navigation. Rodents move their whiskers to localize (
<xref rid="bib33" ref-type="bibr">Knutsen et al., 2006</xref>
;
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
) and identify (
<xref rid="bib4" ref-type="bibr">Anjum et al., 2006</xref>
) nearby objects, and to guide their locomotion along walls and through narrow tunnels (
<xref rid="bib66" ref-type="bibr">Vincent, 1912</xref>
;
<xref rid="bib60" ref-type="bibr">Sofroniew and Svoboda, 2015</xref>
). The neuronal responses to passive deflections of whiskers (
<xref rid="bib55" ref-type="bibr">Simons, 1978</xref>
;
<xref rid="bib5" ref-type="bibr">Armstrong-James et al., 1992</xref>
;
<xref rid="bib58" ref-type="bibr">Simons et al., 1992</xref>
) and whisker-object touches (
<xref rid="bib35" ref-type="bibr">Krupa et al., 2004</xref>
;
<xref rid="bib14" ref-type="bibr">Curtis and Kleinfeld, 2009</xref>
;
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
;
<xref rid="bib44" ref-type="bibr">2013</xref>
;
<xref rid="bib26" ref-type="bibr">Hires et al., 2015</xref>
;
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
) have been well studied; but little is known about neural coding during natural behaviors, such as tracking a wall during whisker-based navigation. Studying tactile sensation during such natural behaviors is important, because the sensors themselves - digits, whiskers - move in an adaptive manner to produce sensory input.</p>
<p>Touches between whiskers and objects cause deformations of the whiskers and forces at the base of the whisker (
<xref rid="bib6" ref-type="bibr">Birdwell et al., 2007</xref>
;
<xref rid="bib47" ref-type="bibr">Pammer et al., 2013</xref>
) that are translated into neural excitation (
<xref rid="bib69" ref-type="bibr">Zucker and Welker, 1969</xref>
;
<xref rid="bib62" ref-type="bibr">Stuttgen et al., 2008</xref>
) by mechanosensory receptors (
<xref rid="bib18" ref-type="bibr">Dörfl, 1985</xref>
). Whiskers are elastic rods with a gradually decreasing thickness as a function of distance from the face (
<xref rid="bib6" ref-type="bibr">Birdwell et al., 2007</xref>
;
<xref rid="bib25" ref-type="bibr">Hires et al., 2013</xref>
). Because of the whisker taper, more proximal deflections cause larger forces at the base of the whisker than distal deflections (
<xref rid="bib6" ref-type="bibr">Birdwell et al., 2007</xref>
;
<xref rid="bib47" ref-type="bibr">Pammer et al., 2013</xref>
). Objects that are closer to the face therefore trigger higher spike rates in primary sensory neurons (
<xref rid="bib64" ref-type="bibr">Szwed et al., 2006</xref>
).</p>
<p>Excitation from primary sensory neurons ascends through the brainstem and thalamus to the whisker representation area of the somatosensory cortex, also referred to as barrel cortex (
<xref rid="bib65" ref-type="bibr">Van der Loos and Woolsey, 1973</xref>
;
<xref rid="bib17" ref-type="bibr">Diamond et al., 2008</xref>
;
<xref rid="bib7" ref-type="bibr">Bosman et al., 2011</xref>
). Layer (L) 4 is the main thalamocortical recipient layer and contains spatial clusters of neurons, termed ‘barrels’. There is a one-to-one correspondence between L4 barrels and specific individual whiskers on the face (
<xref rid="bib65" ref-type="bibr">Van der Loos and Woolsey, 1973</xref>
). Neurons in layers 2/3, 5 & 6, above and below a particular barrel, are part of a ‘barrel column’. Neurons in different layers interact through intricate excitatory and inhibitory neural circuits (
<xref rid="bib54" ref-type="bibr">Shepherd and Svoboda, 2005</xref>
;
<xref rid="bib36" ref-type="bibr">Lefort et al., 2009</xref>
;
<xref rid="bib51" ref-type="bibr">Pouille et al., 2009</xref>
;
<xref rid="bib27" ref-type="bibr">Hooks et al., 2011</xref>
;
<xref rid="bib1" ref-type="bibr">Adesnik et al., 2012</xref>
;
<xref rid="bib50" ref-type="bibr">Pluta et al., 2015</xref>
).</p>
<p>Passive whisker deflection causes brief, short latency (~10 ms) excitatory responses in neurons across layers of the corresponding barrel column (
<xref rid="bib55" ref-type="bibr">Simons, 1978</xref>
;
<xref rid="bib5" ref-type="bibr">Armstrong-James et al., 1992</xref>
;
<xref rid="bib16" ref-type="bibr">De Kock et al., 2007</xref>
). Individual neurons are sensitive to the direction (
<xref rid="bib57" ref-type="bibr">Simons and Carvell, 1989</xref>
), amplitude and velocity of whisker deflection, and neural responses increase monotonically with the strength of a whisker stimulus (
<xref rid="bib55" ref-type="bibr">Simons, 1978</xref>
). Deflection of neighboring whiskers causes longer-latency, weaker, excitatory responses (
<xref rid="bib5" ref-type="bibr">Armstrong-James et al., 1992</xref>
) and surround suppression (
<xref rid="bib56" ref-type="bibr">Simons, 1985</xref>
;
<xref rid="bib41" ref-type="bibr">Moore and Nelson, 1998</xref>
), implying that neighboring barrel columns can inhibit each other. Similarly, sustained activation of one layer can have mainly inhibitory effects on other layers (
<xref rid="bib46" ref-type="bibr">Olsen et al., 2012</xref>
;
<xref rid="bib50" ref-type="bibr">Pluta et al., 2015</xref>
), which could underlie complex responses of barrel cortex neurons that are sometimes seen during active sensation involving prolonged interactions with an object (
<xref rid="bib35" ref-type="bibr">Krupa et al., 2004</xref>
).</p>
<p>During exploration, mice move their whiskers rhythmically over objects at ~16 Hz (
<xref rid="bib39" ref-type="bibr">Mitchinson et al., 2011</xref>
;
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
;
<xref rid="bib60" ref-type="bibr">Sofroniew and Svoboda, 2015</xref>
). In a whisker-based pole localization task in head-fixed mice, neurons in layer 4 and layer 2/3 of the barrel cortex show activity highly correlated with touch onset (
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
;
<xref rid="bib13" ref-type="bibr">Crochet et al., 2011</xref>
;
<xref rid="bib26" ref-type="bibr">Hires et al., 2015</xref>
), with larger forces producing more vigorous responses (
<xref rid="bib44" ref-type="bibr">O'Connor et al., 2013</xref>
;
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
). These responses are sensitive to the phase of the whisker at touch (
<xref rid="bib14" ref-type="bibr">Curtis and Kleinfeld, 2009</xref>
) and the direction of deflection (
<xref rid="bib2" ref-type="bibr">Andermann and Moore, 2006</xref>
;
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
). Rodents can use the identity, magnitude, and timing of whisker-object touch to determine the spatial location of nearby objects (
<xref rid="bib8" ref-type="bibr">Brecht et al., 1997</xref>
;
<xref rid="bib17" ref-type="bibr">Diamond et al., 2008</xref>
;
<xref rid="bib34" ref-type="bibr">Knutsen and Ahissar, 2009</xref>
).</p>
<p>Here, we explored coding in the whisker system during naturalistic behavior. We used a tactile virtual reality system that combines stimulus control and rich behavior with neural recordings and optogenetic manipulation to specifically investigate neural coding of wall position and motion across layers of the barrel cortex during whisker-guided locomotion. Our data show how environmental features are transformed and abstracted by somatosensory circuits.</p>
</sec>
<sec sec-type="results" id="s2">
<title>Results</title>
<sec id="s2-1">
<title>Barrel cortex is involved in wall tracking</title>
<p>Mice were head-fixed in a tactile virtual reality system consisting of an air-supported ball and two motorized walls (
<xref ref-type="fig" rid="fig1">Figure 1a</xref>
) (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
). The lateral distance between mouse and the walls was controlled in closed-loop with motion of the ball, allowing simulation of a winding corridor. When mice ran towards a wall, a motor moved the wall closer to the animal; when mice ran away from a wall, a motor moved the wall away (
<xref ref-type="fig" rid="fig1">Figure 1b</xref>
). When the mice are in the center of the corridor, their whiskers can just touch the walls. Mice use their whiskers to track the walls, staying near the center of the winding corridor without training (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
). This wall-tracking behavior requires mice to interpret forces exerted by the walls on their whiskers in terms of wall distance.
<fig id="fig1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.12559.003</object-id>
<label>Figure 1.</label>
<caption>
<title>Photoinhibition of barrel cortex during wall tracking.</title>
<p>(
<bold>a</bold>
) Side view of a mouse in the tactile virtual reality system. (
<bold>b</bold>
) Schematic illustrating closed-loop control of the walls. If the mouse runs at speed v in the direction ϕ in a corridor with a turn angle ψ then wall position u updates according to the coupling equation Δu = γ v sin(ε) Δt where ε = ϕ − ψ the difference, or error, between the run angle and the turn angle, is the gain, and Δt is the time interval. (
<bold>c</bold>
) One-left-turn trial. The mouse trajectory (pink) is overlaid on the ideal trajectory (gray), which corresponds to staying in the center of the corridor. The angle error is the difference between the actual and ideal trajectories at the end of the turn. (
<bold>d</bold>
) Top, twenty randomly selected running trajectories corresponding to three different turn angles recorded in one session. Bottom, same as above during barrel cortex photoinhibition achieved by photostimulating GABAergic neurons expressing ChR2 (left, pink; straight, gray; right, purple). (
<bold>e</bold>
) Average angle error during interleaved trials with no photoinhibition, visual cortex photoinhibition, barrel cortex photoinhibition, and trials with no whiskers. Barrel cortex photoinhibition impaired tracking performance (p = 6.4*10
<sup>–4</sup>
t-test; 8 mice).</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.003">http://dx.doi.org/10.7554/eLife.12559.003</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig1"></graphic>
</fig>
</p>
<p>Trials were defined as two-meter-long segments of the corridor that contained either bends to the left or right or were straight. Trials with different bends were randomly interleaved. Mice continued to track the walls and matched their run angle to the bend angle in the corridor (
<xref ref-type="fig" rid="fig1">Figure 1c</xref>
). We quantified performance for each trial using angle error, defined as the absolute difference between the run angle of the mouse and the angle of the bend in the corridor.</p>
<p>Whisker-guided locomotion could depend on activity in the barrel cortex, which rodents use in whisker-dependent gap crossing (
<xref rid="bib29" ref-type="bibr">Hutson and Masterton, 1986</xref>
), object detection (
<xref rid="bib40" ref-type="bibr">Miyashita and Feldman, 2013</xref>
) and object localization (
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
). Alternatively, whisker-guided locomotion might be independent of the barrel cortex, for example, relying instead on the superior colliculus, which by itself can mediate orienting behaviors (
<xref rid="bib61" ref-type="bibr">Sprague, 1966</xref>
) and active avoidance (
<xref rid="bib12" ref-type="bibr">Cohen and Castro-Alamancos, 2007</xref>
). We tested whether whisker-guided wall tracking uses neural activity in the barrel cortex. Excitatory neurons in the barrel cortex were silenced by photostimulating GABAergic neurons expressing ChannelRhodopsin-2 (ChR2) in VGAT-ChR2-EYFP transgenic mice (
<xref rid="bib68" ref-type="bibr">Zhao et al., 2011</xref>
). Laser light was focused on the skull, 'photoinhibiting' all cortical layers across a 2-mm-diameter area within 20 ms of laser onset, which was reversed within 150 ms after laser offset (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). Rapid laser movement between spots on the left and right hemispheres enabled bilateral photoinhibition of the cortex. For silencing barrel cortex, the laser was centered on the C2 barrel, localized using intrinsic signal imaging (
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
). Mice whiskers were trimmed such that either a single C2 whisker (n = 3) or the C1, C2, and C3 whiskers (n = 5) remained. The corresponding barrel columns fall within the central millimeter of the photoinhibition volume, thus ensuring that the relevant representation in the barrel cortex was abolished by photoinhibition. The task was performed in the dark and stray light from the laser was shielded, eliminating visual cues for locomotion. Photoinhibition lasted for the time needed for mice to run through a one-meter bend (typically 3–7 s).</p>
<p>Silencing barrel cortex bilaterally impaired turning in response to bends in the corridor (angle error 8.09 ± 2.22° vs. 3.68 ± 0.55°, p = 6.4*10
<sup>−4</sup>
t-test) (
<xref ref-type="fig" rid="fig1">Figure 1d,e</xref>
). Performance during photoinhibition was similar to performance after trimming all whiskers (angle error 8.09 ± 2.22° vs. 8.83 ± 2.24°, p = 0.52 t-test). In contrast, there was no effect on turning performance in response to bilateral photoinhibition of the visual cortex (angle error 3.20 ± 0.79° vs. 3.68 ± 0.55°, p = 0.19 t-test), controlling for non-specific effects of photoinhibition. We conclude that mice use neural activity in barrel cortex to guide locomotion along the wall.</p>
</sec>
<sec id="s2-2">
<title>Optogenetic activation of barrel cortex can guide locomotion</title>
<p>Object position can be encoded in spike counts in barrel cortex layer 4 (
<xref rid="bib44" ref-type="bibr">O'Connor et al., 2013</xref>
). To determine whether activity in the barrel cortex can also drive a wall-tracking like behavior we optogenetically activated layer 4 using
<italic>Scnn1a</italic>
-TG3-Cre x Ai32 mice. Photoactivation was controlled in a closed-loop with the motion of the ball and in the absence of walls thus creating an 'illusory corridor', where information about distance to illusory walls is encoded in the strength of the photostimulus (
<xref ref-type="fig" rid="fig2">Figure 2a</xref>
). Stimuli consisted of 2-ms laser pulses (10 Hz); at maximum experienced power the photostimulus evoked up to 8 additional spikes per neuron per second in layer 4 (
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1b</xref>
). The power was modulated depending on the position of the mice in the illusory corridor. When mice were in the center of the illusory corridor the laser was off; when mice were on the right side, the left barrel cortex was activated, and vice-versa. The closer the mice were to the edge of the illusory corridor, the higher the laser power in the corresponding hemisphere. Mice responded to photoactivation of layer 4 by making left and right turns at bends in the illusory corridor (
<xref ref-type="fig" rid="fig2">Figure 2b</xref>
), with slightly lower angle error than when responding to real walls (angle error 2.30 ± 0.85° vs. 3.19 ± 0.55°, p = 0.026 t-test). Running speeds in the illusory corridor were slower (13.2 ± 3.6 cm/s) than running speeds in the corridor with walls (20.4 ± 3.8 cm/s). When parietal (n=3 mice) or visual cortices (n=5 mice) were activated mice did not follow the bends in the corridor (angle error 14.01 ± 1.73° vs. 3.19 ± 0.55°, p = 1.7*10
<sup>-8</sup>
t-test) (
<xref ref-type="fig" rid="fig2">Figure 2c</xref>
). This response to photoactivation was not learnt as all mice performed the task from the very first trial, similarly to how they perform the task with the real walls (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
), and the reward was provided in each trial independent of behavioral performance.
<fig id="fig2" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.12559.004</object-id>
<label>Figure 2.</label>
<caption>
<title>Photoactivation of layer 4 to guide locomotion.</title>
<p>(
<bold>a</bold>
) Schematic of an illusory corridor generated with position-dependent photoactivation. In the center of the corridor the laser intensity was zero. On the right side of the corridor the left barrel cortex was stimulated and vice versa. The laser power increased with proximity to the edge of the corridor. (
<bold>b</bold>
) Twenty randomly selected running trajectories from three different turn angles during closed-loop photoactivation (left, pink; straight, gray; right, purple). (
<bold>c</bold>
) Average angle error during trials of whisker-based wall-tracking, barrel cortex activation, visual or parietal cortex activation, and no cues. Barrel cortex photoactivation was able to drive a behavior resembling wall tracking (p = 1.7*10
<sup>−8</sup>
t-test; 8 mice). Trials with barrel cortex activation, visual or parietal cortex activation, and no whisker or photostimulation cues were randomly interleaved. Trials with whisker-based wall-tracking were recorded in separate sessions. Half of the mice performed the photoactivation sessions after the wall-tracking sessions and half of the mice performed them before.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.004">http://dx.doi.org/10.7554/eLife.12559.004</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig2"></graphic>
<p content-type="supplemental-figure">
<fig id="fig2s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.005</object-id>
<label>Figure 2—figure supplement 1.</label>
<caption>
<title>Unilateral activation in mice running in a real corridor.</title>
<p>(
<bold>a</bold>
) Twenty randomly selected running trajectories in a straight corridor either with no photoactivation (gray) or with photoactivation of layer 4 of the right barrel cortex (purple). (
<bold>b</bold>
) Average activity (6 cells) evoked by photoactivation during cell attached recordings in awake, non-behaving mice as a function of laser power (mean ± SE). (
<bold>c</bold>
) Wall distance bias evoked by photoactivation of barrel (left) and visual / pariental cortex (right) as a function of laser power (8 mice, mean ± SE).</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.005">http://dx.doi.org/10.7554/eLife.12559.005</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig2-figsupp1"></graphic>
</fig>
</p>
</fig>
</p>
<p>We also unilaterally activated layer 4 with trains of light pulses at constant power as the mice ran through a straight corridor with real walls (
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1a</xref>
). Running trajectories were biased towards the side of the activation, as if the mice were avoiding a wall they were touching on the contralateral side (7.7 mm ± 4.5 mm at 2.0 mW) (
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1c</xref>
). Activation of the parietal (n=3) or visual cortex (n=5) did not show an effect on distance from the wall (0.7 mm ± 3.8 mm at 2.0 mW) (
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1d</xref>
). Together, these results show that activity in the barrel cortex can guide locomotion, and suggest that wall distance may be encoded by spike rates in barrel cortex.</p>
</sec>
<sec id="s2-3">
<title>Barrel cortex contains neurons tuned to wall-distance</title>
<p>To examine population encoding of wall distance, we recorded neuronal activity in layer 2/3 of barrel cortex using 2-photon microscopy and GCaMP6s (
<xref rid="bib10" ref-type="bibr">Chen et al., 2013</xref>
) in a separate group of mice running through the winding corridor (6 mice). Mice were left with all their whiskers, so we could look at neural coding under their natural whisker configuration. Three 600 x 600 μm planes separated by 20 μm in depth were imaged at 7.1 Hz around the center of the C2 barrel column, found using intrinsic signal imaging (
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
). To measure repeated responses across a range of wall distances, we also included 'open-loop' trials in the winding corridor, in which the contralateral wall was moved to fixed distances away from the mouse independent of the animal’s locomotion (
<xref ref-type="fig" rid="fig3">Figure 3a</xref>
).
<fig id="fig3" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.12559.006</object-id>
<label>Figure 3.</label>
<caption>
<title>Imaging activity of layer 2/3 neurons during whisker-guided locomotion.</title>
<p>(
<bold>a</bold>
) Schematic of two-photon calcium imaging. (
<bold>b</bold>
) Overlay of a pixelwise regression map and mean intensity image. Each pixel in the regression map is colored according to its tuning to wall distance; brightness was adjusted according to the r
<sup>2</sup>
value of the tuning. Three example ROIs are highlighted (corresponding to panel c). This imaging region is approximately centered on the C2 barrel (diameter, 300 μm) and contains parts of the neighboring D1 and C1 barrels. (
<bold>c</bold>
) Distance from the snout to the wall as a function of time (top) and ΔF/F for three example ROIs (same ROIs as in
<bold>b</bold>
). (
<bold>d</bold>
) Fraction of neurons in L2/3 that are inactive, tuned, and untuned to the wall distance. (
<bold>e</bold>
) Tuning curves to wall distance for example ROIs (mean ± SE over trials). (
<bold>f</bold>
) Heatmap of tuning curves normalized by maximum activity across all mice. (
<bold>g</bold>
) Histogram of the location of tuning curve peaks.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.006">http://dx.doi.org/10.7554/eLife.12559.006</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig3"></graphic>
</fig>
</p>
<p>We investigated the relationship between neural activity and wall distance using two complimentary methods. First, a pixelwise regression (
<xref rid="bib45" ref-type="bibr">Ohki et al., 2005</xref>
;
<xref rid="bib20" ref-type="bibr">Freeman et al., 2014</xref>
) related fluorescence changes at each pixel to wall distance. Analysis was restricted to periods of running (speed > 3 cm/s), which ensures that mice were actively whisking and that their whiskers were interacting with the walls (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
). This analysis yielded a map with each pixel colored based on the wall distance at which the pixel was maximally active, and its brightness is based on an
<italic>r
<sup></sup>
</italic>
value indicating the reliability of that response (
<xref ref-type="fig" rid="fig3">Figure 3b</xref>
). Individual neurons appeared as tuned to different wall distances. In a second analysis, we manually defined regions of interest (ROIs) around individual neurons (2019 neurons, 6 mice). Calcium fluorescence time courses from individual ROIs showed tuning to wall distance consistent with the pixel-wise maps (
<xref ref-type="fig" rid="fig3">Figure 3c,e</xref>
). For most ROIs, responses increased with decreasing wall distance. For other ROIs, responses peaked at particular wall distances, or even increased with increasing wall distance (
<xref ref-type="fig" rid="fig3">Figure 3f</xref>
).</p>
<p>Overall 564/2019 (28%) of ROIs showed significant tuning to wall distance (p<0.05, ANOVA across trials) (
<xref ref-type="fig" rid="fig3">Figure 3d</xref>
). A further 334/2019 (17%) of ROIs were active (90
<sup>th</sup>
percentile F/F > 1.0) but were not tuned to wall distance, and the remaining 1121/2019 (55%) ROIs were inactive. The peak wall distance preferred by the tuned ROIs tiled the length of the whiskers, although there was a bias towards small distances (
<xref ref-type="fig" rid="fig3">Figure 3f,g</xref>
). These imaging experiments revealed a rich representation of wall distance in the superficial layers of the barrel cortex.</p>
</sec>
<sec id="s2-4">
<title>Electrophysiology in barrel cortex during corridor tracking</title>
<p>To examine other cortical layers, and to verify the response properties observed with calcium imaging, we made extracellular recordings from barrel cortex in a separate group of mice running through the winding corridor (
<xref ref-type="fig" rid="fig4">Figure 4a</xref>
) (13 mice). We used 32-channel single shank silicon probes in mice expressing ChR2-eYFP in layer 4 neurons (
<italic>Scnn1a</italic>
-Tg3-Cre x Ai32). We targeted recordings to barrel field by visualizing the eYFP fluorescence during surgery. The probe was coated with DiI, allowing us to reconstruct the probe location within the barrel cortex (
<xref ref-type="fig" rid="fig4">Figure 4b</xref>
). Recordings were clustered around the C2 barrel (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1a</xref>
). Current source density analysis triggered on layer 4 activation of ChR2 and electrolytic lesions were used to calibrate the laminar location of the probe and determine the depth of the recorded neurons (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1b</xref>
). Recordings spanned layer 2 to layer 5, although the majority of units were located in infragranular layers (
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2a</xref>
). Baseline and peak spike rates were higher in deeper layer neurons (
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2b,c</xref>
). Spike sorting was performed manually, and both false alarm rate of the inter-spike-interval distribution < 1.5% and waveform SNR > 6 were used as quality control metrics (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1c,f</xref>
). As with the imaging experiments, analysis was restricted to periods of running (speed > 3 cm/s), ensuring the mice were actively whisking (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
).
<fig id="fig4" position="float" orientation="portrait">
<object-id pub-id-type="doi">10.7554/eLife.12559.007</object-id>
<label>Figure 4.</label>
<caption>
<title>Extracellular electrophysiology during whisker-guided locomotion.</title>
<p>(
<bold>a</bold>
) Schematic showing silicon probe recordings during open loop trials. The wall was moved in and out of different fixed distances from the mouse during a period of 4 s. (
<bold>b</bold>
) Coronal section through the brain of an
<italic>Scnn1a</italic>
-Tg3-Cre x RCL-ChR2-EYFP mouse acquired with green filter showing the barrels. Image acquired with orange filter is superimposed on top showing the track of the silicon probe coated in DiI. Electrolytic lesion is seen at the end of the DiI trace. Location of the probe is identified as C3 barrel. (
<bold>c</bold>
) Example spike rasters of regular spiking units during open-loop trials. Each row of the raster corresponds to one trial and each dot corresponds to one spike. The color of each dot represents the position of the wall at the time of the spike. Recordings are performed around C1 and C2 barrels. Only trials with running speed over 3 cm/s are represented. (
<bold>d</bold>
) Corresponding tuning curves to wall distance for the spike rasters shown in B (mean ± SE over trials). (
<bold>e</bold>
) Histogram of the location of tuning curve peaks. (
<bold>f</bold>
) Scatter plot of tuning curve suppression vs. activation. Activation is the difference between peak rate and baseline rate when the wall is out of reach. Suppression is the difference between minimum rate and baseline rate. (
<bold>g</bold>
) Heatmaps of z-scored tuning curves for units activated by more than 1 Hz (top) and units suppressed by more than 1 Hz (bottom) sorted by the location of the maximum and minimum wall distances respectively. Units that were both activated and suppressed appear in both plots. (
<bold>h</bold>
) Histogram of the tuning modulation, defined as the ratio of the difference between the activation and suppression divided by the sum of the activation and suppression. Units that are just activated have modulation 1, units that are just suppressed have modulation −1, and units that are both activated and suppressed have a modulation near 0. (
<bold>i</bold>
) Modulation index as a function of laminar position. Light gray, units classified as layer 2/3; medium gray, layer 4; dark gray, layer 5.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.007">http://dx.doi.org/10.7554/eLife.12559.007</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4"></graphic>
<p content-type="supplemental-figure">
<fig id="fig4s1" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.008</object-id>
<label>Figure 4—figure supplement 1.</label>
<caption>
<title>Electrophysiological methods.</title>
<p>(
<bold>a</bold>
) Image acquired with green filter of a whole brain removed from the skull of a
<italic>Scnn1a</italic>
-Tg3-Cre x RCL-ChR2-EYFP mouse. Overlay of 13 recordings sites identified by DiI tracing of silicon probe tracks. An image acquired with orange filter and superimposed on top for one example. The recording site is shown by arrow. (
<bold>b</bold>
) Illustration of three complementary methods used for identification of the depth of recorded units. Left: Coronal section of barrel cortex acquired with green and orange filters showing with dotted square the location of recording site. Center: Blown-up portion of the same area of the coronal section (turned rotated by 39 degrees) taken with green filter showing of L4 barrels. The location of two electrolytic lesions on top and bottom electrodes and the center of layer 4 are marked with dashed white lines. Right: Current source density trace used to identify the middle of Layer 4 as a short-time (<3 ms) minimum. The schematics of electrodes positions on the silicon probe that is aligned with the centers of the top and bottom lesions. (
<bold>c</bold>
) Inter-spike-interval distributions for units presented in
<xref ref-type="fig" rid="fig4">Figure 4</xref>
and
<xref ref-type="fig" rid="fig5">Figure 5</xref>
. (
<bold>d</bold>
) Histogram of spike widths. Fast spikers (< 350 μs): pink, intermediate: gray, and regular spikers (> 450 μs): purple). (
<bold>e</bold>
) Z-scored waveforms from all units. (fast spikers: pink, intermediate: gray, regular spikers: purple). (
<bold>f</bold>
) Scatter plot of waveform SNR against ISI false alarm rate. The area shown by colored square corresponds to accepted units with SNR > 6 and false alarm rate < 1.5%</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.008">http://dx.doi.org/10.7554/eLife.12559.008</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4-figsupp1"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig4s2" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.009</object-id>
<label>Figure 4—figure supplement 2.</label>
<caption>
<title>Lamina distribution of units.</title>
<p>(
<bold>a</bold>
) Distribution of the location of regular spiking units by depth relative to the middle of Layer 4. (
<bold>b</bold>
) Depth distribution of a baseline spike rate of regular spiking units during locomotion (speed over 3 cm/s). Light gray, units classified as layer 2/3; medium gray, layer 4; dark gray, layer 5. (
<bold>c</bold>
) Depth distribution of a peak spike rate of regular spiking units during locomotion (speed over 3cm/s). Light gray, units classified as layer 2/3; medium gray, layer 4; dark gray, layer 5.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.009">http://dx.doi.org/10.7554/eLife.12559.009</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4-figsupp2"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig4s3" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.010</object-id>
<label>Figure 4—figure supplement 3.</label>
<caption>
<title>Comparison of open-loop and closed-loop tuning curves.</title>
<p>(
<bold>a</bold>
) Open-loop and closed-loop tuning curves for a regular spiking unit that gets activated by the wall. (
<bold>b</bold>
) Open-loop and closed-loop tuning curves for a unit that gets suppressed by the wall. (
<bold>c</bold>
) Scatter of the mean spiking rate of open-loop and closed-loop tuning curves. (
<bold>d</bold>
) Histogram of open vs. closed-loop modulation index which is the difference in open-loop and closed-loop spiking rates divided by the sum of open-loop and closed-loop spiking rates. Units that respond more during open loop trials have positive modulation, units that respond more during closed loop trials have negative modulation, and units that responded equally to both open and closed loop trials have a modulation of 0.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.010">http://dx.doi.org/10.7554/eLife.12559.010</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4-figsupp3"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig4s4" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.011</object-id>
<label>Figure 4—figure supplement 4.</label>
<caption>
<title>Effects of running speed on activity and wall distance tuning.</title>
<p>(
<bold>a</bold>
) Four example units that showed significant tuning to running speed when the wall was out of reach. The activity of the top left unit increased linearly with speed over a large range, the activity of top right unit increased rapidly and then saturated at low speeds, the activity of the bottom right unit peaked at low speeds and then decreased at higher speeds, and the activity of bottom left unit decreased with running speed. (
<bold>b</bold>
) Histogram of the peak speed tuning for units significantly tuned to speed (31%; 46/148) from the population used in
<xref ref-type="fig" rid="fig4">Figure 4</xref>
. (
<bold>c</bold>
) Example wall distance tuning curve while the mouse is running in fast trials (top) and slow trials (bottom). Fast and slow trials were split based on the median of the trial speeds in trials when the mouse was running. This unit is the same as used in
<xref ref-type="fig" rid="fig4">Figure 4—figure supplement 3a</xref>
). (
<bold>d</bold>
) Example wall distance tuning curve while the mouse is running fast trials (top) and slow trials (bottom). This unit is the same as used in
<xref ref-type="fig" rid="fig4s3">Figure 4—figure supplement 3b</xref>
). (
<bold>e</bold>
) Histogram of the modulation of wall distance tuning by speed for all 148 units. This index was the log of the gain parameter that describes a multiplicative scaling of the slow tuning curve to the fast tuning curve. Units that are more active during fast running have positive modulation indices, units that are less active during fast running have negative indices.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.011">http://dx.doi.org/10.7554/eLife.12559.011</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4-figsupp4"></graphic>
</fig>
</p>
<p content-type="supplemental-figure">
<fig id="fig4s5" specific-use="child-fig" orientation="portrait" position="anchor">
<object-id pub-id-type="doi">10.7554/eLife.12559.012</object-id>
<label>Figure 4—figure supplement 5.</label>
<caption>
<title>Tuning to ipsilateral and contralateral wall distance.</title>
<p>(
<bold>a</bold>
) Example spike raster of regular spiking unit in open-loop trials when the wall is contralateral (top) or ipsilateral to the recording site (bottom). Only epochs with running speed over 3 m/s are represented. This neuron was activated by interactions with the wall. (
<bold>b</bold>
) Corresponding tuning curves recorded during locomotion (running speed over 3 m/s). (
<bold>c,d</bold>
) Same as
<bold>a, b</bold>
for a suppressed regular spiking unit. (
<bold>e</bold>
) Scatter plot of range of spiking of ipsilateral vs. contralateral tuning curves. The range of spiking is the difference between the maximum and minimum of the tuning curve. (
<bold>f</bold>
) Histogram of laterality modulation index, which is the difference in contralateral range and ipsilateral range divided by the sum of the contralateral range and ipsilateral range. Units that respond only to the contralateral wall have modulation 1, units that respond only to the ipsilateral wall have modulation −1, and units that respond to both the contralateral and ipsilateral wall have a modulation near 0.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.012">http://dx.doi.org/10.7554/eLife.12559.012</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig4-figsupp5"></graphic>
</fig>
</p>
</fig>
</p>
<p>We isolated a total of 209 units (13 mice). Of these units, 179 (86%) showed significant tuning to wall distance during open-loop movements of the wall (p<0.05 ANOVA). 148 were classified as regular spiking and presumed excitatory based on spike width (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1d,e</xref>
) (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
) and used for further analysis. Individual units showed diverse responses to interactions with the wall that were reproducible across trials (
<xref ref-type="fig" rid="fig4">Figure 4c,d</xref>
). Some units had low activity when the wall was out of reach and increased activity monotonically as the wall moved closer or had maximal responses at particular wall distances (
<xref ref-type="fig" rid="fig4">Figure 4c,d</xref>
). Other units had high activity when the wall was out of reach and decreased activity monotonically as the wall approached certain wall distances. We also observed more complex responses, including a mix of enhancement and suppression across wall distances. Distances eliciting peak responses tiled the relevant space of wall distance (
<xref ref-type="fig" rid="fig4">Figure 4e</xref>
).</p>
<p>For each unit, we quantified activation and suppression as a function of wall distance (
<xref ref-type="fig" rid="fig4">Figure 4f</xref>
). The baseline rate of each unit was the spike rate during periods of running when the wall was out of reach of the whiskers. Activation was the difference between peak spike rate and baseline spike rate; suppression was the difference between baseline spike rate and minimum spike rate. Both the peaks and troughs of the activated and suppressed units tiled the relevant wall distance range (
<xref ref-type="fig" rid="fig4">Figure 4g</xref>
). A modulation index was calculated as the difference between activation and suppression normalized by the sum of activation and suppression (
<xref ref-type="fig" rid="fig4">Figure 4h</xref>
). This index ranged from one, for activated units, to minus one, for suppressed units, with mixed units that are both activated and suppressed near zero. The majority of units showed activation (106/148; 72% modulation > 0.5), but a sizable fraction showed suppression or mixed responses (42/148; 28% modulation <0.5). Units with negative and near-zero modulation indices tended to be found in infragranular layers (
<xref ref-type="fig" rid="fig4">Figure 4i</xref>
).</p>
<p>These tuning curves were generated during open-loop movements of the wall, but during natural behavior the wall will move in closed-loop with locomotion. To investigate whether tuning under these conditions is similar, we characterized wall distance tuning during closed-loop wall-movements for a subset of mice (10 mice; 114 regular spiking units). In closed-loop, wall distance sampling is non-uniform because the sensory stimulus depends on behavior. We combined epochs across several widths and bends in the corridor to approximately sample wall distance as in the open-loop condition. Units showed similar tuning curves under both open-loop and closed-loop (
<xref ref-type="fig" rid="fig4s3">Figure 4—figure supplement 3a,b</xref>
), with similar average rates over the same wall distances range (107/114; 94% -0.5 < open vs. closed modulation < 0.5) (
<xref ref-type="fig" rid="fig4s3">Figure 4—figure supplement 3c,d</xref>
). A substantial fraction of all units (31%; 46/148) were significantly modulated by running speed in the absence of the walls (
<xref ref-type="fig" rid="fig4s4">Figure 4—figure supplement 4a,b</xref>
) (
<xref rid="bib31" ref-type="bibr">Keller et al., 2012</xref>
;
<xref rid="bib52" ref-type="bibr">Saleem et al., 2013</xref>
). However, the wall distance tuning curves computed during slow running and fast running were similar on average (modulation index was −0.10 ± 0.55) (
<xref ref-type="fig" rid="fig4s4">Figure 4—figure supplement 4c,d,e</xref>
).</p>
<p>When running in a narrow corridor, whiskers can interact with both walls simultaneously. Information from the whiskers projects directly to the contralateral barrel cortex from subcortical structures; however, a small callosal projection also carries information from one side of the barrel cortex to the other (
<xref rid="bib15" ref-type="bibr">Czeiger and White, 1993</xref>
). For a subset of mice (3 mice; 29 regular spiking units) we recorded activity in response to open-loop movements of the ipsilateral wall. Compared to interactions with the contralateral wall, very few units were strongly modulated by interactions with the ipsilateral wall (
<xref ref-type="fig" rid="fig4s5">Figure 4—figure supplement 5a,b,c,d</xref>
). Spike rate changes in response to interactions with the contralateral wall were consistently greater than to the ipsilateral wall (27/29; 93% contra vs ipsi modulation > 0) (
<xref ref-type="fig" rid="fig4s5">Figure 4—figure supplement 5e,f</xref>
). This finding is consistent with the results of the unilateral activation experiment, which suggest the hemisphere contralateral to the wall is predominantly involved in wall-tracking.</p>
<p>Some units exhibited sensitivity not only to wall position, but also to the direction of wall motion. We compared responses when the wall moved towards or away from the mouse on open-loop trials. Some units were activated when the wall distance decreased (
<xref ref-type="fig" rid="fig5">Figure 5a,b</xref>
, top two), whereas other units were activated when wall distance increased (
<xref ref-type="fig" rid="fig5">Figure 5a,b</xref>
, bottom two). The peak responses of different units tiled the range of distances covered the wall moved either towards or away from the mouse (
<xref ref-type="fig" rid="fig5">Figure 5c</xref>
). A direction modulation index was computed by comparing spike rates during movement towards and away (
<xref ref-type="fig" rid="fig5">Figure 5d,e</xref>
). Some neurons were strongly modulated (82/148, 55% absolute direction modulation > 0.2). Barrel cortex thus encodes both wall position and direction of wall motion.
<fig id="fig5" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7554/eLife.12559.013</object-id>
<label>Figure 5.</label>
<caption>
<title>Tuning to direction of wall movement.</title>
<p>(
<bold>a</bold>
) Example spike rasters of regular spiking units that showed strong modulation by wall direction during open-loop trials during locomotion (running speed over 3 cm/s). (
<bold>b</bold>
) Spike rate as a function of time during epochs when wall is moving towards/away from the mice for the same regular spiking units as in
<bold>a</bold>
. (
<bold>c</bold>
) Heatmap of time profiles curves normalized by maximum for symmetric and asymmetric units, sorted by time to peak. (
<bold>d</bold>
) Scatter of the range of spike rates as the wall moved towards and away from the mouse. The range of spike rates is the difference between the maximum and minimum rate during the 1 s when the wall was moving towards or away from the mouse. (
<bold>e</bold>
) Histogram of direction modulation index, which is the range difference in spike rates during wall movement towards and away from the mouse divided by the sum of the towards range and away range. Units that respond only when the wall approaches have modulation 1, units that respond only when the wall moves away have modulation −1, and units that respond to both the wall approaching and moving away have a modulation near 0.</p>
<p>
<bold>DOI:</bold>
<ext-link ext-link-type="doi" xlink:href="10.7554/eLife.12559.013">http://dx.doi.org/10.7554/eLife.12559.013</ext-link>
</p>
</caption>
<graphic xlink:href="elife-12559-fig5"></graphic>
</fig>
</p>
</sec>
</sec>
<sec sec-type="discussion" id="s3">
<title>Discussion</title>
<p>We measured neural coding in the barrel cortex during naturalistic wall tracking. Mice used their whiskers to navigate winding corridors in tactile virtual reality (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
). Neural activity in the barrel cortex was necessary for guiding locomotion based on whisker cues (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). In addition, graded activation of layer 4 neurons in the barrel cortex was sufficient to guide locomotion in an illusory corridor (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
). Remarkably, similar to closed-loop wall tracking (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
), no training was required for mice to run in an illusory corridor. The tracking accuracy in the illusory corridor was on par or better compared to the real corridor; this may be because the photostimulus provided a stronger distance-dependent signal compared to touch-evoked activity. These experiments show that downstream layers and brain areas can interpret increases of layer 4 spike rate as increased proximity to a wall on the contralateral side and drive the appropriate turning responses. Previous experiments suggest key roles for the superior colliculus in orienting and goal-directed behaviors (
<xref rid="bib61" ref-type="bibr">Sprague, 1966</xref>
;
<xref rid="bib12" ref-type="bibr">Cohen and Castro-Alamancos, 2007</xref>
). Barrel cortex activity could drive whisker-guided locomotion through the superior colliculus and rubrospinal circuits. These brain areas could also be capable of mediating this behavior independently after chronic barrel cortex lesions.</p>
<p>The optogenetic experiments (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
) suggest a simple code for wall distance: wall distance could be coded as inversely proportional to neural activity in layer 4. Sensory neurons in the trigeminal ganglion have monotonic responses to object distance (
<xref rid="bib64" ref-type="bibr">Szwed et al., 2006</xref>
). Similarly, during passive stimulation (
<xref rid="bib55" ref-type="bibr">Simons, 1978</xref>
) or simple single-whisker behaviors (
<xref rid="bib55" ref-type="bibr">Simons, 1978</xref>
;
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
) barrel cortex neurons show monotonic relationships with stimulus strength. The majority of L2/3 and L4 (
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2b,c</xref>
) neurons responded weakly when the wall was out of reach and only responded strongly when the contralateral wall came within reach. However, many neurons exhibited a rich representation of wall distance (
<xref ref-type="fig" rid="fig4">Figure 4h</xref>
). Some neurons had non-monotonic unimodal relationships with wall distance and were most active at intermediate wall distances. Across the population, neuronal tuning tiled all wall distances (
<xref ref-type="fig" rid="fig4">Figure 4g</xref>
). Activity of other neurons showed even more complex, multimodal tuning to wall distance. Complex responses to wall distance were especially pronounced in L5 (
<xref ref-type="fig" rid="fig4">Figure 4i</xref>
). Encoding wall distance with a population of tuning curves that increase monotonically with decreasing wall distance (i.e. sigmoids) would lead to very large metabolic costs when representing small distances. Given a fixed metabolic cost, a population of non-monotonic (i.e. Gaussian) tuning curves that tile the most frequently encountered distances can achieve higher overall encoding accuracy (
<xref rid="bib21" ref-type="bibr">Ganguli and Simoncelli, 2014</xref>
). Some of the features of these complex tuning curves may also be used for processing by downstream neurons.</p>
<p>We measured tuning curves from layer 2/3 neurons using both calcium imaging (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
) and electrophysiology (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
). Both recording methods revealed neurons that were strongly activated when the wall approached. The calcium imaging dataset in addition contained some neurons that were activated by running and suppressed monotonically as the wall came closer to the face (
<xref ref-type="fig" rid="fig3">Figure 3c</xref>
). These neurons may have been activated by tactile stimuli from the D and E row whiskers that are capable of touching the ball during running, and suppressed as the shorter surround whiskers touched the wall at smaller wall distances. In contrast, in the electrophysiology data the majority of the units were located in the C row barrels and had low baseline activity even during running.</p>
<p>Calcium imaging revealed 28% of neurons as tuned to wall distance. Using similar methods, 17% of neurons responded to touch during a pole location discrimination task performed with a single whisker (
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
). These differences could arise from the multi-whisker nature of the wall-tracking experiments, the greater complexity of the interactions between the whiskers and the wall compared to the pole, or the fact that mice were running during wall-tracking.</p>
<p>Neurons were also sensitive to the direction of wall movement. This sensitivity could be produced by neurons that have tuning to the direction of whisker deflection (
<xref rid="bib2" ref-type="bibr">Andermann and Moore, 2006</xref>
). Wall direction selective neurons could be useful for helping the mice determine wall velocity, and acceleration. Coding for these variables, in addition to wall distance, could help the mice better track the walls through control laws that include derivative feedback alongside proportional feedback (
<xref rid="bib59" ref-type="bibr">Sofroniew et al., 2014</xref>
).</p>
<p>Multiple mechanisms could contribute to complex, non-monotonic tuning curves in barrel cortex neurons. Mice may have adjusted their whisker movements in subtle ways with wall distance (
<xref rid="bib67" ref-type="bibr">Voigts et al., 2015</xref>
) which could change the strengths of the interactions with the wall and thus shape tuning curves. The similarity of tuning curves under open-loop and closed-loop conditions (
<xref ref-type="fig" rid="fig4s3">Figure 4—figure supplement 3</xref>
), where running direction are different, suggests that the details of whisker motion are unlikely to be a critical factor. Another mechanism is based on cross-columnar inhibition mediated by multi-whisker interactions (
<xref rid="bib56" ref-type="bibr">Simons, 1985</xref>
;
<xref rid="bib9" ref-type="bibr">Brumberg et al., 1996</xref>
;
<xref rid="bib41" ref-type="bibr">Moore and Nelson, 1998</xref>
). Individual whiskers have different lengths (
<xref rid="bib30" ref-type="bibr">Ibrahim and Wright, 1975</xref>
) and touch the wall at different times as it approaches. Neurons driven by the long whiskers may be suppressed by neurons driven by the shorter whiskers at smaller wall distances, resulting in non-monotonic distance tuning curves. A third mechanism relies on cross-laminar excitation and inhibition. Neurons in different layers are coupled through interlaminar connections which excite both excitatory neurons and inhibitory interneurons in the target layers (
<xref rid="bib36" ref-type="bibr">Lefort et al., 2009</xref>
;
<xref rid="bib27" ref-type="bibr">Hooks et al., 2011</xref>
;
<xref rid="bib19" ref-type="bibr">Feldmeyer et al., 2013</xref>
;
<xref rid="bib50" ref-type="bibr">Pluta et al., 2015</xref>
). The balance of excitation and inhibition can change over time scales of milliseconds to seconds. For example, over short time scales the synchronous excitation of L4 neurons (
<xref rid="bib44" ref-type="bibr">O'Connor et al., 2013</xref>
;
<xref rid="bib26" ref-type="bibr">Hires et al., 2015</xref>
) is expected to drive spikes in L5 neurons (
<xref rid="bib44" ref-type="bibr">O'Connor et al., 2013</xref>
). Over longer time scales L4 activation promotes mostly inhibition in L5 (
<xref rid="bib50" ref-type="bibr">Pluta et al., 2015</xref>
). Cross-columnar and cross-laminar inhibition combined with short-term synaptic plasticity, likely help generate the complex representation of distance in the barrel cortex, which in turn supports wall-tracking behavior.</p>
</sec>
<sec sec-type="materials|methods" id="s4">
<title>Materials and methods</title>
<sec id="s4-1">
<title>Mice</title>
<p>Twelve VGAT-ChR2-EYFP BAC (line 8) transgenic mice (Jackson Labs, Bar Harbor, ME:
<italic>014548; VGAT</italic>
corresponds to
<italic>Slc321a</italic>
) were used for photoinhibition experiments (
<xref rid="bib68" ref-type="bibr">Zhao et al., 2011</xref>
;
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). Eight
<italic>Scnn1a</italic>
-TG3-Cre x Ai32 mice were used for photoactivation experiments.
<italic>Scnn1a</italic>
-TG3-Cre mice (Jackson Labs:
<italic>009613</italic>
) have Cre expression restricted to ~85% layer 4 excitatory neurons in the cortex and some thalamic neurons (
<xref rid="bib37" ref-type="bibr">Madisen et al., 2010</xref>
;
<xref rid="bib50" ref-type="bibr">Pluta et al., 2015</xref>
). Ai32 (Jackson Labs:
<italic>012569</italic>
) mice contain the Channelrhodopsin-2 (ChR2H134R-EYFP) gene in a Cre-dependent reporter cassette at the Rosa26 locus (
<xref rid="bib38" ref-type="bibr">Madisen et al., 2012</xref>
). Expression of ChR2 was confirmed in barrel cortex and visual cortex by histology, although expression in parietal cortex is much weaker. Thirteen
<italic>Scnn1a</italic>
-TG3-Cre x Ai32 mice were used for the electrophysiology. Six C57BL/6Crl (Jackson Labs
<italic>: 000664</italic>
) mice were used for the calcium imaging experiments.</p>
<p>Mice were housed individually in cages with bedding and running wheels (Bio-Serv, Flemington, NJ: K3327 and K3251) in a reverse light-cycle room. Mice were restricted to consume 1.0-1.5 ml of water per day (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
), which could either be obtained during behavioral sessions or in supplements after behavioral sessions. The weight change during the behavioral session was used to estimate the amount of water consumed during the session, and the supplement was chosen accordingly. The weight and health (posture, quality of fur, and motor activity) of the mice were monitored daily. All procedures were in accordance with protocols approved by the Janelia Farm Institutional Animal Care and Use Committee.</p>
</sec>
<sec id="s4-2">
<title>Polished dental cement preparation</title>
<p>For optogenetic experiments, mice were prepared with a clear skull implant (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). Mice were implanted with headposts. Before starting photostimulation experiments (typically 1-8 weeks after headpost implantation) the surface of the clear dental acrylic was polished (Acrylic Polishing Kit HP Shank, Pearson Dental, Sylmar, CA) and covered with a thin layer of clear nail polish (Electron Microscopy Sciences, Hatfield, PA, 72180). This preparation transmits ~60% of incident light to the brain (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
).</p>
</sec>
<sec id="s4-3">
<title>Laser photostimulation system</title>
<p>Photostimulation of Channelrhodopsin-2 was achieved using a 473 nm DPSS laser (Ultralasers, Toronto, Canada, DHOM-T-473-200). Laser power was controlled using an acousto-optic modulator (AOM) (Quanta Tech, Shoreline, WA, MTS110-A3-VIS) and fixed RF frequency driver (Quanta Tech, MODA110-D4500-2460). The AOM was controlled with a 0-5 V analogue signal from the behavioral control system. The output of the AOM was coupled to a 62.5 μm multimode fibre (Thorlabs Newton, NJ, M31L03) with an FC/PC adaptor (Thorlabs, PAF-X-5-A) and brought inside the light tight box. The light was directed onto a 2D scanning galvo system (Thorlabs, GVSM002). The position of the scan mirrors was controlled with +/− 10 V analogue signals from the behavioral control system. The beam was then expanded 5x with plano-convex lenses (Thorlabs, LA1951-A, and LA1384-A) and focused onto the brain surface with a f = 200 mm lens (Thorlabs, AC508-200-A). The beam diameter on the skull in a system of identical design was 400 µm (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). The laser path was shielded with a 2"-diameter lens tubes. To ensure complete shielding of the stray laser light for silencing experiments, 3D-printed black plastic pieces were secured to the skull of the mouse and to a lens tube via a black bellows junction (McMaster Carr, Elmhurst, IL, 94205K77). A stereomicroscope (Nikon, Tokyo, Japan, SMZ745, with C-W 10xB [F.N. 22] eyepieces and a G-AL0.5X auxiliary objective) was used to align the laser with vasculature or Bregma.</p>
</sec>
<sec id="s4-4">
<title>Photoinhibition parameters</title>
<p>Bilateral photoinhibition was achieved by deflecting the laser beam between the left and right hemispheres at 100 Hz. On each hemisphere the laser either dwelled at a single spot for 10 ms or dithered between 5 spots arranged in a cross with 300 µm between the spots. For bilateral silencing, three mice were stimulated with average power 25 mW per hemisphere in a 300 µm cross, two mice were stimulated with average power 15 mW per hemisphere in a 300 µm cross, and three mice were stimulated with average power 20 mW per hemisphere at a single spot. For each animal, stimulation of S1 and V1 used the same parameters. Unilateral photoinhibition was achieved by deflecting the laser between the target hemisphere and a spot outside of the preparation at 100 Hz. Four mice were silenced at a single spot with average power 7.5 mW per hemisphere. These parameters result in robust silencing throughout the depth of the cortex over a 2–4 mm
<sup>2</sup>
area (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). Silencing lasted for the duration of the 100-cm test period, which was generally 2–6 s. Trials silencing S1 and V1 were interleaved randomly with trials without silencing, such that trials of different types occurred with equal probability. Based on intrinsic signal imaging, the coordinates for the C2 barrel were 1.0 mm posterior to Bregma and ± 3.0 mm lateral. Coordinates for V1 were 3.0 mm posterior to Bregma and ± 1.0 mm lateral based on the Allen Brain Atlas (
<ext-link ext-link-type="uri" xlink:href="www.brain-map.org">www.brain-map.org</ext-link>
). For silencing, mice had either all their whiskers or a single whisker/row of whiskers on each side</p>
</sec>
<sec id="s4-5">
<title>Photoactivation parameters</title>
<p>Layer 4 activation was done at a single spot at 10 Hz with 2-ms pulses. L4 photoactivation rapidly (<10 ms) drives spikes in other layers of the barrel cortex (
<xref rid="bib44" ref-type="bibr">O'Connor et al., 2013</xref>
). For open-loop biasing experiments peak laser power ranged from 0 to 2 mW. The effects of photoactivation were calibrated using cell-attached recordings in awake but non-running mice (
<xref ref-type="fig" rid="fig2s1">Figure 2—figure supplement 1b</xref>
). For closed-loop activation experiments, peak laser power was scaled to position in the virtual corridor such that the laser was off when mice were at the center of the corridor and at 4.5 mW power if mice were at the edge of the virtual corridor. Mice mainly stayed in the portion of the corridor where the laser power was under 2 mW. The left hemisphere was stimulated if the mouse was on the right side of the virtual corridor, and the right hemisphere was stimulated if the mouse was on the left side of the virtual corridor. For both open- and closed-loop experiments, stimulation only occurred when the mouse was running. For activation experiments mice had all their whiskers.</p>
<p>Calibrations of the L4 photoactivation were performed in awake
<italic>Scnn1a</italic>
-TG3-Cre x Ai32 mice. On the day of the recording, a small craniotomy (∼200 μm diameter) was made over the barrel cortex (
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
). The dura was left intact. Recordings targeting cortical L4 were obtained with patch pipettes pulled from borosilicate tubing (Sutter instrument, Novato, CA) and an Axopatch 700B amplifier (Molecular Devices, Sunnyvale, CA). Loose-seal juxtacellular pipettes were filled with ACSF or cortex buffer (in mM): 125 NaCl, 5 KCl, 10 dextrose, 10 HEPES, 2 CaCl
<sub>2</sub>
, 2 MgSO
<sub>4</sub>
, pH 7.4, osmolality ∼272 mmol/kg. The manipulator depth was zeroed upon pipette tip contact with the dura. After contact, the craniotomy was covered by cortex buffer or 2% agar in cortex buffer. Aided by positive pressure (1 psi), the pipette was advanced through the dura. When searching for cells, the pipette pressure was reduced to 0.1–0.3 psi. Manipulator depths of 444–560 μm were considered L4 (
<xref rid="bib3" ref-type="bibr">Andrew Hires et al., 2015</xref>
). Data acquisition was controlled by Ephus (
<xref rid="bib63" ref-type="bibr">Suter et al., 2010</xref>
). The sampling rate was 10 kHz.</p>
</sec>
<sec id="s4-6">
<title>Trial structure during illusory wall tracking</title>
<p>Trials were 200 cm long. Mice were rewarded with water on every trial irrespective of the angle error. For three mice, trials with turns at ± 11.3° and 0° were interleaved. For five mice, turns at ± 5.7°, ± 11.3°, 16.7°, and 0° were interleaved. Trials with no photostimulation, photostimulation of barrel cortex, and photostimulation of parietal cortex (three mice), and visual cortex (five mice) were interleaved. All mice were acclimatized to head-fixed running on the ball for 2–3 daily sessions, 15–30 min each before experiments began. Four mice were first tested on the wall-tracking task with real walls, and four mice were first tested with wall-tracking on the illusory walls.</p>
</sec>
<sec id="s4-7">
<title>Trial structure during unilateral activation experiments</title>
<p>Photoactivation of L4 neurons occurred during an otherwise straight corridor. Left hemisphere and right hemisphere photostimulation trials were interleaved with trials without photostimulation. For three of the mice undergoing activation experiments, parietal cortex, 2.0 mm posterior to Bregma and 1.7 mm lateral to Bregma (
<xref rid="bib24" ref-type="bibr">Harvey et al., 2012</xref>
), and barrel cortex were activated on interleaved trials. For the remaining five mice visual cortex and barrel cortex were activated on interleaved trials, as visual cortex had greater expression of ChR2 than parietal cortex. For three of the mice during activation experiments trials were only 100 cm long (with activation during the middle 50 cm) instead of 200 cm long (with activation during the middle 100 cm). Wall distance bias was calculated as the difference between the wall distance at the end of the trial and the mean wall distance on un-stimulated trials. For creating summary plots, data from manipulations of the left hemisphere were flipped in sign and averaged with data from manipulations of the right hemisphere.</p>
</sec>
<sec id="s4-8">
<title>Cranial window surgery</title>
<p>Cranial window surgery was performed as described (
<xref rid="bib28" ref-type="bibr">Huber et al., 2012</xref>
). A 3-mm diameter craniotomy was made over S1, centred at 1.5 mm posterior 3.4 mm lateral to Bregma in the left hemisphere. GCaMP6s virus was injected over a grid of 9 sites with 300 µm spacing between the sites, 20 nl per site. Injections were performed at a rate of 20 nl/80 s. Virus was injected with a volumetric injection system (Narishige, East Meadow, NY, MO-10 manipulator) and a bevelled pipette (20–30 µm inner diameter, Drummond Scientific, Broomall, PA; Wiretrol II Capillary; P/N 5-000-2010). The imaging window was constructed from two glass circles (150 µm thickness each). An inner circle, 3 mm diameter (Warner Instruments, Hamden, CT, 64-0720), and an outer circle, 5 mm diameter (Warner Instruments, 64-0700), were glued together with curable optical glue (NOR-61, Norland, Cranbury, NJ). The window was lowered into the craniotomy such that the outer circle rested on the bone and the inner circle rested on the brain. The space between the glass and the bone was filled with a layer of agar (2%). The window was secured in place with dental acrylic (Lang Dental, Wheeling, IL). Imaging sessions started 2–3 weeks after viral injection.</p>
</sec>
<sec id="s4-9">
<title>Intrinsic optical imaging</title>
<p>Intrinsic optical imaging was performed through the cranial window as previously described (
<xref rid="bib42" ref-type="bibr">O'Connor et al., 2010</xref>
). Mice were lightly anesthetized with isofluorane (0.5% ) and were placed on a heat blanket with their bodies maintained at 37°. Images were acquired using a CCD camera (Retiga-2000RV, Qimaging, Surrey, BC, Canada) through a Leica MZ12.5 microscope (field of view 4.8 x 3.6 mm) with 630 nm LED illumination (Philips LumiLEDs, Amsterdam, Netherlands). The targeted whisker was placed inside a glass pipette connected to a piezoelectric bimorph. The whisker was deflected at 10 Hz for 4 s every 20 s for 10 min. Images were averaged during the 4 s stimulation epoch. A baseline image of the average of the 10 s period proceeding each stimulation epoch was subtracted of this image to generate the intrinsic signal image. Barrels were visible as regions showing decreased 630 nm reflectance. An image of the vasculature was taken with 530 nm LED illumination (Philips LumiLEDs) as a reference for alignment.</p>
</sec>
<sec id="s4-10">
<title>2-photon calcium imaging</title>
<p>The design of the 2-photon imaging system used has been described elsewhere (
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
). A Ti-Sapphire laser (MaiTai-HP, Spectra Physics, Irvine, CA) tuned to 1000 nm was used for excitation. Photons were detected using GaAsP photomultiplier tubes (10770PB-40). Imaging was performed through a 16x0.8 NA microscope objective (Nikon). The objective was moved by a piezo (PI) in the z-axis to enable multi-plane imaging. The beam was deflected along the x-axis by a resonant scan mirror (Thorlabs) to enable fast imaging. The field of view was 600 x 600 µm (512 x 512 pixels) over 3 planes separated by 20 µm in the z-axis, imaged at 7.8 Hz per plane. The top image was 100–150 µm below the pia. The microscope was controlled with Scanimage4 (
<ext-link ext-link-type="uri" xlink:href="https://openwiki.janelia.org/wiki/display/ephus/ScanImage">https://openwiki.janelia.org/wiki/display/ephus/ScanImage</ext-link>
). Average imaging power was < 40 mW, measured at the back aperture of the objective. GCaMP6s has a rise time of 200 ms and a decay time of 600 ms, which means the fast dynamics of neurons will be hard to capture during a calcium imaging experiment (
<xref rid="bib10" ref-type="bibr">Chen et al., 2013</xref>
).</p>
<p>Imaging was performed during the wall-tracking task in closed-loop trials, in which the wall motion was coupled to the ball motion, interleaved with open-loop trials, in which the walls were moved to a fixed position independent of ball motion. Only data from open-loop trials were analysed. Open-loop trials lasted 8 s, and consisted of 2 s while the right side wall (contralateral to the imaging window) moved into place and the left side wall (ipsilateral to the imaging window) moved far out of reach, a middle 4 s when the right wall did not move, and 2 s while the walls returned to their centered positions, 19 mm from the face. The wall was allowed to come to the face not closer than 4 mm.</p>
</sec>
<sec id="s4-11">
<title>Imaging analysis</title>
<p>Analysis of the calcium imaging data was performed using the Thunder library for neural data analysis written in Spark’s Python API (
<xref rid="bib20" ref-type="bibr">Freeman et al., 2014</xref>
) and in Python using the numpy, scipy, and pandas packages. To correct for brain motion, each image frame was registered to a reference image using global shifts obtained from the peak of an FFT based cross-correlation. The fluorescent time series of each pixel was regressed against the distance of the contralateral wall during open-loop trials when the mouse was running at least 3 cm/s. The wall distance and running speed of the mouse were down-sampled to the sampling rate to the imaging based on their mean values.</p>
<p>Regions of interest (ROIs) were drawn manually based on neuronal shape in an image of mean fluorescence across the session and an image of the local correlations of each pixel with a 5-pixel neighborhood (
<xref rid="bib11" ref-type="bibr">Cheng et al., 2011</xref>
). Drawing ROIs without an activity independent anatomical marker (
<xref rid="bib48" ref-type="bibr">Peron et al., 2015</xref>
) may lead to a slight bias towards active neurons. Baseline fluorescence, F
<sub>0</sub>
, was determined using the 20
<sup>th</sup>
percentile of fluorescence in a 160-s rolling window. ΔF/F was computed as (F–F
<sub>0</sub>
/F
<sub>0</sub>
). Neuropil ΔF/F was calculated in a doughnut 3–8 pixels from the boundary of the ROI using the same procedure and subtracted from the ROI ΔF/F to generate the corrected ΔF/F signal. An ROI was taken to be active if the 90
<sup>th</sup>
quantile of its ΔF/F was greater than 1.0 ΔF/F. Under similar conditions a single yields a ΔF/F of 0.3, with a half decay time of ~600 ms (
<xref rid="bib10" ref-type="bibr">Chen et al., 2013</xref>
), suggesting that a 1.0 ΔF/F threshold corresponds to a train of 3–4 spikes.</p>
<p>For each ROI, on each trial a wall distance tuning curve was created by taking the average of the ΔF/F inside 3 mm bins of wall distance. The wall distance tuning curve was then created by averaging together these tuning curves on trials where the average speed of the mouse was greater than 3 cm/s. The significance of the tuning was assessed using an ANOVA. An ROI was taken to be tuned if the p value of the ANOVA was less than 0.05 and the range of its tuning curve was larger than 0.3 ΔF/F. Tuning curves were smoothed with a univariate spline and a smoothing factor of 1.</p>
</sec>
<sec id="s4-12">
<title>Electrophysiology</title>
<p>For silicon probe recordings, methods were similar to those previously described (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). Extracellular signals were recorded with A32-edge probes (A1x32-Edge-5 mm-20-177-A32, Neuronexus) that were connected to custom headstages (Intan Technology, Los Angeles, CA, fabricated at Janelia Research Campus, Brian Barbarits, Tim Harris, 
<ext-link ext-link-type="uri" xlink:href="http://www.janelia.org/lab/apig-harris-lab">http://www.janelia.org/lab/apig-harris-lab</ext-link>
). These headstages multiplexed the 32-channel voltage recording into 2 analog signals that were recorded on a PCI6133 board at 312.5 kHz (National Instrument, Austin, TX) and digitized at 14 bit. The signals were demultiplexed into the 32 voltage traces at the sampling frequency of 19531.25 Hz and saved and displayed using custom software spikeGL (C. Culianu, Anthony Leonardo, Janelia Research Campus). The headstage was connected to a motorized micromanipulator (MP-285, Sutter Instrument).</p>
<p>A small craniotomy (approximately 0.2 mm in diameter) was made over the C-row of the barrel field in mice already implanted with the clear-skull cap and headpost. The dura was left intact. The C-row barrel field was targeted using fluorescence from layer 4 of the barrel field in the
<italic>Scnn1a</italic>
-Tg3-Cre x Ai32 mice (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1a</xref>
). The dental acrylic and bone were thinned using a dental drill. The remaining thinned bone was carefully removed using a bent forceps. A separate craniotomy (~0.2 mm in diameter) was made through the headpost for ground wire in the cerebellum. A 2-mm-long platinum iridium ground wire (A-M Systems, Carlsborg, WA: 776000) was used as a ground wire.</p>
<p>To identify the position of the silicon probe in the brain, the top several millimeters of the probe were covered with DiI solution leaving electrode area clean. The probe was lowered 500 μm-700 μm deep into the cortex at rate of 20 μm per minute. The probe was rotated to 40° angle around the anterior posterior axis and inserted approximately perpendicular to cortical surface. The probe was then given around 15 min to settle before recordings started. At the end of every experiment layer 4 was photoactivated at 10 Hz with 2 ms pulses (1 mW-2 mW peak) to obtain current source density (CSD) traces as shown in
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1b</xref>
. At the end of the experiment electrolytic lesions were made using the top and bottom pads of the silicon probe by passing 10 μA of current for 500 ms (Digitimer, Welwyn Garden City, UK: DS3). Immediately after the experiment mice were deeply anesthetized with 5% isoflurane then perfused with 0.1 M sodium phosphate buffer followed by 4% paraformaldehyde (PFA, in 0.1 M phosphate buffer, pH 7.4). The brain was immersed in fixative for at least 24 hr before sectioning.</p>
<p>Before sectioning, fluorescent images of the whole brain removed from the skull were taken with a microscope (Olympus, Tokyo, Japan: MVX10) to visualize the location of the silicon probe within the barrel field as shown in
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1a</xref>
. The brain was then sectioned into 70-μm-thick coronal sections to allow for the visualization of the electrolytic lesions and the DiI stain tracks (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1b</xref>
). Combination of top and bottom lesions, the location of DiI traces, as well as the CSD analysis were critical for localization of the laminar position of the recording electrodes (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1b</xref>
). The pronounced minimum in the CSD trace was used to identify the middle of layer 4 for each recording that was used as a reference for all depth measurements. Each recorded unit then was assigned a depth value relative to L4 by extrapolating corresponding spike waveform amplitudes across the neighboring channels.</p>
<p>Mice were acclimatized to head-fixation and running on the ball for one to three days before the recording day. Each mouse was recorded for only one 2–4 hr long session, in a random sequence of open-loop and closed-loop experiments. Open-loop experiments were four seconds long and consisted of one second of the wall moving in towards a fixed distance from the mouse and one second of the wall moving away from the animal. The wall was allowed to come to the face not closer than 4 mm.</p>
</sec>
<sec id="s4-13">
<title>Electrophysiology analysis</title>
<p>Raw voltages were band-pass filtered between 300 and 6000 Hz (MATLAB, Natick, MA: ‘idealfilter’). Common noise was estimated by averaging across channels at each time-point (MATLAB ‘trimmean’, using 50% of the channels) and was subtracted from each of the individual channels. All events that exceeded an amplitude threshold of three standard deviations of the background activity were detected. To avoid detecting multiple copies of synchronously spiking neighboring neurons threshold crossings that occurred within a 450 μs shadow period were merged within a mask covering several neighboring channels. The mask depth was adjusted dynamically and varied from 4 to 7 electrodes depending on neighboring activity. The event amplitudes across all 32 channels along with the first 3 PCAs of the waveform were used as features for spike sorting. Spikes were manually sorted in the klusters environment (
<ext-link ext-link-type="uri" xlink:href="http://neurosuite.sourceforge.net/">http://neurosuite.sourceforge.net/</ext-link>
). A waveform signal to noise ratio > 6 and the false alarm rate < 1.5% were used as quality control metrics (
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1f</xref>
) (
<xref rid="bib22" ref-type="bibr">Guo et al., 2014</xref>
). With these parameters 95% of the sorted units had a maximum spike rate > 1 Hz (
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2c</xref>
).</p>
<p>All subsequent data analysis was done in Python using the numpy, scipy, and pandas packages. Spike times were binned in 2-ms bins and compared to the wall distance using the same methods as the calcium imaging. Analysis code and data can be found at
<ext-link ext-link-type="uri" xlink:href="https://github.com/sofroniewn/tactile-coding">https://github.com/sofroniewn/tactile-coding</ext-link>
.</p>
</sec>
</sec>
</body>
<back>
<sec sec-type="funding-information">
<title>Funding Information</title>
<p>This paper was supported by the following grants:</p>
<list list-type="bullet">
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000011</institution-id>
<institution>Howard Hughes Medical Institute</institution>
</institution-wrap>
</funding-source>
to Nicholas James Sofroniew, Yurii A Vlasov, Samuel Andrew Hires, Jeremy Freeman, Karel Svoboda.</p>
</list-item>
<list-item>
<p>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100004316</institution-id>
<institution>International Business Machines Corporation</institution>
</institution-wrap>
</funding-source>
to Yurii A Vlasov.</p>
</list-item>
</list>
</sec>
<ack id="ack">
<title>Acknowledgements</title>
<p>We thank Bryan MacLennan and Simon Peron for help with cranial window surgeries and imaging; Brian Barbarits, Diego Gutnisky, Zengcai Guo, and Nuo Li for help with setting up electrophysiology and optogenetics; Jeremy Cohen, Nuo Li, Diego Gutnisky, Dan O’Connor, Kayvon Daie, Simon Peron, Hidehiko Inagaki, Kaspar Podgorski, Dario Campagner for comments on the manuscript.</p>
</ack>
<sec id="s5" sec-type="additional-information">
<title>Additional information</title>
<fn-group content-type="competing-interest">
<title>
<bold>Competing interests</bold>
</title>
<fn fn-type="conflict" id="conf1">
<p>The authors declare that no competing interests exist.</p>
</fn>
</fn-group>
<fn-group content-type="author-contribution">
<title>
<bold>Author contributions</bold>
</title>
<fn fn-type="con" id="con1">
<p>NJS, Optogenetic experiments, Imaging experiments, Electrophysiology experiments, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article.</p>
</fn>
<fn fn-type="con" id="con2">
<p>YAV, Design and execution of electrophysiology experiments, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article.</p>
</fn>
<fn fn-type="con" id="con3">
<p>SAH, Electrophysiological calibration experiments, Acquisition of data, Drafting or revising the article.</p>
</fn>
<fn fn-type="con" id="con4">
<p>JF, Analysis and interpretation of data, Drafting or revising the article.</p>
</fn>
<fn fn-type="con" id="con5">
<p>KS, Conception and design, Analysis and interpretation of data, Drafting or revising the article.</p>
</fn>
</fn-group>
<fn-group content-type="ethics-information">
<title>
<bold>Ethics</bold>
</title>
<fn fn-type="other">
<p>Animal experimentation: All procedures were in accordance with protocols approved by the Janelia Institutional Animal Care and Use Committee. (IACUC 14-115).</p>
</fn>
</fn-group>
</sec>
<ref-list>
<title>References</title>
<ref id="bib1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adesnik</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bruns</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Taniguchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Scanziani</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>A neural circuit for spatial summation in visual cortex</article-title>
<source>Nature</source>
<volume>490</volume>
<fpage>226</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="doi">10.1038/nature11526</pub-id>
<pub-id pub-id-type="pmid">23060193</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andermann</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>CI</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>A somatotopic map of vibrissa motion direction within a barrel column</article-title>
<source>Nature Neuroscience</source>
<volume>9</volume>
<fpage>543</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="doi">10.1038/nn1671</pub-id>
<pub-id pub-id-type="pmid">16547511</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Andrew Hires</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gutnisky</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Low-noise encoding of active touch by layer 4 in the somatosensory cortex</article-title>
<source>eLife</source>
<volume>4</volume>
<pub-id pub-id-type="doi">10.7554/eLife.06619</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anjum</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Turni</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mulder</surname>
<given-names>PGH</given-names>
</name>
<name>
<surname>van der Burg</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brecht</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Tactile guidance of prey capture in etruscan shrews</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<volume>103</volume>
<fpage>16544</fpage>
<lpage>16549</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0605573103</pub-id>
<pub-id pub-id-type="pmid">17060642</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Armstrong-James</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Das-Gupta</surname>
<given-names>A</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Flow of excitation within rat barrel cortex on striking a single vibrissa</article-title>
<source>Journal of Neurophysiology</source>
<volume>68</volume>
<fpage>1345</fpage>
<lpage>1358</lpage>
<pub-id pub-id-type="pmid">1432088</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Birdwell</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Solomon</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Thajchayapong</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Cheely</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Towal</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Conradt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>MJZ</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Biomechanical models for radial distance determination by the rat vibrissal system</article-title>
<source>Journal of Neurophysiology</source>
<volume>98</volume>
<fpage>2439</fpage>
<lpage>2455</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00707.2006</pub-id>
<pub-id pub-id-type="pmid">17553946</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bosman</surname>
<given-names>LWJ</given-names>
</name>
<name>
<surname>Houweling</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Owens</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Tanke</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shevchouk</surname>
<given-names>OT</given-names>
</name>
<name>
<surname>Rahmati</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Teunissen</surname>
<given-names>WHT</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Koekkoek</surname>
<given-names>SKE</given-names>
</name>
<name>
<surname>De Zeeuw</surname>
<given-names>CI</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Anatomical pathways involved in generating and sensing rhythmic whisker movements</article-title>
<source>Frontiers in Integrative Neuroscience</source>
<volume>5</volume>
<fpage>53</fpage>
<pub-id pub-id-type="doi">10.3389/fnint.2011.00053</pub-id>
<pub-id pub-id-type="pmid">22065951</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brecht</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Preilowski</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Merzenich</surname>
<given-names>MM</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Functional architecture of the mystacial vibrissae</article-title>
<source>Behavioural Brain Research</source>
<volume>84</volume>
<fpage>81</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1016/S0166-4328(97)83328-1</pub-id>
<pub-id pub-id-type="pmid">9079775</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brumberg</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Simons</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1996</year>
<article-title>Spatial gradients and inhibitory summation in the rat whisker barrel system</article-title>
<source>Journal of Neurophysiology</source>
<volume>76</volume>
<fpage>130</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">8836214</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>T-W</given-names>
</name>
<name>
<surname>Wardill</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Pulver</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Renninger</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Baohan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schreiter</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Orger</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Jayaraman</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Looger</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>DS</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Ultrasensitive fluorescent proteins for imaging neuronal activity</article-title>
<source>Nature</source>
<volume>499</volume>
<fpage>295</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="doi">10.1038/nature12354</pub-id>
<pub-id pub-id-type="pmid">23868258</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gonçalves</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Golshani</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Arisaka</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Portera-Cailliau</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing</article-title>
<source>Nature Methods</source>
<volume>8</volume>
<fpage>139</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1552</pub-id>
<pub-id pub-id-type="pmid">21217749</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Castro-Alamancos</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Early sensory pathways for detection of fearful conditioned stimuli: tectal and thalamic relays</article-title>
<source>Journal of Neuroscience</source>
<volume>27</volume>
<fpage>7762</fpage>
<lpage>7776</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1124-07.2007</pub-id>
<pub-id pub-id-type="pmid">17634370</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crochet</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Poulet</surname>
<given-names>JFA</given-names>
</name>
<name>
<surname>Kremer</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>CCH</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Synaptic mechanisms underlying sparse coding of active touch</article-title>
<source>Neuron</source>
<volume>69</volume>
<fpage>1160</fpage>
<lpage>1175</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2011.02.022</pub-id>
<pub-id pub-id-type="pmid">21435560</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curtis</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Kleinfeld</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system</article-title>
<source>Nature Neuroscience</source>
<volume>12</volume>
<fpage>492</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="doi">10.1038/nn.2283</pub-id>
<pub-id pub-id-type="pmid">19270688</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Czeiger</surname>
<given-names>D</given-names>
</name>
<name>
<surname>White</surname>
<given-names>EL</given-names>
</name>
</person-group>
<year>1993</year>
<article-title>Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex</article-title>
<source>The Journal of Comparative Neurology</source>
<volume>330</volume>
<fpage>502</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="doi">10.1002/cne.903300406</pub-id>
<pub-id pub-id-type="pmid">8320340</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Kock</surname>
<given-names>CPJ</given-names>
</name>
<name>
<surname>Bruno</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Spors</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sakmann</surname>
<given-names>B</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex</article-title>
<source>The Journal of Physiology</source>
<volume>581</volume>
<fpage>139</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2006.124321</pub-id>
<pub-id pub-id-type="pmid">17317752</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diamond</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>von Heimendahl</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Knutsen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Kleinfeld</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ahissar</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>'where' and 'what' in the whisker sensorimotor system</article-title>
<source>Nature Reviews Neuroscience</source>
<volume>9</volume>
<fpage>601</fpage>
<lpage>612</lpage>
<pub-id pub-id-type="doi">10.1038/nrn2411</pub-id>
<pub-id pub-id-type="pmid">18641667</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dörfl</surname>
<given-names>J</given-names>
</name>
</person-group>
<year>1985</year>
<article-title>The innervation of the mystacial region of the white mouse: a topographical study</article-title>
<source>Journal of Anatomy</source>
<volume>142</volume>
<fpage>173</fpage>
<lpage>184</lpage>
<pub-id pub-id-type="pmid">17103584</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feldmeyer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brecht</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Helmchen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>CCH</given-names>
</name>
<name>
<surname>Poulet</surname>
<given-names>JFA</given-names>
</name>
<name>
<surname>Staiger</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Luhmann</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Barrel cortex function</article-title>
<source>Progress in Neurobiology</source>
<volume>103</volume>
<fpage>3</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="doi">10.1016/j.pneurobio.2012.11.002</pub-id>
<pub-id pub-id-type="pmid">23195880</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freeman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vladimirov</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kawashima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sofroniew</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C-T</given-names>
</name>
<name>
<surname>Looger</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Ahrens</surname>
<given-names>MB</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Mapping brain activity at scale with cluster computing</article-title>
<source>Nature Methods</source>
<volume>11</volume>
<fpage>941</fpage>
<lpage>950</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.3041</pub-id>
<pub-id pub-id-type="pmid">25068736</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ganguli</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Simoncelli</surname>
<given-names>EP</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Efficient sensory encoding and bayesian inference with heterogeneous neural populations</article-title>
<source>Neural Computation</source>
<volume>26</volume>
<fpage>2103</fpage>
<lpage>2134</lpage>
<pub-id pub-id-type="doi">10.1162/NECO_a_00638</pub-id>
<pub-id pub-id-type="pmid">25058702</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>ZV</given-names>
</name>
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Komiyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ophir</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bonardi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Morandell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Gutnisky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Peron</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Ning-long</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>SA</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Procedures for behavioral experiments in head-fixed mice</article-title>
<source>PLoS ONE</source>
<volume>9</volume>
<elocation-id>e12559</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0088678</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>ZV</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ophir</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gutnisky</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ting</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Flow of cortical activity underlying a tactile decision in mice</article-title>
<source>Neuron</source>
<volume>81</volume>
<fpage>179</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2013.10.020</pub-id>
<pub-id pub-id-type="pmid">24361077</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harvey</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tank</surname>
<given-names>DW</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Choice-specific sequences in parietal cortex during a virtual-navigation decision task</article-title>
<source>Nature</source>
<volume>484</volume>
<fpage>62</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1038/nature10918</pub-id>
<pub-id pub-id-type="pmid">22419153</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Pammer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Golomb</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Tapered whiskers are required for active tactile sensation</article-title>
<source>eLife</source>
<volume>2</volume>
<elocation-id>e12559</elocation-id>
<pub-id pub-id-type="doi">10.7554/eLife.01350</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Gutnisky</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Low-noise encoding of active touch by layer 4 in the somatosensory cortex</article-title>
<source>eLife</source>
<volume>4</volume>
<pub-id pub-id-type="doi">10.7554/eLife.06619</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hooks</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y-X</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Petreanu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>GMG</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>CCCH</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Laminar analysis of excitatory local circuits in vibrissal motor and sensory cortical areas</article-title>
<source>PLoS Biology</source>
<volume>9</volume>
<elocation-id>e12559</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pbio.1000572</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gutnisky</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Peron</surname>
<given-names>S</given-names>
</name>
<name>
<surname>O’Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Wiegert</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Oertner</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Looger</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Multiple dynamic representations in the motor cortex during sensorimotor learning</article-title>
<source>Nature</source>
<volume>484</volume>
<fpage>473</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="doi">10.1038/nature11039</pub-id>
<pub-id pub-id-type="pmid">22538608</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hutson</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Masterton</surname>
<given-names>RB</given-names>
</name>
</person-group>
<year>1986</year>
<article-title>The sensory contribution of a single vibrissa's cortical barrel</article-title>
<source>Journal of Neurophysiology</source>
<volume>56</volume>
<fpage>1196</fpage>
<lpage>1223</lpage>
<pub-id pub-id-type="pmid">3783236</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ibrahim</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>EA</given-names>
</name>
</person-group>
<year>1975</year>
<article-title>The growth of rats and mice vibrissae under normal and some abnormal conditions</article-title>
<source>Journal of Embryology and Experimental Morphology</source>
<volume>33</volume>
<fpage>831</fpage>
<lpage>844</lpage>
<pub-id pub-id-type="pmid">1176877</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keller</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Bonhoeffer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hübener</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Sensorimotor mismatch signals in primary visual cortex of the behaving mouse</article-title>
<source>Neuron</source>
<volume>74</volume>
<fpage>809</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2012.03.040</pub-id>
<pub-id pub-id-type="pmid">22681686</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerr</surname>
<given-names>JND</given-names>
</name>
<name>
<surname>de Kock</surname>
<given-names>CPJ</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Bruno</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Sakmann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Helmchen</surname>
<given-names>F</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex</article-title>
<source>Journal of Neuroscience</source>
<volume>27</volume>
<fpage>13316</fpage>
<lpage>13328</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.2210-07.2007</pub-id>
<pub-id pub-id-type="pmid">18045926</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knutsen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Pietr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ahissar</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Haptic object localization in the vibrissal system: behavior and performance</article-title>
<source>Journal of Neuroscience</source>
<volume>26</volume>
<fpage>8451</fpage>
<lpage>8464</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1516-06.2006</pub-id>
<pub-id pub-id-type="pmid">16914670</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knutsen</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Ahissar</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Orthogonal coding of object location</article-title>
<source>Trends in Neurosciences</source>
<volume>32</volume>
<fpage>101</fpage>
<lpage>109</lpage>
<pub-id pub-id-type="doi">10.1016/j.tins.2008.10.002</pub-id>
<pub-id pub-id-type="pmid">19070909</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krupa</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Wiest</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Shuler</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Laubach</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nicolelis</surname>
<given-names>MA</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Layer-specific somatosensory cortical activation during active tactile discrimination</article-title>
<source>Science</source>
<volume>304</volume>
<fpage>1989</fpage>
<lpage>1992</lpage>
<pub-id pub-id-type="doi">10.1126/science.1093318</pub-id>
<pub-id pub-id-type="pmid">15218154</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lefort</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tomm</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Floyd Sarria</surname>
<given-names>J-C</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>CCH</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex</article-title>
<source>Neuron</source>
<volume>61</volume>
<fpage>301</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2008.12.020</pub-id>
<pub-id pub-id-type="pmid">19186171</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madisen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zwingman</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Sunkin</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Zariwala</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Palmiter</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Hawrylycz</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Lein</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>A robust and high-throughput cre reporting and characterization system for the whole mouse brain</article-title>
<source>Nature Neuroscience</source>
<volume>13</volume>
<fpage>133</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="doi">10.1038/nn.2467</pub-id>
<pub-id pub-id-type="pmid">20023653</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madisen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhuo</surname>
<given-names>Jia-min</given-names>
</name>
<name>
<surname>Berenyi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fujisawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>Y-WA</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zanella</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kidney</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hooks</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Boyden</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Buzsáki</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ramirez</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>A toolbox of cre-dependent optogenetic transgenic mice for light-induced activation and silencing</article-title>
<source>Nature Neuroscience</source>
<volume>15</volume>
<fpage>793</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3078</pub-id>
<pub-id pub-id-type="pmid">22446880</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mitchinson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Arkley</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rankov</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Perkon</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Active vibrissal sensing in rodents and marsupials</article-title>
<source>Philosophical Transactions of the Royal Society B</source>
<volume>366</volume>
<fpage>3037</fpage>
<lpage>3048</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2011.0156</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyashita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>DE</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Behavioral detection of passive whisker stimuli requires somatosensory cortex</article-title>
<source>Cerebral Cortex</source>
<volume>23</volume>
<fpage>1655</fpage>
<lpage>1662</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/bhs155</pub-id>
<pub-id pub-id-type="pmid">22661403</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>CI</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>SB</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex</article-title>
<source>Journal of Neurophysiology</source>
<volume>80</volume>
<fpage>2882</fpage>
<lpage>2892</lpage>
<pub-id pub-id-type="pmid">9862892</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Clack</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Komiyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Vibrissa-based object localization in head-fixed mice</article-title>
<source>Journal of Neuroscience</source>
<volume>30</volume>
<fpage>1947</fpage>
<lpage>1967</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.3762-09.2010</pub-id>
<pub-id pub-id-type="pmid">20130203</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Peron</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Neural activity in barrel cortex underlying vibrissa-based object localization in mice</article-title>
<source>Neuron</source>
<volume>67</volume>
<fpage>1048</fpage>
<lpage>1061</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2010.08.026</pub-id>
<pub-id pub-id-type="pmid">20869600</pub-id>
</element-citation>
</ref>
<ref id="bib44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>ZV</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q-Q</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Neural coding during active somatosensation revealed using illusory touch</article-title>
<source>Nature Neuroscience</source>
<volume>16</volume>
<fpage>958</fpage>
<lpage>965</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3419</pub-id>
<pub-id pub-id-type="pmid">23727820</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohki</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ch'ng</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Kara</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>RC</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex</article-title>
<source>Nature</source>
<volume>433</volume>
<fpage>597</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.1038/nature03274</pub-id>
<pub-id pub-id-type="pmid">15660108</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olsen</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Bortone</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Adesnik</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Scanziani</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2012</year>
<article-title>Gain control by layer six in cortical circuits of vision</article-title>
<source>Nature</source>
<volume>483</volume>
<fpage>47</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1038/nature10835</pub-id>
<pub-id pub-id-type="pmid">22367547</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pammer</surname>
<given-names>L</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Hires</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Clack</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Huber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>The mechanical variables underlying object localization along the axis of the whisker</article-title>
<source>Journal of Neuroscience</source>
<volume>33</volume>
<fpage>6726</fpage>
<lpage>6741</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.4316-12.2013</pub-id>
<pub-id pub-id-type="pmid">23595731</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peron</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T-W</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Comprehensive imaging of cortical networks</article-title>
<source>Current Opinion in Neurobiology</source>
<volume>32</volume>
<fpage>115</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="doi">10.1016/j.conb.2015.03.016</pub-id>
<pub-id pub-id-type="pmid">25880117</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peron</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Iyer</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>A cellular resolution map of barrel cortex activity during tactile behavior</article-title>
<source>Neuron</source>
<volume>86</volume>
<fpage>783</fpage>
<lpage>799</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2015.03.027</pub-id>
<pub-id pub-id-type="pmid">25913859</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pluta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Naka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Veit</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Telian</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hakim</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Adesnik</surname>
<given-names>H</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>A direct translaminar inhibitory circuit tunes cortical output</article-title>
<source>Nature Neuroscience</source>
<volume>18</volume>
<fpage>1631</fpage>
<lpage>1640</lpage>
<pub-id pub-id-type="doi">10.1038/nn.4123</pub-id>
<pub-id pub-id-type="pmid">26414615</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pouille</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Marin-Burgin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Adesnik</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Atallah</surname>
<given-names>BV</given-names>
</name>
<name>
<surname>Scanziani</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Input normalization by global feedforward inhibition expands cortical dynamic range</article-title>
<source>Nature Neuroscience</source>
<volume>12</volume>
<fpage>1577</fpage>
<lpage>1585</lpage>
<pub-id pub-id-type="doi">10.1038/nn.2441</pub-id>
<pub-id pub-id-type="pmid">19881502</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saleem</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Ayaz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jeffery</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Carandini</surname>
<given-names>M</given-names>
</name>
</person-group>
<year>2013</year>
<article-title>Integration of visual motion and locomotion in mouse visual cortex</article-title>
<source>Nature Neuroscience</source>
<volume>16</volume>
<fpage>1864</fpage>
<lpage>1869</lpage>
<pub-id pub-id-type="doi">10.1038/nn.3567</pub-id>
<pub-id pub-id-type="pmid">24185423</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Schall</surname>
<given-names>JD</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Effects of stimulus-response compatibility on neural selection in frontal eye field</article-title>
<source>Neuron</source>
<volume>38</volume>
<fpage>637</fpage>
<lpage>648</lpage>
<pub-id pub-id-type="doi">10.1016/S0896-6273(03)00237-X</pub-id>
<pub-id pub-id-type="pmid">12765614</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shepherd</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex</article-title>
<source>Journal of Neuroscience</source>
<volume>25</volume>
<fpage>5670</fpage>
<lpage>5679</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1173-05.2005</pub-id>
<pub-id pub-id-type="pmid">15958733</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simons</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1978</year>
<article-title>Response properties of vibrissa units in rat SI somatosensory neocortex</article-title>
<source>Journal of Neurophysiology</source>
<volume>41</volume>
<fpage>798</fpage>
<lpage>820</lpage>
<pub-id pub-id-type="pmid">660231</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simons</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<year>1985</year>
<article-title>Temporal and spatial integration in the rat SI vibrissa cortex</article-title>
<source>Journal of Neurophysiology</source>
<volume>54</volume>
<fpage>615</fpage>
<lpage>635</lpage>
<pub-id pub-id-type="pmid">4045540</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simons</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Carvell</surname>
<given-names>GE</given-names>
</name>
</person-group>
<year>1989</year>
<article-title>Thalamocortical response transformation in the rat vibrissa/barrel system</article-title>
<source>Journal of Neurophysiology</source>
<volume>61</volume>
<fpage>311</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">2918357</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simons</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Carvell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hershey</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Bryant</surname>
<given-names>DP</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia</article-title>
<source>Experimental Brain Research</source>
<volume>91</volume>
<fpage>259</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="doi">10.1007/BF00231659</pub-id>
<pub-id pub-id-type="pmid">1459228</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sofroniew</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2014</year>
<article-title>Natural whisker-guided behavior by head-fixed mice in tactile virtual reality</article-title>
<source>Journal of Neuroscience</source>
<volume>34</volume>
<fpage>9537</fpage>
<lpage>9550</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.0712-14.2014</pub-id>
<pub-id pub-id-type="pmid">25031397</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sofroniew</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Whisking</article-title>
<source>Current Biology</source>
<volume>25</volume>
<fpage>R137</fpage>
<lpage>R140</lpage>
<pub-id pub-id-type="doi">10.1016/j.cub.2015.01.008</pub-id>
<pub-id pub-id-type="pmid">25689904</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sprague</surname>
<given-names>JM</given-names>
</name>
</person-group>
<year>1966</year>
<article-title>Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat</article-title>
<source>Science</source>
<volume>153</volume>
<fpage>1544</fpage>
<lpage>1547</lpage>
<pub-id pub-id-type="doi">10.1126/science.153.3743.1544</pub-id>
<pub-id pub-id-type="pmid">5917786</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stuttgen</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Kullmann</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>C</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation</article-title>
<source>Journal of Neurophysiology</source>
<volume>100</volume>
<fpage>1879</fpage>
<lpage>1884</lpage>
<pub-id pub-id-type="doi">10.1152/jn.90511.2008</pub-id>
<pub-id pub-id-type="pmid">18684907</pub-id>
</element-citation>
</ref>
<ref id="bib63">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suter</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>O'Connor</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Iyer</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Petreanu</surname>
<given-names>LT</given-names>
</name>
<name>
<surname>Hooks</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Kiritani</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Svoboda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>GM</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Ephus: multipurpose data acquisition software for neuroscience experiments</article-title>
<source>Frontiers in Neural Circuits</source>
<volume>4</volume>
<pub-id pub-id-type="doi">10.3389/fncir.2010.00100</pub-id>
</element-citation>
</ref>
<ref id="bib64">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szwed</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bagdasarian</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Blumenfeld</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Barak</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Derdikman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ahissar</surname>
<given-names>E</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch</article-title>
<source>Journal of Neurophysiology</source>
<volume>95</volume>
<fpage>791</fpage>
<lpage>802</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00571.2005</pub-id>
<pub-id pub-id-type="pmid">16207785</pub-id>
</element-citation>
</ref>
<ref id="bib65">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van der Loos</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Woolsey</surname>
<given-names>TA</given-names>
</name>
</person-group>
<year>1973</year>
<article-title>Somatosensory cortex: structural alterations following early injury to sense organs</article-title>
<source>Science</source>
<volume>179</volume>
<fpage>395</fpage>
<lpage>398</lpage>
<pub-id pub-id-type="doi">10.1126/science.179.4071.395</pub-id>
<pub-id pub-id-type="pmid">4682966</pub-id>
</element-citation>
</ref>
<ref id="bib66">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vincent</surname>
<given-names>SB</given-names>
</name>
</person-group>
<year>1912</year>
<article-title>The function of vibrissae in the behavior of the white rat</article-title>
<source>Behavior Monographs</source>
<volume>1</volume>
<fpage>1</fpage>
<lpage>82</lpage>
</element-citation>
</ref>
<ref id="bib67">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Voigts</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Celikel</surname>
<given-names>T</given-names>
</name>
</person-group>
<year>2015</year>
<article-title>Tactile object localization by anticipatory whisker motion</article-title>
<source>Journal of Neurophysiology</source>
<volume>113</volume>
<fpage>620</fpage>
<lpage>632</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00241.2014</pub-id>
<pub-id pub-id-type="pmid">25339711</pub-id>
</element-citation>
</ref>
<ref id="bib68">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ting</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Atallah</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gloss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Augustine</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Deisseroth</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Graybiel</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>G</given-names>
</name>
</person-group>
<year>2011</year>
<article-title>Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function</article-title>
<source>Nature Methods</source>
<volume>8</volume>
<fpage>745</fpage>
<lpage>752</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1668</pub-id>
<pub-id pub-id-type="pmid">21985008</pub-id>
</element-citation>
</ref>
<ref id="bib69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zucker</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Welker</surname>
<given-names>WI</given-names>
</name>
</person-group>
<year>1969</year>
<article-title>Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion</article-title>
<source>Brain Research</source>
<volume>12</volume>
<fpage>138</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="doi">10.1016/0006-8993(69)90061-4</pub-id>
<pub-id pub-id-type="pmid">5802473</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<sub-article id="SA1" article-type="article-commentary">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.12559.014</article-id>
<title-group>
<article-title>Decision letter</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Nelson</surname>
<given-names>Sacha B</given-names>
</name>
<role>Reviewing editor</role>
<aff id="aff4">
<institution>Brandeis University</institution>
,
<country>United States</country>
</aff>
</contrib>
</contrib-group>
</front-stub>
<body>
<boxed-text position="float" orientation="portrait">
<p>In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.</p>
</boxed-text>
<p>Thank you for submitting your work entitled "Neural coding in barrel cortex during whisker-guided locomotion" for consideration by
<italic>eLife</italic>
. Your article has been favorably evaluated by Eve Marder (Senior Editor) and three reviewers, one of whom, Sacha Nelson, is a member of our Board of Reviewing Editors. One of the reviewers, Daniel Feldman, has also agreed to share his identity.</p>
<p>The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.</p>
<p>Summary:</p>
<p>This study investigates whisker-based sensory coding of wall distance in somatosensory cortex during innate wall following behavior in mice. This is an important extension of prior whisker coding studies in mouse S1, which have focused on simple detection, front-back localization, and surface properties. Using optogenetics, the authors show that S1 firing is necessary and sufficient for accurate wall following. Multi electrode recording, and calcium imaging, show that many S1 neurons encode wall distance, with most neurons preferring close distances, but many showing clear tuning for intermediate wall distances. In addition, many S1 neurons also encode direction of wall motion. Overall, these findings reveal a critical role for S1 activity in encoding distance estimation during wall following behavior.</p>
<p>Essentials revisions:</p>
<p>1) Although the text refers to layers 2/3 and 5, the figures do not make clear where the boundaries of L4 are. It would be clearer to actually assign units to specific laminae and not simply distance from the center of L4. If this is not possible, perhaps the average boundaries could be indicated in
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2</xref>
.</p>
<p>2) Although there are other indications that activity in L2/3 is sparse, the authors should say more about a) whether or not there is overall agreement in the activity of cells studied electrophysiologically and with imaging and b) whether there were indications that the inactive cells were completely inactive or fired occasionally. Related to this is the question of how ROIs were chosen--i.e. is there any approximate sense of how the criteria stated in the methods translates into firing rate? Did a similar minimum firing rate apply in practice to units which could be isolated electrophysiologically?</p>
<p>3) It might be useful to include some additional analyses of the relationship between firing and running rate. It is not clear how tuning for wall distance and speed interact.</p>
<p>Additional suggestions:</p>
<p>One of the reviewers made the following suggestions for additional work that would add to the impact of the paper, but the reviewers agreed this would not be necessary for acceptance of the paper. Perhaps some of these issues could be addressed in the Discussion.</p>
<p>1) How is distance information read out from S1? The L4-ChR2 results argue for a simple firing rate code for proximity. However, the physiology shows many neurons that are tuned for intermediate distances, and the Discussion argues that such Gaussian tuning curves are metabolically more efficient than monotonic distance-response functions. If distance information is encoded by Gaussian-tuned neurons, why does ChR2 stimulation at varying intensities-which implements a monotonic population firing rate code-effectively drive wall-following behavior? (This fictive wall following is even more accurate than real-wall following!)</p>
<p>2) How is distance tuning generated for individual S1 neurons? Perhaps the simplest model is that each neuron's preferred distance matches the length of its principal whisker. This would make sense because more distant positions cannot directly drive spikes from the cell, while closer wall positions likely suppress firing by activating additional, shorter surround whiskers, which inhibit the recorded neuron. Such net inhibition between neighboring whiskers has been observed often in passive studies.</p>
</body>
</sub-article>
<sub-article id="SA2" article-type="reply">
<front-stub>
<article-id pub-id-type="doi">10.7554/eLife.12559.015</article-id>
<title-group>
<article-title>Author response</article-title>
</title-group>
</front-stub>
<body>
<p>
<italic>Essentials revisions: 1) Although the text refers to layers 2/3 and 5, the figures do not make clear where the boundaries of L4 are. It would be clearer to actually assign units to specific laminae and not simply distance from the center of L4. If this is not possible, perhaps the average boundaries could be indicated in
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2</xref>
.</italic>
</p>
<p>All the units had layer assignments, based on data similar to that presented in
<xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1b</xref>
. Units in different layers are now depicted with different grey scale values (new
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2</xref>
and
<xref ref-type="fig" rid="fig4">Figure 4i</xref>
).</p>
<p>
<italic>2) Although there are other indications that activity in L2/3 is sparse, the authors should say more about a) whether or not there is overall agreement in the activity of cells studied electrophysiologically and with imaging and b) whether there were indications that the inactive cells were completely inactive or fired occasionally. Related to this is the question of how ROIs were chosen--i.e. is there any approximate sense of how the criteria stated in the methods translates into firing rate? Did a similar minimum firing rate apply in practice to units which could be isolated electrophysiologically?</italic>
</p>
<p>We added additional discussion comparing the electrophysiology and imaging data. We also moved some text about the sparseness of L2/3 activity in the calcium imaging data from the Methods to the Discussion section too.</p>
<p>We also added information on how regions of interest (ROIs) were selected and the expected firing rates for neurons judged as active based on calcium imaging.</p>
<p>We added information about the minimum maximum spike rate of the sorted spikes in the electrophysiology data to the methods (
<xref ref-type="fig" rid="fig4s2">Figure 4—figure supplement 2c</xref>
).</p>
<p>
<italic>3) It might be useful to include some additional analyses of the relationship between firing and running rate. It is not clear how tuning for wall distance and speed interact.</italic>
</p>
<p>We now show additional analyses comparing tuning curves at slow fast speeds. The tuning curves are similar on average (new
<xref ref-type="fig" rid="fig4s4">Figure 4—figure supplement 4c-e</xref>
). This topic is now discussed in the Results.</p>
<p>
<italic>Additional suggestions:</italic>
</p>
<p>
<italic>One of the reviewers made the following suggestions for additional work that would add to the impact of the paper, but the reviewers agreed this would not be necessary for acceptance of the paper. Perhaps some of these issues could be addressed in the Discussion. 1) How is distance information read out from S1? The L4-ChR2 results argue for a simple firing rate code for proximity. However, the physiology shows many neurons that are tuned for intermediate distances, and the Discussion argues that such Gaussian tuning curves are metabolically more efficient than monotonic distance-response functions. If distance information is encoded by Gaussian-tuned neurons, why does ChR2 stimulation at varying intensities-which implements a monotonic population firing rate code-effectively drive wall-following behavior? (This fictive wall following is even more accurate than real-wall following!).</italic>
</p>
<p>This is an interesting issue. The accuracy of tracking in the fictive corridor may depend on the details of the photostimulus (e.g. photostimulation frequency). Indeed, we found that the imposed change in activity (i.e. the spatial gradient of activity) with wall-distance is related to accuracy of tracking in the fictive corridor. We have added text to the Discussion to address this point.</p>
<p>
<italic>2) How is distance tuning generated for individual S1 neurons? Perhaps the simplest model is that each neuron's preferred distance matches the length of its principal whisker. This would make sense because more distant positions cannot directly drive spikes from the cell, while closer wall positions likely suppress firing by activating additional, shorter surround whiskers, which inhibit the recorded neuron. Such net inhibition between neighboring whiskers has been observed often in passive studies.</italic>
</p>
<p>We agree that this is a reasonable hypothesis for the non-monotonic wall distance tuning curves. We now discuss this possibility in the Discussion section.</p>
</body>
</sub-article>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Sofroniew, Nicholas James" sort="Sofroniew, Nicholas James" uniqKey="Sofroniew N" first="Nicholas James" last="Sofroniew">Nicholas James Sofroniew</name>
</noRegion>
<name sortKey="Andrew Hires, Samuel" sort="Andrew Hires, Samuel" uniqKey="Andrew Hires S" first="Samuel" last="Andrew Hires">Samuel Andrew Hires</name>
<name sortKey="Freeman, Jeremy" sort="Freeman, Jeremy" uniqKey="Freeman J" first="Jeremy" last="Freeman">Jeremy Freeman</name>
<name sortKey="Svoboda, Karel" sort="Svoboda, Karel" uniqKey="Svoboda K" first="Karel" last="Svoboda">Karel Svoboda</name>
<name sortKey="Vlasov, Yurii A" sort="Vlasov, Yurii A" uniqKey="Vlasov Y" first="Yurii A" last="Vlasov">Yurii A. Vlasov</name>
<name sortKey="Vlasov, Yurii A" sort="Vlasov, Yurii A" uniqKey="Vlasov Y" first="Yurii A" last="Vlasov">Yurii A. Vlasov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002822 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 002822 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4764557
   |texte=   Neural coding in barrel cortex during whisker-guided locomotion
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:26701910" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024