Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

Identifieur interne : 001421 ( Pmc/Checkpoint ); précédent : 001420; suivant : 001422

Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

Auteurs : Joe C. Wildenberg ; Mitchell E. Tyler ; Yuri P. Danilov ; Kurt A. Kaczmarek ; Mary E. Meyerand

Source :

RBID : PMC:3621359

Abstract

Abstract

Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network.


Url:
DOI: 10.1089/brain.2012.0123
PubMed: 23216162
PubMed Central: 3621359


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3621359

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals</title>
<author>
<name sortKey="Wildenberg, Joe C" sort="Wildenberg, Joe C" uniqKey="Wildenberg J" first="Joe C." last="Wildenberg">Joe C. Wildenberg</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Mitchell E" sort="Tyler, Mitchell E" uniqKey="Tyler M" first="Mitchell E." last="Tyler">Mitchell E. Tyler</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Danilov, Yuri P" sort="Danilov, Yuri P" uniqKey="Danilov Y" first="Yuri P." last="Danilov">Yuri P. Danilov</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaczmarek, Kurt A" sort="Kaczmarek, Kurt A" uniqKey="Kaczmarek K" first="Kurt A." last="Kaczmarek">Kurt A. Kaczmarek</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meyerand, Mary E" sort="Meyerand, Mary E" uniqKey="Meyerand M" first="Mary E." last="Meyerand">Mary E. Meyerand</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23216162</idno>
<idno type="pmc">3621359</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621359</idno>
<idno type="RBID">PMC:3621359</idno>
<idno type="doi">10.1089/brain.2012.0123</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">001317</idno>
<idno type="wicri:Area/Pmc/Curation">001317</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001421</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals</title>
<author>
<name sortKey="Wildenberg, Joe C" sort="Wildenberg, Joe C" uniqKey="Wildenberg J" first="Joe C." last="Wildenberg">Joe C. Wildenberg</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tyler, Mitchell E" sort="Tyler, Mitchell E" uniqKey="Tyler M" first="Mitchell E." last="Tyler">Mitchell E. Tyler</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Danilov, Yuri P" sort="Danilov, Yuri P" uniqKey="Danilov Y" first="Yuri P." last="Danilov">Yuri P. Danilov</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kaczmarek, Kurt A" sort="Kaczmarek, Kurt A" uniqKey="Kaczmarek K" first="Kurt A." last="Kaczmarek">Kurt A. Kaczmarek</name>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meyerand, Mary E" sort="Meyerand, Mary E" uniqKey="Meyerand M" first="Mary E." last="Meyerand">Mary E. Meyerand</name>
<affiliation>
<nlm:aff id="aff1"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3"></nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Brain Connectivity</title>
<idno type="ISSN">2158-0014</idno>
<idno type="eISSN">2158-0022</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Abstract</title>
<p>Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (
<italic>p</italic>
≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Brain Connect</journal-id>
<journal-id journal-id-type="iso-abbrev">Brain Connect</journal-id>
<journal-id journal-id-type="publisher-id">brain</journal-id>
<journal-title-group>
<journal-title>Brain Connectivity</journal-title>
</journal-title-group>
<issn pub-type="ppub">2158-0014</issn>
<issn pub-type="epub">2158-0022</issn>
<publisher>
<publisher-name>Mary Ann Liebert, Inc.</publisher-name>
<publisher-loc>140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23216162</article-id>
<article-id pub-id-type="pmc">3621359</article-id>
<article-id pub-id-type="publisher-id">10.1089/brain.2012.0123</article-id>
<article-id pub-id-type="doi">10.1089/brain.2012.0123</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Wildenberg</surname>
<given-names>Joe C.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tyler</surname>
<given-names>Mitchell E.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Danilov</surname>
<given-names>Yuri P.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kaczmarek</surname>
<given-names>Kurt A.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meyerand</surname>
<given-names>Mary E.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<aff id="aff1">
<label>
<sup>1</sup>
</label>
Neuroscience Training Program,
<institution>University of Wisconsin</institution>
, Madison, Wisconsin.</aff>
<aff id="aff2">
<label>
<sup>2</sup>
</label>
Medical Scientist Training Program,
<institution>University of Wisconsin</institution>
, Madison, Wisconsin.</aff>
<aff id="aff3">
<label>
<sup>3</sup>
</label>
Department of Biomedical Engineering,
<institution>University of Wisconsin</institution>
, Madison, Wisconsin.</aff>
<aff id="aff4">
<label>
<sup>4</sup>
</label>
Department of Medical Physics,
<institution>University of Wisconsin</institution>
, Madison, Wisconsin.</aff>
</contrib-group>
<author-notes>
<corresp>Address correspondence to:
<italic>Joe C. Wildenberg, Neuroscience Training Program, 1129, Wisconsin Institute for Medical Research, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53705. E-mail:</italic>
<email xlink:href="mailto:joe.wildenberg@gmail.com">joe.wildenberg@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2013</year>
<pmc-comment>string-date: 2013</pmc-comment>
</pub-date>
<volume>3</volume>
<issue>1</issue>
<fpage>87</fpage>
<lpage>97</lpage>
<permissions>
<copyright-statement>Copyright 2013, Mary Ann Liebert, Inc.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<self-uri xlink:type="simple" xlink:href="brain.2012.0123.pdf"></self-uri>
<abstract>
<title>Abstract</title>
<p>Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (
<italic>p</italic>
≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network.</p>
</abstract>
<kwd-group kwd-group-type="author">
<title>Key words</title>
<kwd>brain stem</kwd>
<kwd>cranial nerve disorders</kwd>
<kwd>neural plasticity</kwd>
<kwd>statistics</kwd>
<kwd>visual system</kwd>
</kwd-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="4"></table-count>
<ref-count count="81"></ref-count>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Danilov, Yuri P" sort="Danilov, Yuri P" uniqKey="Danilov Y" first="Yuri P." last="Danilov">Yuri P. Danilov</name>
<name sortKey="Kaczmarek, Kurt A" sort="Kaczmarek, Kurt A" uniqKey="Kaczmarek K" first="Kurt A." last="Kaczmarek">Kurt A. Kaczmarek</name>
<name sortKey="Meyerand, Mary E" sort="Meyerand, Mary E" uniqKey="Meyerand M" first="Mary E." last="Meyerand">Mary E. Meyerand</name>
<name sortKey="Tyler, Mitchell E" sort="Tyler, Mitchell E" uniqKey="Tyler M" first="Mitchell E." last="Tyler">Mitchell E. Tyler</name>
<name sortKey="Wildenberg, Joe C" sort="Wildenberg, Joe C" uniqKey="Wildenberg J" first="Joe C." last="Wildenberg">Joe C. Wildenberg</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001421 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 001421 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3621359
   |texte=   Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:23216162" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024