Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching

Identifieur interne : 000E95 ( Pmc/Checkpoint ); précédent : 000E94; suivant : 000E96

Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching

Auteurs : James L. Patton [États-Unis] ; Yejun John Wei [États-Unis] ; Preeti Bajaj [États-Unis] ; Robert A. Scheidt [États-Unis]

Source :

RBID : PMC:3559751

Abstract

We studied reach adaptation to a 30° visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired.


Url:
DOI: 10.1371/journal.pone.0046466
PubMed: 23382796
PubMed Central: 3559751


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3559751

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching</title>
<author>
<name sortKey="Patton, James L" sort="Patton, James L" uniqKey="Patton J" first="James L." last="Patton">James L. Patton</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">
<addr-line>Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioengineering, University of Illinois at Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">
<addr-line>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yejun John" sort="Wei, Yejun John" uniqKey="Wei Y" first="Yejun John" last="Wei">Yejun John Wei</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bajaj, Preeti" sort="Bajaj, Preeti" uniqKey="Bajaj P" first="Preeti" last="Bajaj">Preeti Bajaj</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scheidt, Robert A" sort="Scheidt, Robert A" uniqKey="Scheidt R" first="Robert A." last="Scheidt">Robert A. Scheidt</name>
<affiliation wicri:level="2">
<nlm:aff id="aff4">
<addr-line>Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">
<addr-line>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23382796</idno>
<idno type="pmc">3559751</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559751</idno>
<idno type="RBID">PMC:3559751</idno>
<idno type="doi">10.1371/journal.pone.0046466</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002248</idno>
<idno type="wicri:Area/Pmc/Curation">002248</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000E95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching</title>
<author>
<name sortKey="Patton, James L" sort="Patton, James L" uniqKey="Patton J" first="James L." last="Patton">James L. Patton</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">
<addr-line>Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioengineering, University of Illinois at Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">
<addr-line>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Yejun John" sort="Wei, Yejun John" uniqKey="Wei Y" first="Yejun John" last="Wei">Yejun John Wei</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bajaj, Preeti" sort="Bajaj, Preeti" uniqKey="Bajaj P" first="Preeti" last="Bajaj">Preeti Bajaj</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scheidt, Robert A" sort="Scheidt, Robert A" uniqKey="Scheidt R" first="Robert A." last="Scheidt">Robert A. Scheidt</name>
<affiliation wicri:level="2">
<nlm:aff id="aff4">
<addr-line>Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff2">
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="aff3">
<addr-line>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America</addr-line>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We studied reach adaptation to a 30° visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
<author>
<name sortKey="Ghahramani, Z" uniqKey="Ghahramani Z">Z Ghahramani</name>
</author>
<author>
<name sortKey="Jordan, Mi" uniqKey="Jordan M">MI Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flanagan, Jr" uniqKey="Flanagan J">JR Flanagan</name>
</author>
<author>
<name sortKey="Rao, Ak" uniqKey="Rao A">AK Rao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheidt, Ra" uniqKey="Scheidt R">RA Scheidt</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Conditt, Ma" uniqKey="Conditt M">MA Conditt</name>
</author>
<author>
<name sortKey="Rymer, Wz" uniqKey="Rymer W">WZ Rymer</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patton, Jl" uniqKey="Patton J">JL Patton</name>
</author>
<author>
<name sortKey="Stoykov, Me" uniqKey="Stoykov M">ME Stoykov</name>
</author>
<author>
<name sortKey="Kovic, M" uniqKey="Kovic M">M Kovic</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emken, Jl" uniqKey="Emken J">JL Emken</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheidt, Ra" uniqKey="Scheidt R">RA Scheidt</name>
</author>
<author>
<name sortKey="Dingwell, Jb" uniqKey="Dingwell J">JB Dingwell</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, Cs" uniqKey="Harris C">CS Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imamizu, H" uniqKey="Imamizu H">H Imamizu</name>
</author>
<author>
<name sortKey="Miyauchi, S" uniqKey="Miyauchi S">S Miyauchi</name>
</author>
<author>
<name sortKey="Tamada, T" uniqKey="Tamada T">T Tamada</name>
</author>
<author>
<name sortKey="Sasaki, Y" uniqKey="Sasaki Y">Y Sasaki</name>
</author>
<author>
<name sortKey="Takino, R" uniqKey="Takino R">R Takino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krakauer, Jw" uniqKey="Krakauer J">JW Krakauer</name>
</author>
<author>
<name sortKey="Pine, Zm" uniqKey="Pine Z">ZM Pine</name>
</author>
<author>
<name sortKey="Ghilardi, Mf" uniqKey="Ghilardi M">MF Ghilardi</name>
</author>
<author>
<name sortKey="Ghez, C" uniqKey="Ghez C">C Ghez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rumelhart, De" uniqKey="Rumelhart D">DE Rumelhart</name>
</author>
<author>
<name sortKey="Hinton, Ge" uniqKey="Hinton G">GE Hinton</name>
</author>
<author>
<name sortKey="Williams, Rj" uniqKey="Williams R">RJ Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ernst, M" uniqKey="Ernst M">M Ernst</name>
</author>
<author>
<name sortKey="Banks, M" uniqKey="Banks M">M Banks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kording, Kp" uniqKey="Kording K">KP Kording</name>
</author>
<author>
<name sortKey="Wolpert, Dm" uniqKey="Wolpert D">DM Wolpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todorov, E" uniqKey="Todorov E">E Todorov</name>
</author>
<author>
<name sortKey="Jordan, Mi" uniqKey="Jordan M">MI Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conditt, Ma" uniqKey="Conditt M">MA Conditt</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flash, T" uniqKey="Flash T">T Flash</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morasso, P" uniqKey="Morasso P">P Morasso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brewer, B" uniqKey="Brewer B">B Brewer</name>
</author>
<author>
<name sortKey="Klatky, R" uniqKey="Klatky R">R Klatky</name>
</author>
<author>
<name sortKey="Matsuoka, Y" uniqKey="Matsuoka Y">Y Matsuoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miles, Fa" uniqKey="Miles F">FA Miles</name>
</author>
<author>
<name sortKey="Eighmy, Bb" uniqKey="Eighmy B">BB Eighmy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robles De La Torre, G" uniqKey="Robles De La Torre G">G Robles-De-La-Torre</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scheidt, Ra" uniqKey="Scheidt R">RA Scheidt</name>
</author>
<author>
<name sortKey="Conditt, Ma" uniqKey="Conditt M">MA Conditt</name>
</author>
<author>
<name sortKey="Secco, El" uniqKey="Secco E">EL Secco</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rossetti, Y" uniqKey="Rossetti Y">Y Rossetti</name>
</author>
<author>
<name sortKey="Rode, G" uniqKey="Rode G">G Rode</name>
</author>
<author>
<name sortKey="Pisella, L" uniqKey="Pisella L">L Pisella</name>
</author>
<author>
<name sortKey="Farne, A" uniqKey="Farne A">A Farne</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patton, Jl" uniqKey="Patton J">JL Patton</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravaioli, E" uniqKey="Ravaioli E">E Ravaioli</name>
</author>
<author>
<name sortKey="Oie, Ks" uniqKey="Oie K">KS Oie</name>
</author>
<author>
<name sortKey="Kiemel, T" uniqKey="Kiemel T">T Kiemel</name>
</author>
<author>
<name sortKey="Chiari, L" uniqKey="Chiari L">L Chiari</name>
</author>
<author>
<name sortKey="Jeka, Jj" uniqKey="Jeka J">JJ Jeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nudo, Rj" uniqKey="Nudo R">RJ Nudo</name>
</author>
<author>
<name sortKey="Friel, Km" uniqKey="Friel K">KM Friel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winstein, Cj" uniqKey="Winstein C">CJ Winstein</name>
</author>
<author>
<name sortKey="Merians, As" uniqKey="Merians A">AS Merians</name>
</author>
<author>
<name sortKey="Sullivan, Kj" uniqKey="Sullivan K">KJ Sullivan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23382796</article-id>
<article-id pub-id-type="pmc">3559751</article-id>
<article-id pub-id-type="publisher-id">PONE-D-11-00846</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0046466</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Computational Biology</subject>
<subj-group>
<subject>Computational Neuroscience</subject>
<subj-group>
<subject>Sensory Systems</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Neuroscience</subject>
<subj-group>
<subject>Neurophysiology</subject>
<subj-group>
<subject>Motor Systems</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sensory Perception</subject>
<subj-group>
<subject>Psychophysics</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Sensory Systems</subject>
<subj-group>
<subject>Visual System</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Learning and Memory</subject>
<subject>Motor Systems</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Engineering</subject>
<subj-group>
<subject>Bioengineering</subject>
<subj-group>
<subject>Biomedical Engineering</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Human Factors Engineering</subject>
<subj-group>
<subject>Man Computer Interface</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching</article-title>
<alt-title alt-title-type="running-head">Error Augmentation Enhancing Motor Learning</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Patton</surname>
<given-names>James L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wei</surname>
<given-names>Yejun John</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bajaj</surname>
<given-names>Preeti</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Scheidt</surname>
<given-names>Robert A.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Departments of Physical Medicine & Rehabilitation, Northwestern University, Chicago, Illinois, United States of America</addr-line>
</aff>
<aff id="aff4">
<label>4</label>
<addr-line>Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Zochowski</surname>
<given-names>Michal</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Michigan, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>pattonj@uic.edu</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Designed software for robot control: YW. Conceived and designed the experiments: JP RS. Performed the experiments: PB YW. Analyzed the data: JP YW PB RS. Contributed reagents/materials/analysis tools: JP YW. Wrote the paper: JP RS YW.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>1</month>
<year>2013</year>
</pub-date>
<volume>8</volume>
<issue>1</issue>
<elocation-id>e46466</elocation-id>
<history>
<date date-type="received">
<day>6</day>
<month>1</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>9</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-year>2013</copyright-year>
<copyright-holder>Patton et al</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>We studied reach adaptation to a 30° visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired.</p>
</abstract>
<funding-group>
<funding-statement>This work was supported by American Heart Association 0330411Z, National Institutes of Health (NIH) R24 HD39627, NIH 5 RO1 NS 35673, NIH F32HD08658, Whitaker RG010157, NSF BES0238442, NIH R01HD053727, the summer internship in neural engineering (SINE) program at the Sensory Motor Performance Program at the Rehabilitation Institute of Chicago, and the Falk Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="6"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>There are many situations in sports, performing arts, physical rehabilitation following brain injury and remote operation of devices (eg. robotically-assisted surgery) where it is desirable to train or retrain individuals to move their limbs in a specific desired manner. Motor learning is strongly driven to reduce kinematic performance errors
<xref ref-type="bibr" rid="pone.0046466-Kawato1">[1]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Wolpert1">[2]</xref>
and in particular, deviations from a straight-line hand path in horizontal planar reaching
<xref ref-type="bibr" rid="pone.0046466-Flanagan1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Scheidt1">[4]</xref>
. Recent experimental evidence has demonstrated that it is possible to train subjects to produce desired movements of the arm
<xref ref-type="bibr" rid="pone.0046466-Patton1">[5]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Patton2">[6]</xref>
or legs
<xref ref-type="bibr" rid="pone.0046466-Emken1">[7]</xref>
by accentuating trajectory errors using robotic forces. Subjects in those studies were exposed to custom-designed force fields that promoted the learning of specific movements by exploiting short-term adaptive processes
<xref ref-type="bibr" rid="pone.0046466-Scheidt2">[8]</xref>
. While those perturbations were strictly mechanical, it is well known that motor adaptations are also elicited by visuomotor distortions such as those induced by prisms (see
<xref ref-type="bibr" rid="pone.0046466-Harris1">[9]</xref>
for a review) as well as by rotations, stretches and other distortions of the conventional hand-to-screen mapping
<xref ref-type="bibr" rid="pone.0046466-Imamizu1">[10]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Krakauer1">[11]</xref>
<xref ref-type="bibr" rid="pone.0046466-Flanagan1">[3]</xref>
. Here we sought to investigate whether two types of visual feedback manipulations might enhance motor learning in healthy adult subjects.</p>
<p>Artificial learning systems (e.g., neural networks) frequently exploit error-driven learning techniques such that learning progresses more quickly when error is larger
<xref ref-type="bibr" rid="pone.0046466-Rumelhart1">[12]</xref>
. We tested whether human motor learning might be enhanced by manipulating sensory feedback so that hand path errors in reaching appear larger than they actually are. We consider two approaches: error amplification via manipulation of the visuomotor
<italic>gain</italic>
and error biasing via the addition of an
<italic>error-offset</italic>
equal to the average initial error. Previously we have found that subjects adjust their motor commands to compensate for approximately 32% of the hand trajectory error on their prior movement attempt
<xref ref-type="bibr" rid="pone.0046466-Scheidt2">[8]</xref>
, hence the theoretical limit of magnification is approximately 3.1. It is indeed compelling to consider the potential benefits of using accurate sensors from a machine to detect and then elevate perceived error above physiological noise levels. While error amplification may conceivably lead to larger signal-to-noise ratios in sensory feedback, learning could become unstable if the magnification error causes the subject to over-compensate. Because motor variability, sensor inaccuracies and other uncertainties also influence learning
<xref ref-type="bibr" rid="pone.0046466-Ernst1">[13]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Kording1">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Todorov1">[15]</xref>
, error magnification may be practicably limited to gains considerably less than the theoretical limit. On the other hand, adding an
<italic>offset</italic>
bias to augment error may be equally or more effective because only the average tendencies of error would be amplified, rejecting spurious mistakes. Furthermore, error-offset presents persistent errors throughout training, even as the learner improves. This technique may sustain motivation throughout practice, and hence increase the total amount of learning. However, each approach has its own potential pitfalls: gain augmentation is vulnerable by potentially causing underdamped or even unstable learning, whereas the offset approach is vulnerable by potentially causing learning beyond the goal.</p>
<p>Here in a preliminary investigation, we evaluated these candidates for error augmentation by evaluating the rate and magnitude of hand path error reduction as subjects made point-to-point reaching movements of the unseen arm while holding a horizontal planar robot. Deviations from the ideal, straight-line trajectory were augmented with either a magnification of 2, a magnification of 3.1, or by an offset angular deviation. We hypothesized that motor learning can be enhanced by error augmentation. Specifically, we hypothesized that error enhancement would be most evident in the case of offset error augmentation. We further hypothesized that the magnification factor predicted by learning models
<xref ref-type="bibr" rid="pone.0046466-Scheidt2">[8]</xref>
to be at the limits of stable learning (3.1) would be less effective than the more modest gain of 2, due to over-compensation. Our results provide support for the use of two of these error augmentation techniques to facilitate the learning of motor tasks, and identify a practical limit on the magnitude of viable gain augmentation. Portions of the work have been presented in conference proceedings
<xref ref-type="bibr" rid="pone.0046466-Wei1">[16]</xref>
.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<p>Sixteen neurologically normal adults (22–30 years old) gave informed, written consent to participate in this study in accordance with the Northwestern University Institutional Review Board (IRB), which specifically approved this study and follows the principles expressed in the Declaration of Helsinki. The experiment was carried out on a planar manipulandum robot that has been described in detail elsewhere
<xref ref-type="bibr" rid="pone.0046466-Conditt1">[17]</xref>
. A real-time control system managed the experiment, controlled the robot, and stored hand position data at 100 Hz. The robot motors removed the inertial effects of the robot linkage, rendering a nearly impedance-free movement of the handle, and no additional forces were implemented.</p>
<p>Seated subjects grasped the handle of the robot and were instructed to make fast and accurate reaching movements from a common, central starting position, stopping in one of six targets distributed around a circle of radius r = 0.1 m. Motion was cued by blanking the starting point and displaying one of the targets onto an opaque screen placed immediately above the plane of handle motion. This screen occluded direct view of the robot linkage and the subject's entire arm. Return movements to the center point were not analyzed, although all feedback conditions during the return were identical to the immediately preceding outward movement. Three targets (90°, 210° and −30° clockwise from anterior from anterior) were used as a training set while the remaining three targets were unpracticed test targets (directly anterior at 0° and at ±120°). On some trials, a cursor was projected just above the hand throughout the trial. On others, cursor motion was rotated 30° counter-clockwise about the starting point relative to hand motion. The target sets were selected such that movements to the training targets after full compensation for the visuomotor rotation would be approximately the same as movements to the test targets without compensation. After each movement, we provided visual and auditory feedback of peak hand speed to encourage subjects to move at consistent and fast rate. Colored targets and tones indicated when peak movement speed was too fast, too slow, or within the desired range (0.45 m/s±0.05 m/s).</p>
<p>Before experimentation, subjects were allowed to become comfortable moving the handle between targets. The experiment itself was conducted in 3 phases. First, a baseline phase of 165 movements established initial performance to each of the six targets. The latter 120 trials of this phase also intermittently evaluated the subject's response to the 30° counter-clockwise rotation (once every 8 movements, randomly presented, and never two in succession). These initial exposure trials assessed the starting error level for the visuomotor transformation condition that was ultimately learned by subjects. Next, a training phase of 390 movements evaluated the time course and extent of adaptation to a constant 30° counter-clockwise rotation. Here, the subjects were divided evenly and randomly into four treatment groups. The first (the control group) learned the visual rotation by itself while the other three groups learned while experiencing one of three error augmentation schemes. For two of these, deviations from the ideal, straight-line trajectory were magnified by a factor of 2 (the *2 group) or the gain of 3.1 (the *3.1 group), which theoretically should cause a complete error correction in a single trial. The remaining group had their error augmented by a counter-clockwise offset rotation (described below). All groups experienced periodic catch-trials – pseudo-randomly presented once in every eight movements – wherein error augmentation was removed (if present) and progress in adapting to the original 30° rotation was evaluated and compared across groups. Subjects trained only on an evenly-spaced subset of three of the six target directions (90, 210 and −30 clockwise from anterior) but were evaluated pre and post training on all target directions to evaluate their ability to generalize what was learned. Finally, all visual rotations and error augmentation were removed during a washout phase of 165 movements. This phase explored the time course of recovery of each subject's original, unperturbed performance during reaching to the training targets.</p>
<p>For the offset group, the error presented on any given trial was the sum of the instantaneous error ε(r) on that trial and the trial-average error ε
<sub>o</sub>
(r) generated during initial exposure trials to the same target, where
<italic>r</italic>
is the hand's radial distance from the starting point (
<xref ref-type="fig" rid="pone-0046466-g001">Fig. 1B</xref>
). The ε
<sub>o</sub>
(r) trajectories were averaged separately for each of the three movement directions for each subject. In both cases, ε was computed as the perpendicular distance between the ideal straight-line movement and the hand's instantaneous position as a function of
<italic>r</italic>
. These values were then averaged across trials, within targets. The average errors ε
<sub>o</sub>
(r) typically began near zero, then grew larger, and then returned near zero at the target. Note that while the *2 and offset conditions may yield similar error feedback signals at the beginning of training, the feedback from these conditions can differ as training progresses. For small errors in hand path, subjects experiencing gain augmentation would see the cursor's movement closely match the desired trajectory, whereas subjects experiencing offset augmentation would continue to perceive substantial errors.</p>
<fig id="pone-0046466-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0046466.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Illustration of the error augmentation strategies.</title>
<p>The ideal and actual trajectories are indicated as dotted and thin lines, respectively. At each instant, the cursor (large red dot) is displayed by calculating the current error and either by (
<bold>A</bold>
) multiplying that error by a gain [in this case a gain of 2] or, (
<bold>B</bold>
) by adding the offset trajectory
<italic>e
<sub>0</sub>
</italic>
to that error. Hence the subject sees the cursor move along the trajectory represented by the thick lines.</p>
</caption>
<graphic xlink:href="pone.0046466.g001"></graphic>
</fig>
<sec id="s2a">
<title>Data Analysis</title>
<p>Baseline conditions for horizontal planar reaching (with no distortion or error augmentation) typically approximate a straight line (
<xref ref-type="fig" rid="pone-0046466-g002">Fig. 2</xref>
, left column; see also
<xref ref-type="bibr" rid="pone.0046466-Flash1">[18]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Morasso1">[19]</xref>
). We defined
<italic>trajectory error</italic>
as the maximum perpendicular distance between the actual hand path and the straight-line path between start and goal positions. Exponential curves were fit to the trial-by-trial error time series using nonlinear Nelder-Mead least-squares regression:
<disp-formula id="pone.0046466.e001">
<graphic xlink:href="pone.0046466.e001"></graphic>
<label>(1)</label>
</disp-formula>
where
<inline-formula>
<inline-graphic xlink:href="pone.0046466.e002.jpg"></inline-graphic>
</inline-formula>
was the trajectory error for the trial
<inline-formula>
<inline-graphic xlink:href="pone.0046466.e003.jpg"></inline-graphic>
</inline-formula>
within a training or washout phase,
<italic>A</italic>
is the amount of learning (the change of the trajectory errors due to training),
<italic>B</italic>
is the time constant indicating the number of trials for the error to decrease 67% of the way to asymptote, and C is the asymptotic (steady-state) error value.</p>
<fig id="pone-0046466-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0046466.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Representative trajectories and learning curves for representative subjects in each group.</title>
<p>Each row of plots displays data from a typical subject from each group for the successive phases of the experiment. The insets above each curve show typical movement paths where red lines indicate the path the subjects should have reached to successfully complete the task. Learning and washout phases were each fit to exponential curves (bold blue and red lines). While the training conditions differed for each group, the catch-trials used to fit these curves were performed under identical conditions for all groups (30° rotation with no error augmentation). These random and intermittent catch trials occurred at the same movement number for all groups. Initial error reduction after the first exposure to the distortion is shown as a blue line segment connecting encircled trials.</p>
</caption>
<graphic xlink:href="pone.0046466.g002"></graphic>
</fig>
<p>We planned five statistical tests comparing the quality of learning across the four subject groups. One-way ANOVA compared the
<italic>amount</italic>
and
<italic>rate</italic>
of learning (i.e. model parameters A and B respectively from the model fit to individual subject data obtained in the training phase), the amount of steady-state error (model parameter C during training) as well as the amount and rate of washout (i.e. parameters A and B from a separate fit of the model to data obtained after removal of the visuomotor rotation). Post-hoc, Tukey
<italic>t</italic>
-tests were used to perform pairwise comparisons between groups and were considered statistically significant at the α  = 0.05 level.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<p>As expected, all subjects in all four groups learned to compensate for the imposed visuomotor rotation. Trajectories were curved on initial exposure to the imposed rotation (
<xref ref-type="fig" rid="pone-0046466-g002">Fig. 2</xref>
insets) but subjects regained straight-line movements by the end of training. Upon removal of the rotation, trajectories displayed after-effects of learning (i.e. errors in the absence of perturbation) in the direction opposite to those made during the initial exposure phase, thus providing strong evidence that adaptation had indeed taken place. These after-effects washed out over the final washout phase (
<xref ref-type="fig" rid="pone-0046466-g002">Fig. 2</xref>
, right). Initial values of error were not significantly different amongst groups (One-way ANOVA: F
<sub>(3,12)</sub>
 = 2.55, p = 0.104; see
<xref ref-type="table" rid="pone-0046466-t001">Table 1</xref>
), and all groups reduced error an average of 68% of the original amount.</p>
<table-wrap id="pone-0046466-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0046466.t001</object-id>
<label>Table 1</label>
<caption>
<title>Summary statistics of error values and their changes.</title>
</caption>
<alternatives>
<graphic id="pone-0046466-t001-1" xlink:href="pone.0046466.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Initial error</td>
<td align="left" rowspan="1" colspan="1">Learning Amount</td>
<td align="left" rowspan="1" colspan="1">Steady state</td>
<td align="left" rowspan="1" colspan="1">Time constant</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Group</td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">(m)</td>
<td align="left" rowspan="1" colspan="1">(m)</td>
<td align="left" rowspan="1" colspan="1">(m)</td>
<td align="left" rowspan="1" colspan="1">(movements)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>control</bold>
</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.029 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.016 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.007 ± 0.001</td>
<td align="left" rowspan="1" colspan="1">50.9 ± 10.60</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>*2</bold>
</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.031 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.014 ± 0.004</td>
<td align="left" rowspan="1" colspan="1">0.01 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">33.4 ± 7.66</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>offset</bold>
</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.032 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.022 ± 0.003</td>
<td align="left" rowspan="1" colspan="1">0.011 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">38.1 ± 4.74</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>*3.1</bold>
</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0.03 ± 0.001</td>
<td align="left" rowspan="1" colspan="1">0.016 ± 0.002</td>
<td align="left" rowspan="1" colspan="1">0.011 ± 0.001</td>
<td align="left" rowspan="1" colspan="1">51.9 ± 14.24</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>Error augmentation influenced the amount of learning during training (parameter A in Eq 1) (One-way ANOVA: F
<sub>(3,12)</sub>
 = 4.13, p = 0.032; see
<xref ref-type="table" rid="pone-0046466-t001">Table 1</xref>
). The Offset group reduced error (22.7±3.6 mm; mean ±1 SD both here and elsewhere) more than the control group (17.5±1.3 mm) whereas error reduction in the other two augmentation conditions (*2: 18.7±3.3 mm; *3.1: 16.9±1.2 mm) did not differ significantly from the controls (
<xref ref-type="fig" rid="pone-0046466-g003">Fig. 3A</xref>
). Error augmentation also influenced the time constant of learning (parameter B in Eq. 1) (One-way ANOVA: F(3,12) = 5.58, p = 0.012; see
<xref ref-type="table" rid="pone-0046466-t001">Table 1</xref>
). As anticipated, the *2 group proved to learn faster (29.1±10.3 trials) than both control subjects (44.8±8.9 trials) and *3 group subjects (52.1±10.3 trials). The asymptotic level of performance error (parameter C in
<xref ref-type="disp-formula" rid="pone.0046466.e001">Equation 1</xref>
) did not vary across training groups (One-way ANOVA: F(3,12) = 2.12, p = 0.150; see
<xref ref-type="table" rid="pone-0046466-t001">Table 1</xref>
). One-way ANOVA also found no group-dependent differences in the amount (F
<sub>(3,12)</sub>
 = 1.90, p = 0.183) or rate (F
<sub>(3,12)</sub>
 = 1.57, p = 0.247) of washout, and thus the de-adaptation process was not influenced by type of feedback experienced during training. Finally, we found no group-dependent differences in the summed squares of the residuals of the exponential fit (1-way ANOVA F
<sub>(3,12)</sub>
 = 2.52; p = 0.11), indicating no detectable group differences in both quality of fit or trial-to-trial variability. Residuals averaged 0.94 millimeters. Although the effect size of training condition on the rate and amount of learning was quite large (amount: Cohen's d  = 1.9; rate: Cohen's d  = 1.6), our sample sizes were small and hence it was not possible to verify normality of the sample distributions. We therefore repeated our analysis using non-parametric Kruskal-Wallis tests and found a pattern of significance identical to that reported above using one-way ANOVA.</p>
<fig id="pone-0046466-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0046466.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Group results of the curve fitting for all subjects in the four groups according to Eq. 1.</title>
<p>The amount of learning (parameter
<italic>A</italic>
, top), time constant of error decay during learning (parameter B, middle) and steady state value (parameter C, bottom) are shown. Error bars indicate 95% confidence intervals. Horizontal lines indicate significant differences (post-hoc) between groups.</p>
</caption>
<graphic xlink:href="pone.0046466.g003"></graphic>
</fig>
<p>Interestingly, the *3.1 group did not show any clear benefit over the control group, despite the observation of an increased learning rate for a gain of 2. Two possibilities may explain this loss in performance enhancement at higher error feedback gains. First, *3.1 group subjects might have overcompensated for the highly magnified errors, a pattern of underdamped and oscillating compensation that might lead to less effective learning. A second possibility is that the nervous system may have adapted learning in order to be more “cautious” as it updated its movement plan. Our data appear to support the second option because each subject learned gradually without obvious oscillations or large “jumps” in the time series of errors. Instead, subjects compensated more gradually from trial to trial (such as in
<xref ref-type="fig" rid="pone-0046466-g002">Fig. 2</xref>
, bottom right). To confirm this, we compared the change in signed error between the first two augmentation trials. We found no difference amongst groups (F
<sub>(3,12)</sub>
 = 1.12; p = 0.38; shown as blue line segments in
<xref ref-type="fig" rid="pone-0046466-g002">Fig. 2</xref>
). Hence learning rates decreased at the higher gain of 3.1, and this reduction occurred within the first few training trials.</p>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>This paper presents a preliminary investigation of whether learning of novel visuomotor transformations may be promoted using error augmentation strategies. The smaller time constants for the *2 and Offset groups demonstrate that error augmentation can increase the rate of learning. Manipulating the gain of visual errors appears to be limited in that a gain of 2 shows markedly better performance than a gain of 3.1. In contrast, the Offset group learned significantly more than the other groups, making this an important new tool for enhancing motor performance during learning. Capitalizing on the ability of computers and displays to perform real-time operations on the feedback may be a valid approach to using technology to enhance the motor learning process.</p>
<p>Manipulating visual feedback in order to promote motor adaptation is certainly not a new idea. Numerous studies have shown how the nervous system can be “tricked” into altering its performance by giving altered sensory feedback (e.g.,
<xref ref-type="bibr" rid="pone.0046466-Flanagan1">[3]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Kording1">[14]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Brewer1">[20]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Miles1">[21]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-RoblesDeLaTorre1">[22]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Scheidt3">[23]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Srinivasan1">[24]</xref>
). Altering visual feedback has already been demonstrated to cause subjects to perceive a higher stiffness than actually felt
<xref ref-type="bibr" rid="pone.0046466-Srinivasan1">[24]</xref>
, to increase the output force beyond their original strength limits
<xref ref-type="bibr" rid="pone.0046466-Brewer1">[20]</xref>
, alter vestibular-ocular reflex gains
<xref ref-type="bibr" rid="pone.0046466-Miles1">[21]</xref>
or notice and correct for sensory neglect secondary to stroke
<xref ref-type="bibr" rid="pone.0046466-Rossetti1">[25]</xref>
. The present study is unique in that it augmented just the elements of visual feedback pertaining to deviations from the straight line while preserving unaltered visual information regarding motion directed toward the target. Our results demonstrate that there is a clear advantage to
<italic>distorted reality</italic>
feedback, where judicious manipulations of visual information can lead to practical improvements in the extent and rate of learning.</p>
<p>The offset condition allows subjects to adapt to the visually rotated environment more efficiently than the other methods of augmentation tested. In the gain augmentation condition, errors (and therefore augmentation) decrease to zero as training performance asymptotes at the end of training. In contrast, the error bias added to movements in the Offset Group does not decrease to zero with improvement. The Offset group showed a larger average amount of learning (
<xref ref-type="fig" rid="pone-0046466-g003">Figure 3A</xref>
) that was significantly larger than the 3.1 and the Control groups. This finding suggests that sustaining error artificially large can assist in enhancing continued learning when conventional error-based learning becomes smaller and smaller as each attempt diminishes error. Like a back propagation learning algorithm with momentum
<xref ref-type="bibr" rid="pone.0046466-Rumelhart1">[12]</xref>
, where changes in performance can continue to occur even when performance errors are zero, offset error augmentation can potentially drive learning beyond 0 error, thus leading subjects to “overlearn” beyond the desired goal. This outcome may be beneficial in situations where subjects do not fully learn, as was the case for the control group, and may also provide a means to achieve more complete learning. However, we note that such over-learning did not appear to occur in the current experiment. While all groups' final steady state errors were not significantly different across groups, the treatment group averages trended slightly larger than controls (
<xref ref-type="fig" rid="pone-0046466-g003">Figure 3C</xref>
) and so a failure to detect significance could be due to a limited sample size. Nonzero steady state errors are a strict measure of “incomplete learning” (
<xref ref-type="fig" rid="pone-0046466-g003">Figure 3C</xref>
, confidence intervals do not encompass zero). In any case, we speculate that a ‘scheduled’ mixture of offset and gain, in which the offset factor is extinguished when the subject learns beyond the goal, may optimize both the rate and extent of motor learning. This question of what ‘schedule’ of offset and gain to use is related to the topics of gain scheduling and adaptive learning rates that are used in neural network and machine learning
<xref ref-type="bibr" rid="pone.0046466-Bishop1">[26]</xref>
.</p>
<p>Change in errors immediately following exposure to error augmentation was the same for all groups, even though the *3.1 group should theoretically have learned much more than control subjects. Subjects from *3.1 group tended to slow learning rather than over-compensate. This suggests that the nervous system may react to excessively large error signals by decreasing (within about 5 trials) the impact of visual performance errors on motor command updating. Large errors thus may be regarded as outliers by a nonlinear loss function that governs motor adaptation
<xref ref-type="bibr" rid="pone.0046466-Kording1">[14]</xref>
. The finding that catch-trial performance after initial exposure to error augmentation does not differ across groups indicates that the brain does not disregard large errors as non-meaningful or non-deterministic. This finding is in contrast to studies of visual error
<italic>reduction</italic>
(a manipulation which appears to stifle learning;
<xref ref-type="bibr" rid="pone.0046466-Scheidt3">[23]</xref>
and studies of visual feedback suppression (which slows the (dis)adaptation process;
<xref ref-type="bibr" rid="pone.0046466-Patton3">[27]</xref>
). These and other studies that induce conflict between sensory modalities suggest that rather than overcompensating and oscillating its errors as it learns, the nervous system can quickly “adapt its adaptation” by re-weighing the interpretation of sensory information if it no longer is perceived reliable
<xref ref-type="bibr" rid="pone.0046466-Ernst1">[13]</xref>
,
<xref ref-type="bibr" rid="pone.0046466-Ravaioli1">[28]</xref>
.</p>
<p>A limitation of the present study is that it did not parametrically examine the effectiveness of gain augmentation over the full range of multiplicative factors. The gain *3.1 in the experiment did no better than the control (gain *1) and worse than gain *2, possibly because the larger gain may have decreased the relative stability of the adaptation process beyond a critical value so that the Gain *3.1 had similar learning to the Control Group. Consequently, an optimal gain must reside between *1 and *3.1. It is possible that the optimal gain may be task-specific and/or dependent on the sensory modality being manipulated to enhance learning. Another limitation is that offset magnitude was not varied in this experiment. Future studies should identify the range of sensory feedback conditions that enhance learning as well as the scheduling of gain and offset strategies that optimize motor learning in specific tasks.</p>
<p>Offset augmentation belongs to the class of task- and subject-specific training techniques suggested to be effective in encouraging neuromotor rehabilitation in cases requiring the learning (or re-learning) of the relationship between motor intent and action, such as in neurorehabilitation after stroke (
<xref ref-type="bibr" rid="pone.0046466-Nudo1">[29]</xref>
. These results support and expand on recent work demonstrating that error-augmenting forces were more beneficial than error-reducing forces in restoring reaching performance after stroke
<xref ref-type="bibr" rid="pone.0046466-Patton2">[6]</xref>
. While not all kinds of augmented feedback have proven to be therapeutically beneficial post-stroke
<xref ref-type="bibr" rid="pone.0046466-Winstein1">[30]</xref>
, it is important that future efforts should explore other potential gain and offset settings for improving motor training following neuromotor injury. The initial findings presented here in healthy subjects suggest that such training approaches might be effective in facilitating motor learning in sports, performing arts, remote device operation, rehabilitation, or in any training situation requiring repetitive practice.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="pone.0046466-Kawato1">
<label>1</label>
<mixed-citation publication-type="other">Kawato M (1990) Feedback-error-learning neural network for supervised learning. In: Eckmiller R, editor.
<italic>Advanced neural computers</italic>
Amsterdam: North-Holland. 365–372.</mixed-citation>
</ref>
<ref id="pone.0046466-Wolpert1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Ghahramani</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Jordan</surname>
<given-names>MI</given-names>
</name>
(
<year>1995</year>
)
<article-title>An internal model for sensorimotor integration</article-title>
.
<source>Science</source>
<volume>269</volume>
:
<fpage>1880</fpage>
<lpage>1882</lpage>
<pub-id pub-id-type="pmid">7569931</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Flanagan1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flanagan</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Rao</surname>
<given-names>AK</given-names>
</name>
(
<year>1995</year>
)
<article-title>Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>74</volume>
:
<fpage>2174</fpage>
<lpage>2178</lpage>
<pub-id pub-id-type="pmid">8592205</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Scheidt1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Scheidt</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Conditt</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Rymer</surname>
<given-names>WZ</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>2000</year>
)
<article-title>Persistence of Motor Adaptation During Constrained, Multi-Joint, Arm Movements</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>84</volume>
:
<fpage>853</fpage>
<lpage>862</lpage>
<pub-id pub-id-type="pmid">10938312</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Patton1">
<label>5</label>
<mixed-citation publication-type="other">Patton JL, Kovic M, Muss-Ivaldi FA (2006) Custom-designed haptic training for restoring reaching ability to individuals with stroke. Journal of Rehabilitation Research and Development 43. In press.</mixed-citation>
</ref>
<ref id="pone.0046466-Patton2">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Patton</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Stoykov</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Kovic</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>2006</year>
)
<article-title>Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors</article-title>
.
<source>Experimental Brain Research</source>
<volume>168</volume>
:
<fpage>368</fpage>
<lpage>383</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Emken1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Emken</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
(
<year>2005</year>
)
<article-title>Robot-Enhanced Motor Learning: Accelerating Internal Model Formation During Locomotion by Transient Dynamic Amplification</article-title>
.
<source>IEEE Transactions on Neural Systems & Rehabilitation Engineering</source>
<volume>13</volume>
:
<fpage>33</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="pmid">15813404</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Scheidt2">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Scheidt</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Dingwell</surname>
<given-names>JB</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>2001</year>
)
<article-title>Learning to move amid uncertainty</article-title>
.
<source>J Neurophysiol</source>
<volume>86</volume>
:
<fpage>971</fpage>
<lpage>985</lpage>
<pub-id pub-id-type="pmid">11495965</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Harris1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harris</surname>
<given-names>CS</given-names>
</name>
(
<year>1965</year>
)
<article-title>Perceptual adaptation to inverted, reversed, and displaced vision</article-title>
.
<source>Psychol Rev</source>
<volume>72</volume>
:
<fpage>419</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="pmid">5322170</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Imamizu1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Imamizu</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Miyauchi</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Tamada</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Sasaki</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Takino</surname>
<given-names>R</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Human cerebellar activity reflecting an acquired internal model of a new tool. [see comments.]</article-title>
.
<source>Nature</source>
<volume>403</volume>
:
<fpage>192</fpage>
<lpage>195</lpage>
<pub-id pub-id-type="pmid">10646603</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Krakauer1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Krakauer</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Pine</surname>
<given-names>ZM</given-names>
</name>
,
<name>
<surname>Ghilardi</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Ghez</surname>
<given-names>C</given-names>
</name>
(
<year>2000</year>
)
<article-title>Learning of visuomotor transformations for vectorial planning of reaching trajectories</article-title>
.
<source>Journal of Neuroscience (Online)</source>
<volume>20</volume>
:
<fpage>8916</fpage>
<lpage>8924</lpage>
<pub-id pub-id-type="pmid">11102502</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Rumelhart1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rumelhart</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Hinton</surname>
<given-names>GE</given-names>
</name>
,
<name>
<surname>Williams</surname>
<given-names>RJ</given-names>
</name>
(
<year>1986</year>
)
<article-title>Learning representations by back-propagating errors</article-title>
.
<source>Nature (London)</source>
<volume>323</volume>
:
<fpage>533</fpage>
<lpage>536</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Ernst1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ernst</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Banks</surname>
<given-names>M</given-names>
</name>
(
<year>2002</year>
)
<article-title>Humans integrate visual and haptic information in a statistically optimal fashion</article-title>
.
<source>Nature</source>
<volume>415</volume>
:
<fpage>429</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="pmid">11807554</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Kording1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kording</surname>
<given-names>KP</given-names>
</name>
,
<name>
<surname>Wolpert</surname>
<given-names>DM</given-names>
</name>
(
<year>2004</year>
)
<article-title>The loss function of sensorimotor learning</article-title>
.
<source>Proc Natl Acad Sci U S A</source>
<volume>101</volume>
:
<fpage>9839</fpage>
<lpage>9842</lpage>
<pub-id pub-id-type="pmid">15210973</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Todorov1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Todorov</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Jordan</surname>
<given-names>MI</given-names>
</name>
(
<year>2002</year>
)
<article-title>Optimal feedback control as a theory of motor coordination.[see comment]</article-title>
.
<source>Nature Neuroscience</source>
<volume>5</volume>
:
<fpage>1226</fpage>
<lpage>1235</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Wei1">
<label>16</label>
<mixed-citation publication-type="other">Wei Y, Bajaj P, Scheidt RA, Patton JL (2005) A real-time haptic/graphic demonstration of how error augmentation can enhance learning; Barcelona.</mixed-citation>
</ref>
<ref id="pone.0046466-Conditt1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Conditt</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>1999</year>
)
<article-title>Central representation of time during motor learning</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
<volume>96</volume>
:
<fpage>11625</fpage>
<lpage>11630</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Flash1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Flash</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
(
<year>1985</year>
)
<article-title>The coordination of arm movements: An experimentally confirmed mathematical model</article-title>
.
<source>Journal of Neuroscience</source>
<volume>5</volume>
:
<fpage>1688</fpage>
<lpage>1703</lpage>
<pub-id pub-id-type="pmid">4020415</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Morasso1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morasso</surname>
<given-names>P</given-names>
</name>
(
<year>1981</year>
)
<article-title>Spatial control of arm movements</article-title>
.
<source>Experimental Brain Research</source>
<volume>42</volume>
:
<fpage>223</fpage>
<lpage>227</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Brewer1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brewer</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Klatky</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Matsuoka</surname>
<given-names>Y</given-names>
</name>
(
<year>2005</year>
)
<article-title>Perceptual limits for a robotic rehabilitation environment using visual feedback distortion</article-title>
.
<source>IEEE Transactions on Neural Systems & Rehabilitation Engineering</source>
<volume>13</volume>
:
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">15813400</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Miles1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miles</surname>
<given-names>FA</given-names>
</name>
,
<name>
<surname>Eighmy</surname>
<given-names>BB</given-names>
</name>
(
<year>1980</year>
)
<article-title>Long -term adaptive changes in primate vestibuloocular reflex I: behavioral Observations</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>43</volume>
:
<fpage>1406</fpage>
<lpage>1425</lpage>
<pub-id pub-id-type="pmid">6768851</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-RoblesDeLaTorre1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Robles-De-La-Torre</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Hayward</surname>
<given-names>V</given-names>
</name>
(
<year>2001</year>
)
<article-title>Force can overcome object geometry in the perception of shape through active touch</article-title>
.
<source>Nature</source>
<volume>412</volume>
:
<fpage>445</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">11473320</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Scheidt3">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Scheidt</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Conditt</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Secco</surname>
<given-names>EL</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>2005</year>
)
<article-title>Interaction of visual and proprioceptive feedback during adaptation of human reaching movements</article-title>
.
<source>Journal of Neurophysiology</source>
<volume>93</volume>
:
<fpage>3200</fpage>
<lpage>3213</lpage>
<pub-id pub-id-type="pmid">15659526</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Srinivasan1">
<label>24</label>
<mixed-citation publication-type="other">Srinivasan MA, LaMotte RH (1995) Tactual discrimination of softness. J Neurophysiol. 88–101.</mixed-citation>
</ref>
<ref id="pone.0046466-Rossetti1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rossetti</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Rode</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Pisella</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Farne</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect</article-title>
.
<source>Nature</source>
<volume>395</volume>
:
<fpage>166</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="pmid">9744273</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Bishop1">
<label>26</label>
<mixed-citation publication-type="other">Bishop CM (2006) Pattern recognition and machine learning: Springer.</mixed-citation>
</ref>
<ref id="pone.0046466-Patton3">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Patton</surname>
<given-names>JL</given-names>
</name>
,
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
(
<year>2004</year>
)
<article-title>Robot-assisted adaptive training: custom force fields for teaching movement patterns</article-title>
.
<source>IEEE Transactions on Biomedical Engineering</source>
<volume>51</volume>
:
<fpage>636</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="pmid">15072218</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Ravaioli1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ravaioli</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Oie</surname>
<given-names>KS</given-names>
</name>
,
<name>
<surname>Kiemel</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Chiari</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Jeka</surname>
<given-names>JJ</given-names>
</name>
(
<year>2005</year>
)
<article-title>Nonlinear postural control in response to visual translation</article-title>
.
<source>Experimental Brain Research</source>
<volume>160</volume>
:
<fpage>450</fpage>
<lpage>459</lpage>
</mixed-citation>
</ref>
<ref id="pone.0046466-Nudo1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nudo</surname>
<given-names>RJ</given-names>
</name>
,
<name>
<surname>Friel</surname>
<given-names>KM</given-names>
</name>
(
<year>1999</year>
)
<article-title>Cortical plasticity after stroke: implications for rehabilitation</article-title>
.
<source>Revue Neurologique</source>
<volume>155</volume>
:
<fpage>713</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">10528355</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0046466-Winstein1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Winstein</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Merians</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Sullivan</surname>
<given-names>KJ</given-names>
</name>
(
<year>1999</year>
)
<article-title>Motor learning after unilateral brain damage</article-title>
.
<source>Neuropsychologia</source>
<volume>37</volume>
:
<fpage>975</fpage>
<lpage>987</lpage>
<pub-id pub-id-type="pmid">10426521</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Patton, James L" sort="Patton, James L" uniqKey="Patton J" first="James L." last="Patton">James L. Patton</name>
</region>
<name sortKey="Bajaj, Preeti" sort="Bajaj, Preeti" uniqKey="Bajaj P" first="Preeti" last="Bajaj">Preeti Bajaj</name>
<name sortKey="Patton, James L" sort="Patton, James L" uniqKey="Patton J" first="James L." last="Patton">James L. Patton</name>
<name sortKey="Patton, James L" sort="Patton, James L" uniqKey="Patton J" first="James L." last="Patton">James L. Patton</name>
<name sortKey="Scheidt, Robert A" sort="Scheidt, Robert A" uniqKey="Scheidt R" first="Robert A." last="Scheidt">Robert A. Scheidt</name>
<name sortKey="Scheidt, Robert A" sort="Scheidt, Robert A" uniqKey="Scheidt R" first="Robert A." last="Scheidt">Robert A. Scheidt</name>
<name sortKey="Scheidt, Robert A" sort="Scheidt, Robert A" uniqKey="Scheidt R" first="Robert A." last="Scheidt">Robert A. Scheidt</name>
<name sortKey="Wei, Yejun John" sort="Wei, Yejun John" uniqKey="Wei Y" first="Yejun John" last="Wei">Yejun John Wei</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000E95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3559751
   |texte=   Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:23382796" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024