Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Role of Haptic Feedback in Laparoscopic Simulation Training

Identifieur interne : 000C93 ( PascalFrancis/Curation ); précédent : 000C92; suivant : 000C94

The Role of Haptic Feedback in Laparoscopic Simulation Training

Auteurs : Lucian Panait [États-Unis] ; Ehab Akkary [États-Unis] ; Robert L. Bell [États-Unis] ; Kurt E. Roberts [États-Unis] ; Stanley J. Dudrick [États-Unis] ; Andrew J. Duffy [États-Unis]

Source :

RBID : Pascal:09-0433351

Descripteurs français

English descriptors

Abstract

Introduction. Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Methods. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. Results. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158 ±56 versus 187 ± 51 s, 176 ± 49 versus 222 ± 68 s, and 275 ± 76 versus 422 ± 220 s, at levels 1, 2, and 3, respectively, P < 0.05). Data on instrument path length, grasping tension, and errors showed a trend toward a benefit from haptics at all difficulty levels, but this difference did not achieve statistical significance. Conclusions. In the more advanced tasks, haptics allowed superior precision, resulting in faster completion of tasks and a trend toward fewer technical errors. In the more basic tasks, haptic-enhanced simulation did not demonstrate an appreciable performance improvement among our trainees. These data suggest that the additional expense of haptic-enhanced laparoscopic simulators may be justified for advanced skill development in surgical trainees as simulator technology continues to improve.
pA  
A01 01  1    @0 0022-4804
A02 01      @0 JSGRA2
A03   1    @0 J. surg. res.
A05       @2 156
A06       @2 2
A08 01  1  ENG  @1 The Role of Haptic Feedback in Laparoscopic Simulation Training
A11 01  1    @1 PANAIT (Lucian)
A11 02  1    @1 AKKARY (Ehab)
A11 03  1    @1 BELL (Robert L.)
A11 04  1    @1 ROBERTS (Kurt E.)
A11 05  1    @1 DUDRICK (Stanley J.)
A11 06  1    @1 DUFFY (Andrew J.)
A14 01      @1 Saint Mary's Hospital @2 Waterbury, Connecticut @3 USA @Z 1 aut. @Z 5 aut.
A14 02      @1 Yale School of Medicine @2 New Haven, Connecticut @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A20       @1 312-316
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 9554 @5 354000170062720220
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 11 ref.
A47 01  1    @0 09-0433351
A60       @1 P
A61       @0 A
A64 01  1    @0 The Journal of surgical research
A66 01      @0 USA
C01 01    ENG  @0 Introduction. Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Methods. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. Results. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158 ±56 versus 187 ± 51 s, 176 ± 49 versus 222 ± 68 s, and 275 ± 76 versus 422 ± 220 s, at levels 1, 2, and 3, respectively, P < 0.05). Data on instrument path length, grasping tension, and errors showed a trend toward a benefit from haptics at all difficulty levels, but this difference did not achieve statistical significance. Conclusions. In the more advanced tasks, haptics allowed superior precision, resulting in faster completion of tasks and a trend toward fewer technical errors. In the more basic tasks, haptic-enhanced simulation did not demonstrate an appreciable performance improvement among our trainees. These data suggest that the additional expense of haptic-enhanced laparoscopic simulators may be justified for advanced skill development in surgical trainees as simulator technology continues to improve.
C02 01  X    @0 002B01
C02 02  X    @0 002B24E06
C03 01  X  FRE  @0 Chirurgie @5 01
C03 01  X  ENG  @0 Surgery @5 01
C03 01  X  SPA  @0 Cirugía @5 01
C03 02  X  FRE  @0 Rétroaction @5 02
C03 02  X  ENG  @0 Feedback regulation @5 02
C03 02  X  SPA  @0 Retroacción @5 02
C03 03  X  FRE  @0 Boucle réaction @5 03
C03 03  X  ENG  @0 Feedback @5 03
C03 03  X  SPA  @0 Retroalimentación @5 03
C03 04  X  FRE  @0 Laparoscopie @5 05
C03 04  X  ENG  @0 Laparoscopy @5 05
C03 04  X  SPA  @0 Laparoscopia @5 05
C03 05  X  FRE  @0 Simulation @5 06
C03 05  X  ENG  @0 Simulation @5 06
C03 05  X  SPA  @0 Simulación @5 06
C03 06  X  FRE  @0 Réalité virtuelle @5 08
C03 06  X  ENG  @0 Virtual reality @5 08
C03 06  X  SPA  @0 Realidad virtual @5 08
C03 07  X  FRE  @0 Réalité augmentée @5 09
C03 07  X  ENG  @0 Augmented reality @5 09
C03 07  X  SPA  @0 Realidad aumentada @5 09
C03 08  X  FRE  @0 Force @5 11
C03 08  X  ENG  @0 Force @5 11
C03 08  X  SPA  @0 Fuerza @5 11
C03 09  X  FRE  @0 Médecine @5 12
C03 09  X  ENG  @0 Medicine @5 12
C03 09  X  SPA  @0 Medicina @5 12
C03 10  X  FRE  @0 Traitement @5 25
C03 10  X  ENG  @0 Treatment @5 25
C03 10  X  SPA  @0 Tratamiento @5 25
C07 01  X  FRE  @0 Endoscopie @5 37
C07 01  X  ENG  @0 Endoscopy @5 37
C07 01  X  SPA  @0 Endoscopía @5 37
N21       @1 313
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0433351

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The Role of Haptic Feedback in Laparoscopic Simulation Training</title>
<author>
<name sortKey="Panait, Lucian" sort="Panait, Lucian" uniqKey="Panait L" first="Lucian" last="Panait">Lucian Panait</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Saint Mary's Hospital</s1>
<s2>Waterbury, Connecticut</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Akkary, Ehab" sort="Akkary, Ehab" uniqKey="Akkary E" first="Ehab" last="Akkary">Ehab Akkary</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Bell, Robert L" sort="Bell, Robert L" uniqKey="Bell R" first="Robert L." last="Bell">Robert L. Bell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Kurt E" sort="Roberts, Kurt E" uniqKey="Roberts K" first="Kurt E." last="Roberts">Kurt E. Roberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dudrick, Stanley J" sort="Dudrick, Stanley J" uniqKey="Dudrick S" first="Stanley J." last="Dudrick">Stanley J. Dudrick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Saint Mary's Hospital</s1>
<s2>Waterbury, Connecticut</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Duffy, Andrew J" sort="Duffy, Andrew J" uniqKey="Duffy A" first="Andrew J." last="Duffy">Andrew J. Duffy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0433351</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0433351 INIST</idno>
<idno type="RBID">Pascal:09-0433351</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000740</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000C93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The Role of Haptic Feedback in Laparoscopic Simulation Training</title>
<author>
<name sortKey="Panait, Lucian" sort="Panait, Lucian" uniqKey="Panait L" first="Lucian" last="Panait">Lucian Panait</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Saint Mary's Hospital</s1>
<s2>Waterbury, Connecticut</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Akkary, Ehab" sort="Akkary, Ehab" uniqKey="Akkary E" first="Ehab" last="Akkary">Ehab Akkary</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Bell, Robert L" sort="Bell, Robert L" uniqKey="Bell R" first="Robert L." last="Bell">Robert L. Bell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Roberts, Kurt E" sort="Roberts, Kurt E" uniqKey="Roberts K" first="Kurt E." last="Roberts">Kurt E. Roberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Dudrick, Stanley J" sort="Dudrick, Stanley J" uniqKey="Dudrick S" first="Stanley J." last="Dudrick">Stanley J. Dudrick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Saint Mary's Hospital</s1>
<s2>Waterbury, Connecticut</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Duffy, Andrew J" sort="Duffy, Andrew J" uniqKey="Duffy A" first="Andrew J." last="Duffy">Andrew J. Duffy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">The Journal of surgical research</title>
<title level="j" type="abbreviated">J. surg. res.</title>
<idno type="ISSN">0022-4804</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">The Journal of surgical research</title>
<title level="j" type="abbreviated">J. surg. res.</title>
<idno type="ISSN">0022-4804</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Augmented reality</term>
<term>Feedback</term>
<term>Feedback regulation</term>
<term>Force</term>
<term>Laparoscopy</term>
<term>Medicine</term>
<term>Simulation</term>
<term>Surgery</term>
<term>Treatment</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Chirurgie</term>
<term>Rétroaction</term>
<term>Boucle réaction</term>
<term>Laparoscopie</term>
<term>Simulation</term>
<term>Réalité virtuelle</term>
<term>Réalité augmentée</term>
<term>Force</term>
<term>Médecine</term>
<term>Traitement</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Chirurgie</term>
<term>Simulation</term>
<term>Réalité virtuelle</term>
<term>Médecine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Introduction. Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Methods. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. Results. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158 ±56 versus 187 ± 51 s, 176 ± 49 versus 222 ± 68 s, and 275 ± 76 versus 422 ± 220 s, at levels 1, 2, and 3, respectively, P < 0.05). Data on instrument path length, grasping tension, and errors showed a trend toward a benefit from haptics at all difficulty levels, but this difference did not achieve statistical significance. Conclusions. In the more advanced tasks, haptics allowed superior precision, resulting in faster completion of tasks and a trend toward fewer technical errors. In the more basic tasks, haptic-enhanced simulation did not demonstrate an appreciable performance improvement among our trainees. These data suggest that the additional expense of haptic-enhanced laparoscopic simulators may be justified for advanced skill development in surgical trainees as simulator technology continues to improve.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4804</s0>
</fA01>
<fA02 i1="01">
<s0>JSGRA2</s0>
</fA02>
<fA03 i2="1">
<s0>J. surg. res.</s0>
</fA03>
<fA05>
<s2>156</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The Role of Haptic Feedback in Laparoscopic Simulation Training</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PANAIT (Lucian)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AKKARY (Ehab)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BELL (Robert L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROBERTS (Kurt E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DUDRICK (Stanley J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DUFFY (Andrew J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Saint Mary's Hospital</s1>
<s2>Waterbury, Connecticut</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Yale School of Medicine</s1>
<s2>New Haven, Connecticut</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>312-316</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9554</s2>
<s5>354000170062720220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0433351</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>The Journal of surgical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Introduction. Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Methods. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. Results. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158 ±56 versus 187 ± 51 s, 176 ± 49 versus 222 ± 68 s, and 275 ± 76 versus 422 ± 220 s, at levels 1, 2, and 3, respectively, P < 0.05). Data on instrument path length, grasping tension, and errors showed a trend toward a benefit from haptics at all difficulty levels, but this difference did not achieve statistical significance. Conclusions. In the more advanced tasks, haptics allowed superior precision, resulting in faster completion of tasks and a trend toward fewer technical errors. In the more basic tasks, haptic-enhanced simulation did not demonstrate an appreciable performance improvement among our trainees. These data suggest that the additional expense of haptic-enhanced laparoscopic simulators may be justified for advanced skill development in surgical trainees as simulator technology continues to improve.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B24E06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Laparoscopie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Laparoscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Laparoscopia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Simulación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Réalité augmentée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Augmented reality</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Realidad aumentada</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Force</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Force</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fuerza</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Médecine</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Medicine</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Medicina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Traitement</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Treatment</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tratamiento</s0>
<s5>25</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Endoscopie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Endoscopy</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Endoscopía</s0>
<s5>37</s5>
</fC07>
<fN21>
<s1>313</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000C93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:09-0433351
   |texte=   The Role of Haptic Feedback in Laparoscopic Simulation Training
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024