Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila

Identifieur interne : 003643 ( Ncbi/Merge ); précédent : 003642; suivant : 003644

Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila

Auteurs : Sara M. Wasserman [États-Unis] ; Jacob W. Aptekar [États-Unis] ; Patrick Lu [États-Unis] ; Jade Nguyen [États-Unis] ; Austin L. Wang [États-Unis] ; Mehmet F. Keles [États-Unis] ; Anna Grygoruk [États-Unis] ; David E. Krantz [États-Unis] ; Camilla Larsen [Royaume-Uni] ; Mark A. Frye [États-Unis]

Source :

RBID : PMC:4331282

Abstract

Summary

It is well established that perception is largely multisensory [1]; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space [2, 3]; and processed by brain tissue maps that are spatially aligned [4]. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environments remain uncharacterized. Drosophila melanogaster makes its living navigating food odor plumes. Odor acts to increase the strength of gaze-stabilizing optomotor reflexes [5] to keep the animal aligned within an invisible plume, facilitating odor localization in free flight [6–8]. Here, we investigate the cellular mechanism for cross-modal behavioral interactions. We characterize a wide-field motion-selective interneuron of the lobula plate that shares anatomical and physiological similarities with the “Hx” neuron identified in larger flies [9, 10]. Drosophila Hx exhibits cross-modal enhancement of visual responses by paired odor, and presynaptic inputs to the lobula plate are required for behavioral odor tracking but are not themselves the target of odor modulation, nor is the neighboring wide-field “HSE” neuron [11]. Octopaminergic neurons mediating increased visual responses upon flight initiation [12] also show odor-evoked calcium modulations and form connections with Hx dendrites. Finally, restoring synaptic vesicle trafficking within the octopaminergic neurons of animals carrying a null mutation for all aminergic signaling [13] is sufficient to restore odor-tracking behavior. These results are the first to demonstrate cellular mechanisms underlying visual-olfactory integration required for odor localization in fruit flies, which may be representative of adaptive multisensory interactions across taxa.


Url:
DOI: 10.1016/j.cub.2014.12.012
PubMed: 25619767
PubMed Central: 4331282

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4331282

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Olfactory Neuromodulation of Motion Vision Circuitry in
<italic>Drosophila</italic>
</title>
<author>
<name sortKey="Wasserman, Sara M" sort="Wasserman, Sara M" uniqKey="Wasserman S" first="Sara M." last="Wasserman">Sara M. Wasserman</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aptekar, Jacob W" sort="Aptekar, Jacob W" uniqKey="Aptekar J" first="Jacob W." last="Aptekar">Jacob W. Aptekar</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Patrick" sort="Lu, Patrick" uniqKey="Lu P" first="Patrick" last="Lu">Patrick Lu</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Jade" sort="Nguyen, Jade" uniqKey="Nguyen J" first="Jade" last="Nguyen">Jade Nguyen</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Austin L" sort="Wang, Austin L" uniqKey="Wang A" first="Austin L." last="Wang">Austin L. Wang</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keles, Mehmet F" sort="Keles, Mehmet F" uniqKey="Keles M" first="Mehmet F." last="Keles">Mehmet F. Keles</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grygoruk, Anna" sort="Grygoruk, Anna" uniqKey="Grygoruk A" first="Anna" last="Grygoruk">Anna Grygoruk</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krantz, David E" sort="Krantz, David E" uniqKey="Krantz D" first="David E." last="Krantz">David E. Krantz</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Camilla" sort="Larsen, Camilla" uniqKey="Larsen C" first="Camilla" last="Larsen">Camilla Larsen</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Medical Research Council Centre for Developmental Biology, King’s College London, London SE1 1UL, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Medical Research Council Centre for Developmental Biology, King’s College London, London SE1 1UL</wicri:regionArea>
<wicri:noRegion>London SE1 1UL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frye, Mark A" sort="Frye, Mark A" uniqKey="Frye M" first="Mark A." last="Frye">Mark A. Frye</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25619767</idno>
<idno type="pmc">4331282</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331282</idno>
<idno type="RBID">PMC:4331282</idno>
<idno type="doi">10.1016/j.cub.2014.12.012</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000C52</idno>
<idno type="wicri:Area/Pmc/Curation">000C52</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000424</idno>
<idno type="wicri:Area/Ncbi/Merge">003643</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Olfactory Neuromodulation of Motion Vision Circuitry in
<italic>Drosophila</italic>
</title>
<author>
<name sortKey="Wasserman, Sara M" sort="Wasserman, Sara M" uniqKey="Wasserman S" first="Sara M." last="Wasserman">Sara M. Wasserman</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aptekar, Jacob W" sort="Aptekar, Jacob W" uniqKey="Aptekar J" first="Jacob W." last="Aptekar">Jacob W. Aptekar</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Patrick" sort="Lu, Patrick" uniqKey="Lu P" first="Patrick" last="Lu">Patrick Lu</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, Jade" sort="Nguyen, Jade" uniqKey="Nguyen J" first="Jade" last="Nguyen">Jade Nguyen</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Austin L" sort="Wang, Austin L" uniqKey="Wang A" first="Austin L." last="Wang">Austin L. Wang</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keles, Mehmet F" sort="Keles, Mehmet F" uniqKey="Keles M" first="Mehmet F." last="Keles">Mehmet F. Keles</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grygoruk, Anna" sort="Grygoruk, Anna" uniqKey="Grygoruk A" first="Anna" last="Grygoruk">Anna Grygoruk</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krantz, David E" sort="Krantz, David E" uniqKey="Krantz D" first="David E." last="Krantz">David E. Krantz</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Camilla" sort="Larsen, Camilla" uniqKey="Larsen C" first="Camilla" last="Larsen">Camilla Larsen</name>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Medical Research Council Centre for Developmental Biology, King’s College London, London SE1 1UL, UK</nlm:aff>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Medical Research Council Centre for Developmental Biology, King’s College London, London SE1 1UL</wicri:regionArea>
<wicri:noRegion>London SE1 1UL</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Frye, Mark A" sort="Frye, Mark A" uniqKey="Frye M" first="Mark A." last="Frye">Mark A. Frye</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Biology</title>
<idno type="ISSN">0960-9822</idno>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<p>It is well established that perception is largely multisensory [
<xref rid="bib1" ref-type="bibr">1</xref>
]; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space [
<xref rid="bib2 bib3" ref-type="bibr">2, 3</xref>
]; and processed by brain tissue maps that are spatially aligned [
<xref rid="bib4" ref-type="bibr">4</xref>
]. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environments remain uncharacterized.
<italic>Drosophila melanogaster</italic>
makes its living navigating food odor plumes. Odor acts to increase the strength of gaze-stabilizing optomotor reflexes [
<xref rid="bib5" ref-type="bibr">5</xref>
] to keep the animal aligned within an invisible plume, facilitating odor localization in free flight [
<xref rid="bib6 bib7 bib8" ref-type="bibr">6–8</xref>
]. Here, we investigate the cellular mechanism for cross-modal behavioral interactions. We characterize a wide-field motion-selective interneuron of the lobula plate that shares anatomical and physiological similarities with the “Hx” neuron identified in larger flies [
<xref rid="bib9 bib10" ref-type="bibr">9, 10</xref>
].
<italic>Drosophila</italic>
Hx exhibits cross-modal enhancement of visual responses by paired odor, and presynaptic inputs to the lobula plate are required for behavioral odor tracking but are not themselves the target of odor modulation, nor is the neighboring wide-field “HSE” neuron [
<xref rid="bib11" ref-type="bibr">11</xref>
]. Octopaminergic neurons mediating increased visual responses upon flight initiation [
<xref rid="bib12" ref-type="bibr">12</xref>
] also show odor-evoked calcium modulations and form connections with Hx dendrites. Finally, restoring synaptic vesicle trafficking within the octopaminergic neurons of animals carrying a null mutation for all aminergic signaling [
<xref rid="bib13" ref-type="bibr">13</xref>
] is sufficient to restore odor-tracking behavior. These results are the first to demonstrate cellular mechanisms underlying visual-olfactory integration required for odor localization in fruit flies, which may be representative of adaptive multisensory interactions across taxa.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Shams, L" uniqKey="Shams L">L. Shams</name>
</author>
<author>
<name sortKey="Kim, R" uniqKey="Kim R">R. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amedi, A" uniqKey="Amedi A">A. Amedi</name>
</author>
<author>
<name sortKey="Malach, R" uniqKey="Malach R">R. Malach</name>
</author>
<author>
<name sortKey="Hendler, T" uniqKey="Hendler T">T. Hendler</name>
</author>
<author>
<name sortKey="Peled, S" uniqKey="Peled S">S. Peled</name>
</author>
<author>
<name sortKey="Zohary, E" uniqKey="Zohary E">E. Zohary</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watkins, S" uniqKey="Watkins S">S. Watkins</name>
</author>
<author>
<name sortKey="Shams, L" uniqKey="Shams L">L. Shams</name>
</author>
<author>
<name sortKey="Josephs, O" uniqKey="Josephs O">O. Josephs</name>
</author>
<author>
<name sortKey="Rees, G" uniqKey="Rees G">G. Rees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meredith, M A" uniqKey="Meredith M">M.A. Meredith</name>
</author>
<author>
<name sortKey="Stein, B E" uniqKey="Stein B">B.E. Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chow, D M" uniqKey="Chow D">D.M. Chow</name>
</author>
<author>
<name sortKey="Theobald, J C" uniqKey="Theobald J">J.C. Theobald</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duistermars, B J" uniqKey="Duistermars B">B.J. Duistermars</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
<author>
<name sortKey="Tarsitano, M" uniqKey="Tarsitano M">M. Tarsitano</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stewart, F J" uniqKey="Stewart F">F.J. Stewart</name>
</author>
<author>
<name sortKey="Baker, D A" uniqKey="Baker D">D.A. Baker</name>
</author>
<author>
<name sortKey="Webb, B" uniqKey="Webb B">B. Webb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, P" uniqKey="Levy P">P. Levy</name>
</author>
<author>
<name sortKey="Larsen, C" uniqKey="Larsen C">C. Larsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krapp, H G" uniqKey="Krapp H">H.G. Krapp</name>
</author>
<author>
<name sortKey="Hengstenberg, B" uniqKey="Hengstenberg B">B. Hengstenberg</name>
</author>
<author>
<name sortKey="Hengstenberg, R" uniqKey="Hengstenberg R">R. Hengstenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schnell, B" uniqKey="Schnell B">B. Schnell</name>
</author>
<author>
<name sortKey="Joesch, M" uniqKey="Joesch M">M. Joesch</name>
</author>
<author>
<name sortKey="Forstner, F" uniqKey="Forstner F">F. Forstner</name>
</author>
<author>
<name sortKey="Raghu, S V" uniqKey="Raghu S">S.V. Raghu</name>
</author>
<author>
<name sortKey="Otsuna, H" uniqKey="Otsuna H">H. Otsuna</name>
</author>
<author>
<name sortKey="Ito, K" uniqKey="Ito K">K. Ito</name>
</author>
<author>
<name sortKey="Borst, A" uniqKey="Borst A">A. Borst</name>
</author>
<author>
<name sortKey="Reiff, D F" uniqKey="Reiff D">D.F. Reiff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suver, M P" uniqKey="Suver M">M.P. Suver</name>
</author>
<author>
<name sortKey="Mamiya, A" uniqKey="Mamiya A">A. Mamiya</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grygoruk, A" uniqKey="Grygoruk A">A. Grygoruk</name>
</author>
<author>
<name sortKey="Chen, A" uniqKey="Chen A">A. Chen</name>
</author>
<author>
<name sortKey="Martin, C A" uniqKey="Martin C">C.A. Martin</name>
</author>
<author>
<name sortKey="Lawal, H O" uniqKey="Lawal H">H.O. Lawal</name>
</author>
<author>
<name sortKey="Fei, H" uniqKey="Fei H">H. Fei</name>
</author>
<author>
<name sortKey="Gutierrez, G" uniqKey="Gutierrez G">G. Gutierrez</name>
</author>
<author>
<name sortKey="Biedermann, T" uniqKey="Biedermann T">T. Biedermann</name>
</author>
<author>
<name sortKey="Najibi, R" uniqKey="Najibi R">R. Najibi</name>
</author>
<author>
<name sortKey="Hadi, R" uniqKey="Hadi R">R. Hadi</name>
</author>
<author>
<name sortKey="Chouhan, A K" uniqKey="Chouhan A">A.K. Chouhan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Land, M F" uniqKey="Land M">M.F. Land</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilstra, C" uniqKey="Schilstra C">C. Schilstra</name>
</author>
<author>
<name sortKey="Van Hateren, J H" uniqKey="Van Hateren J">J.H. van Hateren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schilstra, C" uniqKey="Schilstra C">C. Schilstra</name>
</author>
<author>
<name sortKey="Van Hateren, J H" uniqKey="Van Hateren J">J.H. van Hateren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hengstenberg, R" uniqKey="Hengstenberg R">R. Hengstenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duistermars, B J" uniqKey="Duistermars B">B.J. Duistermars</name>
</author>
<author>
<name sortKey="Care, R A" uniqKey="Care R">R.A. Care</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gotz, K G" uniqKey="Gotz K">K.G. Götz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reiser, M B" uniqKey="Reiser M">M.B. Reiser</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theobald, J C" uniqKey="Theobald J">J.C. Theobald</name>
</author>
<author>
<name sortKey="Ringach, D L" uniqKey="Ringach D">D.L. Ringach</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haikala, V" uniqKey="Haikala V">V. Haikala</name>
</author>
<author>
<name sortKey="Joesch, M" uniqKey="Joesch M">M. Joesch</name>
</author>
<author>
<name sortKey="Borst, A" uniqKey="Borst A">A. Borst</name>
</author>
<author>
<name sortKey="Mauss, A S" uniqKey="Mauss A">A.S. Mauss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maisak, M S" uniqKey="Maisak M">M.S. Maisak</name>
</author>
<author>
<name sortKey="Haag, J" uniqKey="Haag J">J. Haag</name>
</author>
<author>
<name sortKey="Ammer, G" uniqKey="Ammer G">G. Ammer</name>
</author>
<author>
<name sortKey="Serbe, E" uniqKey="Serbe E">E. Serbe</name>
</author>
<author>
<name sortKey="Meier, M" uniqKey="Meier M">M. Meier</name>
</author>
<author>
<name sortKey="Leonhardt, A" uniqKey="Leonhardt A">A. Leonhardt</name>
</author>
<author>
<name sortKey="Schilling, T" uniqKey="Schilling T">T. Schilling</name>
</author>
<author>
<name sortKey="Bahl, A" uniqKey="Bahl A">A. Bahl</name>
</author>
<author>
<name sortKey="Rubin, G M" uniqKey="Rubin G">G.M. Rubin</name>
</author>
<author>
<name sortKey="Nern, A" uniqKey="Nern A">A. Nern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krishnan, P" uniqKey="Krishnan P">P. Krishnan</name>
</author>
<author>
<name sortKey="Duistermars, B J" uniqKey="Duistermars B">B.J. Duistermars</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, T W" uniqKey="Chen T">T.-W. Chen</name>
</author>
<author>
<name sortKey="Wardill, T J" uniqKey="Wardill T">T.J. Wardill</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Pulver, S R" uniqKey="Pulver S">S.R. Pulver</name>
</author>
<author>
<name sortKey="Renninger, S L" uniqKey="Renninger S">S.L. Renninger</name>
</author>
<author>
<name sortKey="Baohan, A" uniqKey="Baohan A">A. Baohan</name>
</author>
<author>
<name sortKey="Schreiter, E R" uniqKey="Schreiter E">E.R. Schreiter</name>
</author>
<author>
<name sortKey="Kerr, R A" uniqKey="Kerr R">R.A. Kerr</name>
</author>
<author>
<name sortKey="Orger, M B" uniqKey="Orger M">M.B. Orger</name>
</author>
<author>
<name sortKey="Jayaraman, V" uniqKey="Jayaraman V">V. Jayaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuthill, J C" uniqKey="Tuthill J">J.C. Tuthill</name>
</author>
<author>
<name sortKey="Chiappe, M E" uniqKey="Chiappe M">M.E. Chiappe</name>
</author>
<author>
<name sortKey="Reiser, M B" uniqKey="Reiser M">M.B. Reiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chiappe, M E" uniqKey="Chiappe M">M.E. Chiappe</name>
</author>
<author>
<name sortKey="Seelig, J D" uniqKey="Seelig J">J.D. Seelig</name>
</author>
<author>
<name sortKey="Reiser, M B" uniqKey="Reiser M">M.B. Reiser</name>
</author>
<author>
<name sortKey="Jayaraman, V" uniqKey="Jayaraman V">V. Jayaraman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jung, S N" uniqKey="Jung S">S.N. Jung</name>
</author>
<author>
<name sortKey="Borst, A" uniqKey="Borst A">A. Borst</name>
</author>
<author>
<name sortKey="Haag, J" uniqKey="Haag J">J. Haag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Breugel, F" uniqKey="Van Breugel F">F. van Breugel</name>
</author>
<author>
<name sortKey="Suver, M P" uniqKey="Suver M">M.P. Suver</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longden, K D" uniqKey="Longden K">K.D. Longden</name>
</author>
<author>
<name sortKey="Krapp, H G" uniqKey="Krapp H">H.G. Krapp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Haan, R" uniqKey="De Haan R">R. de Haan</name>
</author>
<author>
<name sortKey="Lee, Y J" uniqKey="Lee Y">Y.-J. Lee</name>
</author>
<author>
<name sortKey="Nordstrom, K" uniqKey="Nordstrom K">K. Nordström</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feinberg, E H" uniqKey="Feinberg E">E.H. Feinberg</name>
</author>
<author>
<name sortKey="Vanhoven, M K" uniqKey="Vanhoven M">M.K. Vanhoven</name>
</author>
<author>
<name sortKey="Bendesky, A" uniqKey="Bendesky A">A. Bendesky</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G. Wang</name>
</author>
<author>
<name sortKey="Fetter, R D" uniqKey="Fetter R">R.D. Fetter</name>
</author>
<author>
<name sortKey="Shen, K" uniqKey="Shen K">K. Shen</name>
</author>
<author>
<name sortKey="Bargmann, C I" uniqKey="Bargmann C">C.I. Bargmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maimon, G" uniqKey="Maimon G">G. Maimon</name>
</author>
<author>
<name sortKey="Straw, A D" uniqKey="Straw A">A.D. Straw</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farooqui, T" uniqKey="Farooqui T">T. Farooqui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Breugel, F" uniqKey="Van Breugel F">F. van Breugel</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burke, C J" uniqKey="Burke C">C.J. Burke</name>
</author>
<author>
<name sortKey="Huetteroth, W" uniqKey="Huetteroth W">W. Huetteroth</name>
</author>
<author>
<name sortKey="Owald, D" uniqKey="Owald D">D. Owald</name>
</author>
<author>
<name sortKey="Perisse, E" uniqKey="Perisse E">E. Perisse</name>
</author>
<author>
<name sortKey="Krashes, M J" uniqKey="Krashes M">M.J. Krashes</name>
</author>
<author>
<name sortKey="Das, G" uniqKey="Das G">G. Das</name>
</author>
<author>
<name sortKey="Gohl, D" uniqKey="Gohl D">D. Gohl</name>
</author>
<author>
<name sortKey="Silies, M" uniqKey="Silies M">M. Silies</name>
</author>
<author>
<name sortKey="Certel, S" uniqKey="Certel S">S. Certel</name>
</author>
<author>
<name sortKey="Waddell, S" uniqKey="Waddell S">S. Waddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, M D" uniqKey="Gordon M">M.D. Gordon</name>
</author>
<author>
<name sortKey="Scott, K" uniqKey="Scott K">K. Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maimon, G" uniqKey="Maimon G">G. Maimon</name>
</author>
<author>
<name sortKey="Straw, A D" uniqKey="Straw A">A.D. Straw</name>
</author>
<author>
<name sortKey="Dickinson, M H" uniqKey="Dickinson M">M.H. Dickinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fox, J L" uniqKey="Fox J">J.L. Fox</name>
</author>
<author>
<name sortKey="Aptekar, J W" uniqKey="Aptekar J">J.W. Aptekar</name>
</author>
<author>
<name sortKey="Zolotova, N M" uniqKey="Zolotova N">N.M. Zolotova</name>
</author>
<author>
<name sortKey="Shoemaker, P A" uniqKey="Shoemaker P">P.A. Shoemaker</name>
</author>
<author>
<name sortKey="Frye, M A" uniqKey="Frye M">M.A. Frye</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akerboom, J" uniqKey="Akerboom J">J. Akerboom</name>
</author>
<author>
<name sortKey="Chen, T W" uniqKey="Chen T">T.-W. Chen</name>
</author>
<author>
<name sortKey="Wardill, T J" uniqKey="Wardill T">T.J. Wardill</name>
</author>
<author>
<name sortKey="Tian, L" uniqKey="Tian L">L. Tian</name>
</author>
<author>
<name sortKey="Marvin, J S" uniqKey="Marvin J">J.S. Marvin</name>
</author>
<author>
<name sortKey="Mutlu, S" uniqKey="Mutlu S">S. Mutlu</name>
</author>
<author>
<name sortKey="Calder N, N C" uniqKey="Calder N N">N.C. Calderón</name>
</author>
<author>
<name sortKey="Esposti, F" uniqKey="Esposti F">F. Esposti</name>
</author>
<author>
<name sortKey="Borghuis, B G" uniqKey="Borghuis B">B.G. Borghuis</name>
</author>
<author>
<name sortKey="Sun, X R" uniqKey="Sun X">X.R. Sun</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="brief-report">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr. Biol</journal-id>
<journal-title-group>
<journal-title>Current Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0960-9822</issn>
<issn pub-type="epub">1879-0445</issn>
<publisher>
<publisher-name>Cell Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25619767</article-id>
<article-id pub-id-type="pmc">4331282</article-id>
<article-id pub-id-type="publisher-id">S0960-9822(14)01576-0</article-id>
<article-id pub-id-type="doi">10.1016/j.cub.2014.12.012</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Report</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Olfactory Neuromodulation of Motion Vision Circuitry in
<italic>Drosophila</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wasserman</surname>
<given-names>Sara M.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="fn1" ref-type="fn">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aptekar</surname>
<given-names>Jacob W.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="fn1" ref-type="fn">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Patrick</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nguyen</surname>
<given-names>Jade</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Austin L.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Keles</surname>
<given-names>Mehmet F.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Grygoruk</surname>
<given-names>Anna</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Krantz</surname>
<given-names>David E.</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Larsen</surname>
<given-names>Camilla</given-names>
</name>
<xref rid="aff3" ref-type="aff">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Frye</surname>
<given-names>Mark A.</given-names>
</name>
<email>frye@ucla.edu</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA</aff>
<aff id="aff2">
<label>2</label>
Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA</aff>
<aff id="aff3">
<label>3</label>
Medical Research Council Centre for Developmental Biology, King’s College London, London SE1 1UL, UK</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author
<email>frye@ucla.edu</email>
</corresp>
<fn id="fn1">
<label>4</label>
<p>Co-first author</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>16</day>
<month>2</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>16</day>
<month>2</month>
<year>2015</year>
</pub-date>
<volume>25</volume>
<issue>4</issue>
<fpage>467</fpage>
<lpage>472</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>10</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>13</day>
<month>11</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>4</day>
<month>12</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 The Authors</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="CC BY" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</license-p>
</license>
</permissions>
<abstract>
<title>Summary</title>
<p>It is well established that perception is largely multisensory [
<xref rid="bib1" ref-type="bibr">1</xref>
]; often served by modalities such as touch, vision, and hearing that detect stimuli emanating from a common point in space [
<xref rid="bib2 bib3" ref-type="bibr">2, 3</xref>
]; and processed by brain tissue maps that are spatially aligned [
<xref rid="bib4" ref-type="bibr">4</xref>
]. However, the neural interactions among modalities that share no spatial stimulus domain yet are essential for robust perception within noisy environments remain uncharacterized.
<italic>Drosophila melanogaster</italic>
makes its living navigating food odor plumes. Odor acts to increase the strength of gaze-stabilizing optomotor reflexes [
<xref rid="bib5" ref-type="bibr">5</xref>
] to keep the animal aligned within an invisible plume, facilitating odor localization in free flight [
<xref rid="bib6 bib7 bib8" ref-type="bibr">6–8</xref>
]. Here, we investigate the cellular mechanism for cross-modal behavioral interactions. We characterize a wide-field motion-selective interneuron of the lobula plate that shares anatomical and physiological similarities with the “Hx” neuron identified in larger flies [
<xref rid="bib9 bib10" ref-type="bibr">9, 10</xref>
].
<italic>Drosophila</italic>
Hx exhibits cross-modal enhancement of visual responses by paired odor, and presynaptic inputs to the lobula plate are required for behavioral odor tracking but are not themselves the target of odor modulation, nor is the neighboring wide-field “HSE” neuron [
<xref rid="bib11" ref-type="bibr">11</xref>
]. Octopaminergic neurons mediating increased visual responses upon flight initiation [
<xref rid="bib12" ref-type="bibr">12</xref>
] also show odor-evoked calcium modulations and form connections with Hx dendrites. Finally, restoring synaptic vesicle trafficking within the octopaminergic neurons of animals carrying a null mutation for all aminergic signaling [
<xref rid="bib13" ref-type="bibr">13</xref>
] is sufficient to restore odor-tracking behavior. These results are the first to demonstrate cellular mechanisms underlying visual-olfactory integration required for odor localization in fruit flies, which may be representative of adaptive multisensory interactions across taxa.</p>
</abstract>
<abstract abstract-type="author-highlights">
<title>Highlights</title>
<p>
<list list-type="simple">
<list-item id="u0010">
<label></label>
<p>Small-field motion detection neurons are required for odor-tracking behavior</p>
</list-item>
<list-item id="u0015">
<label></label>
<p>Responses of a directional wide-field interneuron (Hx) increase with paired odor</p>
</list-item>
<list-item id="u0020">
<label></label>
<p>Odor activates octopaminergic (OA) neurons that innervate the visual system</p>
</list-item>
<list-item id="u0025">
<label></label>
<p>OA cells contact Hx; OA vesicle trafficking is required for odor-tracking behavior</p>
</list-item>
</list>
</p>
</abstract>
<abstract abstract-type="teaser">
<p>Wasserman et al. report that a directionally selective wide-field motion-detecting neuron (Hx) in the fly increases response gain with paired odor. This multimodal interaction is dependent upon vesicle trafficking from octopaminergic neurons, which are themselves responsive to odor and make cell-cell contact with Hx.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>Results and Discussion</title>
<p>In addition to feedback from head movements [
<xref rid="bib14 bib15 bib16 bib17 bib18" ref-type="bibr">14–18</xref>
], a fly in flight stabilizes its gaze by optomotor steering movements of the wings that turn the whole body [
<xref rid="bib19" ref-type="bibr">19</xref>
]. The strength of steering optomotor responses increases when flies experience an appetitive odor [
<xref rid="bib5" ref-type="bibr">5</xref>
]. Here we tethered a fly rigidly within a flight simulator composed of a wrap-around electronic display and equipped with an odor port (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
A) to measure the optomotor impulse response to a rapid rotation of the visual panorama [
<xref rid="bib21" ref-type="bibr">21</xref>
]. Pairing an appetitive food odor (vinegar) with the visual stimulus results in a roughly 40% increase in the optomotor response (OMR), which is assessed by measuring the mean difference in wing beat amplitude across the two wings (ΔWBA) elicited by an impulse in yaw velocity (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
B), consistent with prior measurements [
<xref rid="bib5" ref-type="bibr">5</xref>
].</p>
<p>Optomotor responses in
<italic>Drosophila</italic>
can be elicited by optogenetic activation of tangential wide-field collating neurons HSE and HSN housed in the third optic ganglion, the lobula plate [
<xref rid="bib22" ref-type="bibr">22</xref>
]. To examine whether motion integrating circuitry of the lobula plate is involved in odor-enhanced OMRs, we genetically hyperpolarized the small-field columnar neurons T4 and T5, which supply retinotopic motion signals to the lobula plate [
<xref rid="bib23" ref-type="bibr">23</xref>
]. Using the same magnetic-tether flight simulator (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
C) applied to demonstrate the dependence of self-generated visual motion signals for active plume tracking [
<xref rid="bib24" ref-type="bibr">24</xref>
], we measured the animals’ ability to locate and stabilize their heading within a vinegar plume. We divided plume-tracking behavior into three components: (1) initial detection, defined by the proportion of flies that oriented themselves within ±10° of the odor nozzle—flies that did not do so were not included in the subsequent analysis; (2) acquisition, defined by time spent within the plume over the first 10 s of the trial; and (3) continuous tracking, defined by how much of the final 10 s of the trial the fly spent oriented within the plume (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
D). We found no significant difference between the proportions of T4T5-blocked versus control flies that detected the plume (chi-square test, p > 0.05). Similarly, blocking T4T5 did not significantly alter the mean time spent in the plume during the acquisition phase, but T4T5-blocked flies were unable to sustain plume tracking for the duration of the trial, in comparison to controls (
<xref rid="fig1" ref-type="fig">Figures 1</xref>
D and 1E). This shows that whereas the lack of motion signals carried by T4T5 to the lobula plate does not compromise the animals’ ability to detect or initially localize an odor plume, local motion signals are required to stabilize flight heading within the plume. This is consistent with the finding that switching the high-contrast grating displayed in the flight arena to an equiluminant grayscale, thereby reducing optic flow generated by the fly’s own movements, eliminates its ability to remain within the plume [
<xref rid="bib24" ref-type="bibr">24</xref>
].</p>
<p>A lobula plate tangential cell (LPTC) was recently identified anatomically in
<italic>Drosophila</italic>
, along with a number of neurons within higher-order olfactory regions of the mushroom bodies, by its shared expression of the
<italic>Odd-skipped</italic>
transcription factor [
<xref rid="bib9" ref-type="bibr">9</xref>
]. The tangential dendritic arbor of this LPTC spans the dorsal projection of the lobula plate (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
Bi), tightly restricted to layer 2 (
<xref rid="fig2" ref-type="fig">Figures 2</xref>
Bii and 2Biii), which is the layer receiving back-to-front directional motion input from the columnar T4T5 terminals [
<xref rid="bib23" ref-type="bibr">23</xref>
]. The axon projects heterolateral to the cell body and dendrites [
<xref rid="bib9" ref-type="bibr">9</xref>
]. To characterize its motion-coding properties, we expressed a genetically encoded calcium indicator, GCaMP6m [
<xref rid="bib25" ref-type="bibr">25</xref>
], under the Odd-Gal4 driver [
<xref rid="bib9" ref-type="bibr">9</xref>
] and recorded cellular activity under a two-photon excitation imaging system equipped with an LED display [
<xref rid="bib26" ref-type="bibr">26</xref>
] (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
A). Imaging from dendritic regions of interest (ROIs) (see
<xref rid="sec2" ref-type="sec">Experimental Procedures</xref>
) in response to a narrow vertical bar, we demonstrate that this cell is excited by back-to-front motion across the ipsilateral eye within a 50° receptive field positioned just ipsilateral to the visual midline (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
C) and is more excited by progressively wider randomly textured bars (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
D). We found no systematic response differences within small ROIs spanning the tangential dendritic arbor (data not shown) and therefore focused subsequent imaging analysis on a primary dendritic branch that was identifiable in each preparation (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
B, white box). To further explore wide-field response properties, we varied the orientation of a full-field grating, demonstrating that this cell is strongly tuned to front-to-back motion oriented along the horizontal body axis (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
E) and, like other wide-field
<italic>Drosophila</italic>
LPTCs [
<xref rid="bib11 bib23" ref-type="bibr">11, 23</xref>
], exhibits a 1 Hz temporal frequency optimum (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
F). The matched directional preferences and layer specificity strongly suggest that Hx receives local motion signals from the T4T5 system but do not preclude other potential inputs. The neuronal morphology and receptive-field properties of this cell are strongly reminiscent of the Hx neuron characterized in blowflies [
<xref rid="bib10" ref-type="bibr">10</xref>
], and we refer to it thusly hereafter.</p>
<p>Motivated by the transcription-factor spatial profile shared with higher-order olfactory projection neurons, we sought to determine whether Hx was cross-modally activated by odor. The two-photon recording preparation and LED display was equipped with a laminar flow olfactometer (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
A). We presented a regime of five repeated 10-s epochs of back-to-front wide-field motion interspersed with rest periods. The second motion epoch was accompanied by a 10-s odor pulse (delivered bilaterally). There was a subtle yet significant increase in the motion-elicited excitatory response of Hx during paired odor presentation (epoch 2,
<xref rid="fig3" ref-type="fig">Figure 3</xref>
A), observed within each individual fly preparation tested (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
B) but absent in water vapor controls (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
C). To determine whether the primary site of visual-olfactory integration resided with Hx or the local motion detectors presynaptic to the lobula plate, we performed the same experiment and recorded the intracellular activity of T4T5 cells. The T4T5-Gal4 driver labels cell processes within the medulla, lobula, and lobula plate ([
<xref rid="bib22 bib23" ref-type="bibr">22, 23</xref>
] and
<xref rid="fig3" ref-type="fig">Figure 3</xref>
D), and we found no differences between responses from ROIs imaged within the processes of these neuropils (chi-square test, p > 0.05), nor did we observe any changes in the excitatory motion responses of T4T5 ROIs found within the lobula plate upon paired odor presentation (
<xref rid="fig3" ref-type="fig">Figures 3</xref>
E and 3F). These results reject the possibility that odor-enhanced responses in Hx represent general arousal phenomena and confirm that the site of cross-modal interaction resides within wide-field-integrating lobula plate neurons rather than presynaptic local motion detectors. To assess whether odor activates all LPTCs, we examined the activity of HSE, a neighboring neuron to Hx that is selective for horizontal motion (HSE [
<xref rid="bib11" ref-type="bibr">11</xref>
];
<xref rid="fig3" ref-type="fig">Figure 3</xref>
G), but we did not observe odor-evoked changes in the visual responses of this cell (
<xref rid="fig3" ref-type="fig">Figures 3</xref>
H and 3I).</p>
<p>Visual responses by LPTCs are modulated by the onset of locomotion [
<xref rid="bib27 bib28" ref-type="bibr">27, 28</xref>
], and this increase in response gain is mediated by octopaminergic innervation [
<xref rid="bib29 bib30 bib31" ref-type="bibr">29–31</xref>
]. We reasoned that octopamine release might also be triggered by olfactory signaling within the visual system to modulate Hx responses. We first determined that the octopaminergic terminals innervating the lobula plate show increased GCaMP fluorescence in response to an odor pulse (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
A), which was demonstrated in each fly tested (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
B). To examine whether these octopaminergic interneurons make synapses with Hx, we made use of a genetic construct that recombines GFP between two cells in close contact (GFP reconstitution across synaptic partners [GRASP] [
<xref rid="bib32" ref-type="bibr">32</xref>
]). Expressing one inactive half of the split-GFP within the Tdc2 octopaminergic neurons and the other half within Hx resulted in GFP puncta distributed within the lobula plate (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
C) in a pattern similar to the dendritic profile of Hx (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
C, inset), indicating synapses or other close cell-cell connections such as gap junctions between Tdc2 and Hx. In addition to implicating Tdc2 in the olfactory modulation of Hx, our GRASP data also support prior findings demonstrating that octopaminergic signaling in the brain is necessary for locomotion-induced gain in LPTCs [
<xref rid="bib12" ref-type="bibr">12</xref>
].</p>
<p>Likely owing to the role of
<italic>Odd-skipped</italic>
in development, driving neuronal inactivators with Hx-Gal4 is lethal and nevertheless would have been impossible to evaluate for visual-olfactory integration due to its expression in both visual and olfactory centers [
<xref rid="bib25" ref-type="bibr">25</xref>
]. Therefore, we reasoned that if octopaminergic modulation of visual circuitry is important for odor-tracking behavior, then the absence of octopaminergic signaling throughout the brain should strongly perturb odor-tracking behavior. To test this hypothesis, we used a fly strain carrying a null (loss-of-function) mutation in the
<italic>Drosophila</italic>
vesicular monoamine transporter (
<italic>dVMAT</italic>
) [
<xref rid="bib13" ref-type="bibr">13</xref>
]. Rescue with a DVMAT transgene in octopaminergic neurons, but not with dopaminergic or serotonergic neurons, is sufficient to restore plume-tracking behavior (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
D). As a negative control, we tested animals rescued with a DVMAT trafficking mutant (Tdc2-Gal4/Δ3VMAT [
<xref rid="bib13" ref-type="bibr">13</xref>
]); these animals were unable to maintain their heading within the odor plume of the olfactory flight simulator (
<xref rid="fig4" ref-type="fig">Figure 4</xref>
D). These three lines of evidence—odor activation of Tdc2 cells, GFP puncta (GRASP) between Hx and Tdc2 neurons, and the rescue of olfactory tracking when synaptic release by octopaminergic cells is restored—provide a parsimonious interpretation that odor-driven octopamine release modulates the gain of visual circuitry.</p>
<p>Octopamine mediates locomotion-induced modulation of another LPTC, the HSE neuron [
<xref rid="bib12" ref-type="bibr">12</xref>
], which is not activated by odor (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
H). This provides an exciting experimental platform for broader investigation into how aminergic signaling differentially modulates postsynaptic targets within the same neuropil. It is possible that, like Hx, HSE is also modulated by odor, but that the effect is observable only when superposed with a flight-activated increase in visual response gain [
<xref rid="bib33" ref-type="bibr">33</xref>
]. Additionally, like norepinephrine, octopamine acts through multiple receptor-signaling pathways having wide-ranging influences over cellular physiology. One receptor class (OCTα-R) increases calcium entry, while another (OCTβ-R) elevates intracellular cAMP levels [
<xref rid="bib34" ref-type="bibr">34</xref>
] to act as either an agonist or an antagonist on synaptic and behavioral plasticity in an octopamine receptor-dependent fashion [
<xref rid="bib34" ref-type="bibr">34</xref>
]. Differential receptor expression could in turn mediate differential octopaminergic neuromodulation of visual circuitry.</p>
<p>In summary, we have revealed a novel cellular cross-modal interaction that could support behavioral findings whereby food odor detection increases visual stability in an odor plume. Future work could elaborate additional neuronal pathways supporting related cross-modal behaviors such as enhanced salience of visual objects by odor [
<xref rid="bib35" ref-type="bibr">35</xref>
]. These cross-modal interactions provide a mechanism to dynamically enhance sensory perception in a contextually appropriate manner.</p>
</sec>
<sec sec-type="methods" id="sec2">
<title>Experimental Procedures</title>
<sec id="sec2.1">
<title>Animals</title>
<p>For behavior experiments, we used wild-type
<italic>D. melanogaster</italic>
, 3- to 6-day-old posteclosion females. Other lines used for behavior and imaging experiments included T4T5-Gal4 (Bloomington ID 40034), Tdc2-Gal4 (Bloomington ID 9313), UAS-Kir2.1-EGFP (Bloomington ID 6596), UAS-mCD8::GFP (Bloomington ID 5137), HSE-Gal4 (Bloomington ID 49211), UAS-GCaMP6m (Bloomington ID 42748), UAS-GCaMP6s (Bloomington ID 42749), and Odd-Skipped-Gal4 [
<xref rid="bib9" ref-type="bibr">9</xref>
]. GRASP constructs were generated using the transgenes
<italic>Odd-Gal4</italic>
[
<xref rid="bib9" ref-type="bibr">9</xref>
],
<italic>Tdc2-LexA</italic>
[
<xref rid="bib36" ref-type="bibr">36</xref>
], and
<italic>UAS-CD4::spGFP1-10; LexAop-CD4::spGFP11</italic>
[
<xref rid="bib37" ref-type="bibr">37</xref>
]. Random individuals were selected from a population for each experimental group according to genotype. No experimenter blinding was done.</p>
</sec>
<sec id="sec2.2">
<title>Behavior</title>
<sec id="sec2.2.1">
<title>Closed-Loop Magnetic-Tether Flight Simulator</title>
<p>The magnetic-tether flight arena allows a fly to steer freely in the yaw plane, allowing assessment of odor plume-tracking capability, and has been described in detail previously [
<xref rid="bib6 bib24 bib38" ref-type="bibr">6, 24, 38</xref>
].</p>
</sec>
<sec id="sec2.2.2">
<title>Rigid-Tether Flight Simulator</title>
<p>The rigid-tether arena records a fixed fly’s wing kinematic responses to visual stimuli, closing a feedback loop to allow the animal to control the velocity of image motion on the display or allow the assessment of visual response gain under open-loop feedback conditions, and has been described in detail previously [
<xref rid="bib5 bib20" ref-type="bibr">5, 20</xref>
]. Odor was delivered through a narrow nozzle as reported previously [
<xref rid="bib5" ref-type="bibr">5</xref>
].</p>
<p>In order to quantify the response of the fly to panoramic yaw motion, we use a white-noise method for estimating the yaw impulse response for each individual animal. The impulse response,
<italic>g(t)</italic>
, of the fly’s steering plant is measured by cross-correlating a time-varying and spectrally broad sequence of velocity impulses,
<italic>x(t)</italic>
, with the time-varying output signal produced by difference in wing beat amplitudes (ΔWBA),
<italic>y(t)</italic>
. The kernel function [
<xref rid="bib5" ref-type="bibr">5</xref>
] represents the steering response to an impulsive step in the pattern display position by one pixel (3.75°). Impulse responses to water control and odor [
<xref rid="bib5" ref-type="bibr">5</xref>
] were fit and parameters were calculated as described previously [
<xref rid="bib39" ref-type="bibr">39</xref>
].</p>
</sec>
</sec>
<sec id="sec2.3">
<title>Calcium Imaging</title>
<p>Adult female
<italic>D. melanogaster</italic>
expressing the genetically encoded calcium indicator GCamp6m [
<xref rid="bib40" ref-type="bibr">40</xref>
] under one of the four Gal4 drivers were anesthetized under cold sedation. Imaging was performed with a two-photon excitation scanning microscope (Intelligent Imaging Innovations). We used a 20×/NA 1.0 water-immersion objective lens (Carl Zeiss). Laser power was regulated to 10–20 mW measured at the focus of the objective lens. Images were collected at 8–11 Hz and 300–500 nm/pixel. Temporal registration with input stimuli was achieved by recording a voltage pulse at the completion of each frame that was output to our data acquisition device (National Instruments). Visual stimulus was produced by a 12–20 panel arena that was oriented orthogonal to the anterior-posterior axis of the head, subtending 216° of visual azimuth and 120° of elevation on the retina (IO Rodeo) using open-source MATLAB packages (
<ext-link ext-link-type="uri" xlink:href="https://bitbucket.org/mreiser/panels/src" id="intref0010">https://bitbucket.org/mreiser/panels/src</ext-link>
). Stimulus and data acquisition were controlled by custom-written software in MATLAB (The Mathworks).</p>
</sec>
<sec id="sec2.4">
<title>Visual Stimuli for Sensory Integration Experiments</title>
<p>One of eight randomly textured display patterns was selected at random for each trial and held static for 10-s periods of rest or 10-s periods of motion stimulation. For odor recordings from Tdc2-Gal4 neurons, the visual pattern was on but stationary. In all visual motion experiments, the pattern moved with a velocity of 22°/s for 10 s. Preparations that showed too much movement artifact or fluorescent bleaching, or that did not demonstrate ΔF/F responses over background levels for at least two presentations of the full stimulus set, were excluded from analysis.</p>
</sec>
<sec id="sec2.5">
<title>Odor Delivery</title>
<p>Odor was injected at 50 ml/min (Sensirion mass flow controller) into a 200 ml/min constant air stream (Sable Systems intelligent mass flow control unit) and removed via vacuum. A miniature photoionization detector (miniPID, Aurora Scientific) was used to confirm presence and absence of odor during and after odor pulse.</p>
</sec>
</sec>
<sec sec-type="acknowledgement" id="sec3">
<title>Author Contributions</title>
<p>S.M.W., J.W.A., and M.A.F. designed experiments. A.G., D.E.K., and C.L. provided reagents and advised on genetic procedures. S.M.W., J.W.A., P.L., J.N., A.L.W., M.F.K., and C.L. collected and/or analyzed data. S.M.W. and M.A.F. wrote the manuscript.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Shams</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Crossmodal influences on visual perception</article-title>
<source>Phys. Life Rev.</source>
<volume>7</volume>
<year>2010</year>
<fpage>269</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="pmid">20447880</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Amedi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Malach</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hendler</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Peled</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Zohary</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Visuo-haptic object-related activation in the ventral visual pathway</article-title>
<source>Nat. Neurosci.</source>
<volume>4</volume>
<year>2001</year>
<fpage>324</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">11224551</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Watkins</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Shams</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Josephs</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Rees</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Activity in human V1 follows multisensory perception</article-title>
<source>Neuroimage</source>
<volume>37</volume>
<year>2007</year>
<fpage>572</fpage>
<lpage>578</lpage>
<pub-id pub-id-type="pmid">17604652</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Meredith</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Stein</surname>
<given-names>B.E.</given-names>
</name>
</person-group>
<article-title>Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration</article-title>
<source>J. Neurophysiol.</source>
<volume>56</volume>
<year>1986</year>
<fpage>640</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">3537225</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Chow</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Theobald</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>An olfactory circuit increases the fidelity of visual behavior</article-title>
<source>J. Neurosci.</source>
<volume>31</volume>
<year>2011</year>
<fpage>15035</fpage>
<lpage>15047</lpage>
<pub-id pub-id-type="pmid">22016537</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Duistermars</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Crossmodal visual input for odor tracking during fly flight</article-title>
<source>Curr. Biol.</source>
<volume>18</volume>
<year>2008</year>
<fpage>270</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">18280156</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Tarsitano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Odor localization requires visual feedback during free flight in Drosophila melanogaster</article-title>
<source>J. Exp. Biol.</source>
<volume>206</volume>
<year>2003</year>
<fpage>843</fpage>
<lpage>855</lpage>
<pub-id pub-id-type="pmid">12547939</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Stewart</surname>
<given-names>F.J.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>A model of visual-olfactory integration for odour localisation in free-flying fruit flies</article-title>
<source>J. Exp. Biol.</source>
<volume>213</volume>
<year>2010</year>
<fpage>1886</fpage>
<lpage>1900</lpage>
<pub-id pub-id-type="pmid">20472776</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain</article-title>
<source>J. Comp. Neurol.</source>
<volume>521</volume>
<year>2013</year>
<fpage>3716</fpage>
<lpage>3740</lpage>
<pub-id pub-id-type="pmid">23749685</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sref10">
<person-group person-group-type="author">
<name>
<surname>Krapp</surname>
<given-names>H.G.</given-names>
</name>
<name>
<surname>Hengstenberg</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Hengstenberg</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly</article-title>
<source>J. Neurophysiol.</source>
<volume>79</volume>
<year>1998</year>
<fpage>1902</fpage>
<lpage>1917</lpage>
<pub-id pub-id-type="pmid">9535957</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Schnell</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Joesch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Forstner</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Raghu</surname>
<given-names>S.V.</given-names>
</name>
<name>
<surname>Otsuna</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Borst</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Reiff</surname>
<given-names>D.F.</given-names>
</name>
</person-group>
<article-title>Processing of horizontal optic flow in three visual interneurons of the Drosophila brain</article-title>
<source>J. Neurophysiol.</source>
<volume>103</volume>
<year>2010</year>
<fpage>1646</fpage>
<lpage>1657</lpage>
<pub-id pub-id-type="pmid">20089816</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Suver</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Mamiya</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila</article-title>
<source>Curr. Biol.</source>
<volume>22</volume>
<year>2012</year>
<fpage>2294</fpage>
<lpage>2302</lpage>
<pub-id pub-id-type="pmid">23142045</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal" id="sref13">
<person-group person-group-type="author">
<name>
<surname>Grygoruk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Lawal</surname>
<given-names>H.O.</given-names>
</name>
<name>
<surname>Fei</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gutierrez</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Biedermann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Najibi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hadi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chouhan</surname>
<given-names>A.K.</given-names>
</name>
</person-group>
<article-title>The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors</article-title>
<source>J. Neurosci.</source>
<volume>34</volume>
<year>2014</year>
<fpage>6924</fpage>
<lpage>6937</lpage>
<pub-id pub-id-type="pmid">24828646</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal" id="sref14">
<person-group person-group-type="author">
<name>
<surname>Land</surname>
<given-names>M.F.</given-names>
</name>
</person-group>
<article-title>Head movement of flies during visually guided flight</article-title>
<source>Nature</source>
<volume>243</volume>
<year>1973</year>
<fpage>299</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Schilstra</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>van Hateren</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics</article-title>
<source>J. Exp. Biol.</source>
<volume>202</volume>
<year>1999</year>
<fpage>1481</fpage>
<lpage>1490</lpage>
<pub-id pub-id-type="pmid">10229694</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Schilstra</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>van Hateren</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Stabilizing gaze in flying blowflies</article-title>
<source>Nature</source>
<volume>395</volume>
<year>1998</year>
<fpage>654</fpage>
<pub-id pub-id-type="pmid">9790186</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal" id="sref17">
<person-group person-group-type="author">
<name>
<surname>Hengstenberg</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process</article-title>
<source>Semin. Neurosci.</source>
<volume>3</volume>
<year>1991</year>
<fpage>19</fpage>
<lpage>29</lpage>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal" id="sref18">
<person-group person-group-type="author">
<name>
<surname>Duistermars</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Care</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Binocular interactions underlying the classic optomotor responses of flying flies</article-title>
<source>Front. Behav. Neurosci.</source>
<volume>6</volume>
<year>2012</year>
<fpage>6</fpage>
<pub-id pub-id-type="pmid">22375108</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal" id="sref19">
<person-group person-group-type="author">
<name>
<surname>Götz</surname>
<given-names>K.G.</given-names>
</name>
</person-group>
<article-title>Flight control in Drosophila by visual perception of motion</article-title>
<source>Kybernetik</source>
<volume>4</volume>
<year>1968</year>
<fpage>199</fpage>
<lpage>208</lpage>
<pub-id pub-id-type="pmid">5731498</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Reiser</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>A modular display system for insect behavioral neuroscience</article-title>
<source>J. Neurosci. Methods</source>
<volume>167</volume>
<year>2008</year>
<fpage>127</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="pmid">17854905</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Theobald</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Ringach</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Dynamics of optomotor responses in Drosophila to perturbations in optic flow</article-title>
<source>J. Exp. Biol.</source>
<volume>213</volume>
<year>2010</year>
<fpage>1366</fpage>
<lpage>1375</lpage>
<pub-id pub-id-type="pmid">20348349</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Haikala</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Joesch</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Borst</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mauss</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>Optogenetic control of fly optomotor responses</article-title>
<source>J. Neurosci.</source>
<volume>33</volume>
<year>2013</year>
<fpage>13927</fpage>
<lpage>13934</lpage>
<pub-id pub-id-type="pmid">23966712</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Maisak</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Haag</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ammer</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Serbe</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Meier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Leonhardt</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schilling</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bahl</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rubin</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Nern</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A directional tuning map of Drosophila elementary motion detectors</article-title>
<source>Nature</source>
<volume>500</volume>
<year>2013</year>
<fpage>212</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">23925246</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Krishnan</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Duistermars</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Odor identity influences tracking of temporally patterned plumes in Drosophila</article-title>
<source>BMC Neurosci.</source>
<volume>12</volume>
<year>2011</year>
<fpage>62</fpage>
<pub-id pub-id-type="pmid">21708035</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>T.-W.</given-names>
</name>
<name>
<surname>Wardill</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Pulver</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Renninger</surname>
<given-names>S.L.</given-names>
</name>
<name>
<surname>Baohan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Schreiter</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Orger</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Jayaraman</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Ultrasensitive fluorescent proteins for imaging neuronal activity</article-title>
<source>Nature</source>
<volume>499</volume>
<year>2013</year>
<fpage>295</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="pmid">23868258</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Tuthill</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Chiappe</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Reiser</surname>
<given-names>M.B.</given-names>
</name>
</person-group>
<article-title>Neural correlates of illusory motion perception in Drosophila</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>108</volume>
<year>2011</year>
<fpage>9685</fpage>
<lpage>9690</lpage>
<pub-id pub-id-type="pmid">21586635</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Chiappe</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Seelig</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Reiser</surname>
<given-names>M.B.</given-names>
</name>
<name>
<surname>Jayaraman</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Walking modulates speed sensitivity in Drosophila motion vision</article-title>
<source>Curr. Biol.</source>
<volume>20</volume>
<year>2010</year>
<fpage>1470</fpage>
<lpage>1475</lpage>
<pub-id pub-id-type="pmid">20655222</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>Jung</surname>
<given-names>S.N.</given-names>
</name>
<name>
<surname>Borst</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Haag</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Flight activity alters velocity tuning of fly motion-sensitive neurons</article-title>
<source>J. Neurosci.</source>
<volume>31</volume>
<year>2011</year>
<fpage>9231</fpage>
<lpage>9237</lpage>
<pub-id pub-id-type="pmid">21697373</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>van Breugel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Suver</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Octopaminergic modulation of the visual flight speed regulator of Drosophila</article-title>
<source>J. Exp. Biol.</source>
<volume>217</volume>
<year>2014</year>
<fpage>1737</fpage>
<lpage>1744</lpage>
<pub-id pub-id-type="pmid">24526725</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>Longden</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Krapp</surname>
<given-names>H.G.</given-names>
</name>
</person-group>
<article-title>Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron</article-title>
<source>Front. Syst. Neurosci.</source>
<volume>4</volume>
<year>2010</year>
<fpage>153</fpage>
<pub-id pub-id-type="pmid">21152339</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>de Haan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y.-J.</given-names>
</name>
<name>
<surname>Nordström</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Octopaminergic modulation of contrast sensitivity</article-title>
<source>Front Integr Neurosci</source>
<volume>6</volume>
<year>2012</year>
<fpage>55</fpage>
<pub-id pub-id-type="pmid">22876224</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Feinberg</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Vanhoven</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Bendesky</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fetter</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bargmann</surname>
<given-names>C.I.</given-names>
</name>
</person-group>
<article-title>GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems</article-title>
<source>Neuron</source>
<volume>57</volume>
<year>2008</year>
<fpage>353</fpage>
<lpage>363</lpage>
<pub-id pub-id-type="pmid">18255029</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Maimon</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Straw</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Active flight increases the gain of visual motion processing in Drosophila</article-title>
<source>Nat. Neurosci.</source>
<volume>13</volume>
<year>2010</year>
<fpage>393</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="pmid">20154683</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal" id="sref34">
<person-group person-group-type="author">
<name>
<surname>Farooqui</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Review of octopamine in insect nervous systems</article-title>
<source>Open Access Insect Physiol.</source>
<volume>4</volume>
<year>2012</year>
<fpage>1</fpage>
<lpage>17</lpage>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal" id="sref35">
<person-group person-group-type="author">
<name>
<surname>van Breugel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes</article-title>
<source>Curr. Biol.</source>
<volume>24</volume>
<year>2014</year>
<fpage>274</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="pmid">24440395</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal" id="sref36">
<person-group person-group-type="author">
<name>
<surname>Burke</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Huetteroth</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Owald</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Perisse</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Krashes</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Das</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gohl</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Silies</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Certel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Waddell</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Layered reward signalling through octopamine and dopamine in Drosophila</article-title>
<source>Nature</source>
<volume>492</volume>
<year>2012</year>
<fpage>433</fpage>
<lpage>437</lpage>
<pub-id pub-id-type="pmid">23103875</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal" id="sref37">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Motor control in a Drosophila taste circuit</article-title>
<source>Neuron</source>
<volume>61</volume>
<year>2009</year>
<fpage>373</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="pmid">19217375</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<label>38</label>
<element-citation publication-type="journal" id="sref38">
<person-group person-group-type="author">
<name>
<surname>Maimon</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Straw</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Dickinson</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>A simple vision-based algorithm for decision making in flying Drosophila</article-title>
<source>Curr. Biol.</source>
<volume>18</volume>
<year>2008</year>
<fpage>464</fpage>
<lpage>470</lpage>
<pub-id pub-id-type="pmid">18342508</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<label>39</label>
<element-citation publication-type="journal" id="sref39">
<person-group person-group-type="author">
<name>
<surname>Fox</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Aptekar</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Zolotova</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Shoemaker</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Frye</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses</article-title>
<source>J. Exp. Biol.</source>
<volume>217</volume>
<year>2014</year>
<fpage>558</fpage>
<lpage>569</lpage>
<pub-id pub-id-type="pmid">24198267</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<label>40</label>
<element-citation publication-type="journal" id="sref40">
<person-group person-group-type="author">
<name>
<surname>Akerboom</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>T.-W.</given-names>
</name>
<name>
<surname>Wardill</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Marvin</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Mutlu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Calderón</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Esposti</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Borghuis</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.R.</given-names>
</name>
</person-group>
<article-title>Optimization of a GCaMP calcium indicator for neural activity imaging</article-title>
<source>J. Neurosci.</source>
<volume>32</volume>
<year>2012</year>
<fpage>13819</fpage>
<lpage>13840</lpage>
<pub-id pub-id-type="pmid">23035093</pub-id>
</element-citation>
</ref>
</ref-list>
<sec id="app2" sec-type="supplementary-material">
<title>Supplemental Information</title>
<p>
<supplementary-material content-type="local-data" id="mmc1">
<caption>
<title>Document S1. Supplemental Experimental Procedures</title>
</caption>
<media xlink:href="mmc1.pdf"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="mmc2">
<caption>
<title>Document S2. Article plus Supplemental Information</title>
</caption>
<media xlink:href="mmc2.pdf"></media>
</supplementary-material>
</p>
</sec>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>Support for this work was provided by the National Institute of Mental Health (R01 MH076900 to D.E.K.), the Brain and Behavior Research Foundation, and the Joanne and George Miller and Family Endowed Chair in Depression Research at the UCLA Brain Research Institute (D.E.K.); the Wellcome Trust (WT085026MA to C.L.); and the Howard Hughes Medical Institute and US Air Force Office of Scientific Research (FA9550-12-1-0034) (M.A.F.).</p>
</ack>
<fn-group>
<fn id="d32e119">
<p>This is an open access article under the CC BY license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/" id="ccintref0005">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>Visual and Olfactory Information Are Integrated to Generate More Robust Behavioral Outputs</p>
<p>(A) The electronic visual flight simulator records wing kinematics from a fixed fly in response to sensory stimuli. The difference in wing beat amplitude (ΔWBA) across the two wings is proportional to yaw torque. Steering torque is activated by movement of the panoramic grating projected on the circular display of light-emitting diodes (LEDs) [
<xref rid="bib20" ref-type="bibr">20</xref>
]. The arena is equipped with a laminar flow olfactometer.</p>
<p>(B) Average modulation of ΔWBA optomotor response to a velocity impulse in the yaw axis with and without paired odor presentation. The sum of two exponential functions is fitted to the impulse responses (smooth line). Asterisk indicates two-way paired t test, p < 0.05 comparing peak amplitude values of fits to responses by individual flies. n = 15.</p>
<p>(C) Magnetic-tether flight simulator records body orientation in response to a spatially restricted odor plume. A video image tracks the fly’s angular heading changes on a magnetic tether allowing free movement in the yaw plane. A narrow plume of odor is delivered from one side of the arena.</p>
<p>(D) Exemplar flight orientation responses to an odor plume located at 180° (as in C) shown for T4T5-blocked flies (purple trace) and parental controls (black and gray traces).</p>
<p>(E) Inactivation of the T4T5 local motion-detecting neurons (T4T5-Gal4/UAS-Kir, n = 25) inhibits stabilization of odor plume tracking. Time in plume, for each category acquisition and tracking, is total time spent within ±10° of the odor nozzle over the time period defined in (D). T4T5-Gal4/+, n = 20; UAS-Kir/+, n = 19). Mean ± SEM are shown. Asterisk denotes significant difference (two-way paired t test, p < 0.05).</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Two-Photon Calcium Imaging and Characterization of Hx Tuning Properties</p>
<p>(A) Perspective-matched LED arena display within the imaging apparatus, equipped with an olfactometer.</p>
<p>(Bi) Posterior view confocal image of Hx dendrites within the right lobula plate via Odd-skipped-Gal4/GFP. The dashed white rectangle indicates the imaging ROI. Neuropil is indicated in purple (nc82 staining).</p>
<p>(Bii) Dorsal view of Hx dendrites within the lobula plate via Odd-skipped-Gal4/GFP (same as Bi). White dashed box within the lobula plate indicates enlarged region shown in (Biii). Scale bar, 25μm.</p>
<p>(Biii) Enlarged cross-section of lobula plate demonstrates the four layers of the lobula plate, with Hx innervation restricted to layer 2. Arrowheads indicate layer-specific directional tuning of T4T5 innervation [
<xref rid="bib23" ref-type="bibr">23</xref>
].</p>
<p>(C) Average ΔF/F from Hx in response to a vertical bar revolving in each of two horizontal directions, either back to front (red) or front to back (blue), across the full 216° display. Black line represents superimposed ipsilateral azimuthal receptive-field fit. n = 7 animals.</p>
<p>(D) Mean responses ± SEM to a vertical bar of varying width revolving in each of two horizontal directions across the display. n = 7 animals.</p>
<p>(E) Directional tuning of Hx. A square-wave grating (27° wavelength) was moved in each direction as indicated on the x axis, and maximum ΔF/F was normalized to the largest response observed. Points indicate mean responses ± SEM. Red point and arrowhead indicate the stimulus direction giving maximum response, used in (F). n = 7 animals.</p>
<p>(F) Temporal frequency tuning of Hx. A square-wave grating was moved at constant velocity from back to front. Points indicate mean responses ± SEM. n = 7 animals.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>Odor-Induced Modulation of Hx Activity</p>
<p>(A) Intracellular calcium response to visual motion by Hx neurons expressing GCaMP6m. Mean ΔF/F ± 1 SEM is shown.
<sup></sup>
p < 0.05, rank-sum test on peak response amplitude compared between epoch one (prior to odor stimulation) and each following epoch, n = 13 animals.</p>
<p>(B) Mean maximum ΔF/F from each individual fly compared between epochs one (prior to odor stimulation, black circle) and two (paired odor, orange circle) from (A).
<sup></sup>
p < 0.05, rank-sum test, n = 13 animals.</p>
<p>(C) Mean maximum ΔF/F from each individual fly compared between epochs one (prior to odor stimulation, black circle) and two (water vapor control, gray circle) from (A). Epochs one and two were not statistically different via rank-sum test, n = 6 animals.</p>
<p>(D) T4T5-Gal4 expression pattern within the visual ganglia. ROIs shown in (E) are from the lobula plate.</p>
<p>(E) Mean ΔF/F ± 1 SEM for T4T5 terminals in the lobula plate. n = 6 animals.</p>
<p>(F) Mean maximum ΔF/F for T4T5 terminals for individual animal in epochs one and two. n = 6 animals.</p>
<p>(G) R27B03-Gal4 expression pattern includes HSE neurons within the lobula plate, imaged within the primary HSE dendrite (white dashed box).</p>
<p>(H) Mean ΔF/F ± 1 SEM for HSE. n = 7 animals.</p>
<p>(I) Mean maximum ΔF/F for HSE for each individual animal in epochs one and two. n = 6 animals.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
<fig id="fig4">
<label>Figure 4</label>
<caption>
<p>Octopaminergic Neurons Innervating the Lobula Plate Are Activated by Odor, Make Close Contact with Hx, and Are Required for Behavioral Plume Tracking</p>
<p>(A) Intracellular calcium dynamics (ΔF/F, GCaMP6s) of octopaminergic terminals innervating the lobula plate in response to olfactory stimulation. Asterisks indicates significance between odor off (black line) and odor on (orange line) shown above the mean ΔF/F response (two-way paired t test, p < 0.005). n = 6 animals.</p>
<p>(B) Mean maximum ΔF/F for each individual animal during a period preceding the odor pulse (black) and during the odor pulse (orange). Horizontal bars over the ΔF/F response in (A) indicate the measurement epochs. n = 6 animals.</p>
<p>(C) GFP expression by GRASP indicates octopaminergic (Tdc2-Gal4) connections with Hx (Odd-Gal4). Inset shows Hx arborization pattern to highlight similarity in GFP profile between GRASP and the lobula plate tangential cell.</p>
<p>(D) Mean time ± SEM spent in odor plume during the duration of the experiment (olfactory flight simulator;
<xref rid="fig1" ref-type="fig">Figure 1</xref>
C) for flies carrying a null mutation in the
<italic>Drosophila</italic>
vesicular monoamine transporter
<italic>dVMAT</italic>
rescued with either a wild-type DVMAT transgene in octopaminergic neurons (Tdc2-Gal4/ VMAT) or a DVMAT trafficking mutant (Tdc2-Gal4/ Δ3VMAT). Asterisk indicates significant difference (two-way paired t test, p < 0.05) between VMAT (n = 32 animals) and Δ3VMAT (n = 21 animals). Also shown is mean time in plume for Tdc2-Gal4/VMAT-rescued flies exposed to water rather than vinegar (n = 32 animals,
<sup></sup>
p < 0.05 by two-way paired t test).</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Wasserman, Sara M" sort="Wasserman, Sara M" uniqKey="Wasserman S" first="Sara M." last="Wasserman">Sara M. Wasserman</name>
</region>
<name sortKey="Aptekar, Jacob W" sort="Aptekar, Jacob W" uniqKey="Aptekar J" first="Jacob W." last="Aptekar">Jacob W. Aptekar</name>
<name sortKey="Frye, Mark A" sort="Frye, Mark A" uniqKey="Frye M" first="Mark A." last="Frye">Mark A. Frye</name>
<name sortKey="Grygoruk, Anna" sort="Grygoruk, Anna" uniqKey="Grygoruk A" first="Anna" last="Grygoruk">Anna Grygoruk</name>
<name sortKey="Keles, Mehmet F" sort="Keles, Mehmet F" uniqKey="Keles M" first="Mehmet F." last="Keles">Mehmet F. Keles</name>
<name sortKey="Krantz, David E" sort="Krantz, David E" uniqKey="Krantz D" first="David E." last="Krantz">David E. Krantz</name>
<name sortKey="Lu, Patrick" sort="Lu, Patrick" uniqKey="Lu P" first="Patrick" last="Lu">Patrick Lu</name>
<name sortKey="Nguyen, Jade" sort="Nguyen, Jade" uniqKey="Nguyen J" first="Jade" last="Nguyen">Jade Nguyen</name>
<name sortKey="Wang, Austin L" sort="Wang, Austin L" uniqKey="Wang A" first="Austin L." last="Wang">Austin L. Wang</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Larsen, Camilla" sort="Larsen, Camilla" uniqKey="Larsen C" first="Camilla" last="Larsen">Camilla Larsen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003643 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 003643 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4331282
   |texte=   Olfactory Neuromodulation of Motion Vision Circuitry in Drosophila
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:25619767" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024