Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A survey on robotic devices for upper limb rehabilitation

Identifieur interne : 002C13 ( Ncbi/Merge ); précédent : 002C12; suivant : 002C14

A survey on robotic devices for upper limb rehabilitation

Auteurs : Paweł Maciejasz [France, Pologne, Allemagne] ; Jörg Eschweiler [Allemagne] ; Kurt Gerlach-Hahn [Allemagne] ; Arne Jansen-Troy [Allemagne] ; Steffen Leonhardt [Allemagne]

Source :

RBID : PMC:4029785

Abstract

The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.


Url:
DOI: 10.1186/1743-0003-11-3
PubMed: 24401110
PubMed Central: 4029785

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4029785

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A survey on robotic devices for upper limb rehabilitation</title>
<author>
<name sortKey="Maciejasz, Pawel" sort="Maciejasz, Pawel" uniqKey="Maciejasz P" first="Paweł" last="Maciejasz">Paweł Maciejasz</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon-Midi-Pyrénées</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I2">Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland</nlm:aff>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa</wicri:regionArea>
<wicri:noRegion>02-525 Warszawa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="I3">Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eschweiler, Jorg" sort="Eschweiler, Jorg" uniqKey="Eschweiler J" first="Jörg" last="Eschweiler">Jörg Eschweiler</name>
<affiliation wicri:level="3">
<nlm:aff id="I4">Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gerlach Hahn, Kurt" sort="Gerlach Hahn, Kurt" uniqKey="Gerlach Hahn K" first="Kurt" last="Gerlach-Hahn">Kurt Gerlach-Hahn</name>
<affiliation wicri:level="3">
<nlm:aff id="I5">Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jansen Troy, Arne" sort="Jansen Troy, Arne" uniqKey="Jansen Troy A" first="Arne" last="Jansen-Troy">Arne Jansen-Troy</name>
<affiliation wicri:level="3">
<nlm:aff id="I4">Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leonhardt, Steffen" sort="Leonhardt, Steffen" uniqKey="Leonhardt S" first="Steffen" last="Leonhardt">Steffen Leonhardt</name>
<affiliation wicri:level="3">
<nlm:aff id="I5">Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24401110</idno>
<idno type="pmc">4029785</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029785</idno>
<idno type="RBID">PMC:4029785</idno>
<idno type="doi">10.1186/1743-0003-11-3</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">002569</idno>
<idno type="wicri:Area/Pmc/Curation">002569</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000E46</idno>
<idno type="wicri:Area/Ncbi/Merge">002C13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A survey on robotic devices for upper limb rehabilitation</title>
<author>
<name sortKey="Maciejasz, Pawel" sort="Maciejasz, Pawel" uniqKey="Maciejasz P" first="Paweł" last="Maciejasz">Paweł Maciejasz</name>
<affiliation wicri:level="3">
<nlm:aff id="I1">DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon-Midi-Pyrénées</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="I2">Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland</nlm:aff>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa</wicri:regionArea>
<wicri:noRegion>02-525 Warszawa</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="I3">Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eschweiler, Jorg" sort="Eschweiler, Jorg" uniqKey="Eschweiler J" first="Jörg" last="Eschweiler">Jörg Eschweiler</name>
<affiliation wicri:level="3">
<nlm:aff id="I4">Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gerlach Hahn, Kurt" sort="Gerlach Hahn, Kurt" uniqKey="Gerlach Hahn K" first="Kurt" last="Gerlach-Hahn">Kurt Gerlach-Hahn</name>
<affiliation wicri:level="3">
<nlm:aff id="I5">Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jansen Troy, Arne" sort="Jansen Troy, Arne" uniqKey="Jansen Troy A" first="Arne" last="Jansen-Troy">Arne Jansen-Troy</name>
<affiliation wicri:level="3">
<nlm:aff id="I4">Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leonhardt, Steffen" sort="Leonhardt, Steffen" uniqKey="Leonhardt S" first="Steffen" last="Leonhardt">Steffen Leonhardt</name>
<affiliation wicri:level="3">
<nlm:aff id="I5">Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of NeuroEngineering and Rehabilitation</title>
<idno type="eISSN">1743-0003</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Platz, T" uniqKey="Platz T">T Platz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feys, H" uniqKey="Feys H">H Feys</name>
</author>
<author>
<name sortKey="Weerdt, Wd" uniqKey="Weerdt W">WD Weerdt</name>
</author>
<author>
<name sortKey="Verbeke, G" uniqKey="Verbeke G">G Verbeke</name>
</author>
<author>
<name sortKey="Steck, Gc" uniqKey="Steck G">GC Steck</name>
</author>
<author>
<name sortKey="Capiau, C" uniqKey="Capiau C">C Capiau</name>
</author>
<author>
<name sortKey="Kiekens, C" uniqKey="Kiekens C">C Kiekens</name>
</author>
<author>
<name sortKey="Dejaeger, E" uniqKey="Dejaeger E">E Dejaeger</name>
</author>
<author>
<name sortKey="Hoydonck, Gv" uniqKey="Hoydonck G">GV Hoydonck</name>
</author>
<author>
<name sortKey="Vermeersch, G" uniqKey="Vermeersch G">G Vermeersch</name>
</author>
<author>
<name sortKey="Cras, P" uniqKey="Cras P">P Cras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patton, J" uniqKey="Patton J">J Patton</name>
</author>
<author>
<name sortKey="Small, Sl" uniqKey="Small S">SL Small</name>
</author>
<author>
<name sortKey="Rymer, Wz" uniqKey="Rymer W">WZ Rymer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, L" uniqKey="Richards L">L Richards</name>
</author>
<author>
<name sortKey="Hanson, C" uniqKey="Hanson C">C Hanson</name>
</author>
<author>
<name sortKey="Wellborn, M" uniqKey="Wellborn M">M Wellborn</name>
</author>
<author>
<name sortKey="Sethi, A" uniqKey="Sethi A">A Sethi</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riener, R" uniqKey="Riener R">R Riener</name>
</author>
<author>
<name sortKey="Nef, T" uniqKey="Nef T">T Nef</name>
</author>
<author>
<name sortKey="Colombo, G" uniqKey="Colombo G">G Colombo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brewer, Br" uniqKey="Brewer B">BR Brewer</name>
</author>
<author>
<name sortKey="Mcdowell, Sk" uniqKey="Mcdowell S">SK McDowell</name>
</author>
<author>
<name sortKey="Worthen Chaudhari, Lc" uniqKey="Worthen Chaudhari L">LC Worthen-Chaudhari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gopura, Rarc" uniqKey="Gopura R">RARC Gopura</name>
</author>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Hs" uniqKey="Cheng H">HS Cheng</name>
</author>
<author>
<name sortKey="Ju, Ms" uniqKey="Ju M">MS Ju</name>
</author>
<author>
<name sortKey="Lin, Cck" uniqKey="Lin C">CCK Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cozens, Ja" uniqKey="Cozens J">JA Cozens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mavroidis, C" uniqKey="Mavroidis C">C Mavroidis</name>
</author>
<author>
<name sortKey="Nikitczuk, J" uniqKey="Nikitczuk J">J Nikitczuk</name>
</author>
<author>
<name sortKey="Weinberg, B" uniqKey="Weinberg B">B Weinberg</name>
</author>
<author>
<name sortKey="Danaher, G" uniqKey="Danaher G">G Danaher</name>
</author>
<author>
<name sortKey="Jensen, K" uniqKey="Jensen K">K Jensen</name>
</author>
<author>
<name sortKey="Pelletier, P" uniqKey="Pelletier P">P Pelletier</name>
</author>
<author>
<name sortKey="Prugnarola, J" uniqKey="Prugnarola J">J Prugnarola</name>
</author>
<author>
<name sortKey="Stuart, R" uniqKey="Stuart R">R Stuart</name>
</author>
<author>
<name sortKey="Arango, R" uniqKey="Arango R">R Arango</name>
</author>
<author>
<name sortKey="Leahey, M" uniqKey="Leahey M">M Leahey</name>
</author>
<author>
<name sortKey="Pavone, R" uniqKey="Pavone R">R Pavone</name>
</author>
<author>
<name sortKey="Provo, A" uniqKey="Provo A">A Provo</name>
</author>
<author>
<name sortKey="Yasevac, D" uniqKey="Yasevac D">D Yasevac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Yu Tong, K" uniqKey="Yu Tong K">K yu Tong</name>
</author>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, X" uniqKey="Hu X">X Hu</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Tsang, Vs" uniqKey="Tsang V">VS Tsang</name>
</author>
<author>
<name sortKey="Leung, Po" uniqKey="Leung P">PO Leung</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Tsang, Sf" uniqKey="Tsang S">SF Tsang</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kung, Pc" uniqKey="Kung P">PC Kung</name>
</author>
<author>
<name sortKey="Ju, Ms" uniqKey="Ju M">MS Ju</name>
</author>
<author>
<name sortKey="Lin, Cck" uniqKey="Lin C">CCK Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kung, Pc" uniqKey="Kung P">PC Kung</name>
</author>
<author>
<name sortKey="Lin, Cck" uniqKey="Lin C">CCK Lin</name>
</author>
<author>
<name sortKey="Ju, Ms" uniqKey="Ju M">MS Ju</name>
</author>
<author>
<name sortKey="Chen, Sm" uniqKey="Chen S">SM Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colombo, R" uniqKey="Colombo R">R Colombo</name>
</author>
<author>
<name sortKey="Pisano, F" uniqKey="Pisano F">F Pisano</name>
</author>
<author>
<name sortKey="Mazzone, A" uniqKey="Mazzone A">A Mazzone</name>
</author>
<author>
<name sortKey="Delconte, C" uniqKey="Delconte C">C Delconte</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Carrozza, Mc" uniqKey="Carrozza M">MC Carrozza</name>
</author>
<author>
<name sortKey="Dario, P" uniqKey="Dario P">P Dario</name>
</author>
<author>
<name sortKey="Minuco, G" uniqKey="Minuco G">G Minuco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Zheng, Xj" uniqKey="Zheng X">XJ Zheng</name>
</author>
<author>
<name sortKey="Lui, Kh" uniqKey="Lui K">KH Lui</name>
</author>
<author>
<name sortKey="Leung, Wwf" uniqKey="Leung W">WWF Leung</name>
</author>
<author>
<name sortKey="Ng, S" uniqKey="Ng S">S Ng</name>
</author>
<author>
<name sortKey="Au Yeung, Ssy" uniqKey="Au Yeung S">SSY Au-Yeung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Zheng, Xj" uniqKey="Zheng X">XJ Zheng</name>
</author>
<author>
<name sortKey="Leung, Wwf" uniqKey="Leung W">WWF Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sale, P" uniqKey="Sale P">P Sale</name>
</author>
<author>
<name sortKey="Lombardi, V" uniqKey="Lombardi V">V Lombardi</name>
</author>
<author>
<name sortKey="Franceschini, M" uniqKey="Franceschini M">M Franceschini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
<author>
<name sortKey="Ho, Sk" uniqKey="Ho S">SK Ho</name>
</author>
<author>
<name sortKey="Zhou, Hf" uniqKey="Zhou H">HF Zhou</name>
</author>
<author>
<name sortKey="Pang, Pmk" uniqKey="Pang P">PMK Pang</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Ng, Dtw" uniqKey="Ng D">DTW Ng</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, M" uniqKey="Turner M">M Turner</name>
</author>
<author>
<name sortKey="Gomez, D" uniqKey="Gomez D">D Gomez</name>
</author>
<author>
<name sortKey="Tremblay, M" uniqKey="Tremblay M">M Tremblay</name>
</author>
<author>
<name sortKey="Cutkosky, M" uniqKey="Cutkosky M">M Cutkosky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ertas, Ih" uniqKey="Ertas I">IH Ertas</name>
</author>
<author>
<name sortKey="Hocaoglu, E" uniqKey="Hocaoglu E">E Hocaoglu</name>
</author>
<author>
<name sortKey="Barkana, De" uniqKey="Barkana D">DE Barkana</name>
</author>
<author>
<name sortKey="Patoglu, V" uniqKey="Patoglu V">V Patoglu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fuxiang, Z" uniqKey="Fuxiang Z">Z Fuxiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanoglio, F" uniqKey="Vanoglio F">F Vanoglio</name>
</author>
<author>
<name sortKey="Luisa, A" uniqKey="Luisa A">A Luisa</name>
</author>
<author>
<name sortKey="Garofali, F" uniqKey="Garofali F">F Garofali</name>
</author>
<author>
<name sortKey="Mora, C" uniqKey="Mora C">C Mora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parrinello, I" uniqKey="Parrinello I">I Parrinello</name>
</author>
<author>
<name sortKey="Faletti, S" uniqKey="Faletti S">S Faletti</name>
</author>
<author>
<name sortKey="Santus, G" uniqKey="Santus G">G Santus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varalta, V" uniqKey="Varalta V">V Varalta</name>
</author>
<author>
<name sortKey="Smania, N" uniqKey="Smania N">N Smania</name>
</author>
<author>
<name sortKey="Geroin, C" uniqKey="Geroin C">C Geroin</name>
</author>
<author>
<name sortKey="Fonte, C" uniqKey="Fonte C">C Fonte</name>
</author>
<author>
<name sortKey="Gandolfi, M" uniqKey="Gandolfi M">M Gandolfi</name>
</author>
<author>
<name sortKey="Picelli, A" uniqKey="Picelli A">A Picelli</name>
</author>
<author>
<name sortKey="Munari, D" uniqKey="Munari D">D Munari</name>
</author>
<author>
<name sortKey="Ianes, P" uniqKey="Ianes P">P Ianes</name>
</author>
<author>
<name sortKey="Montemezzi, G" uniqKey="Montemezzi G">G Montemezzi</name>
</author>
<author>
<name sortKey="La Marchina, E" uniqKey="La Marchina E">E La Marchina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Nsk" uniqKey="Ho N">NSK Ho</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Fung, Kl" uniqKey="Fung K">KL Fung</name>
</author>
<author>
<name sortKey="Wei, Xj" uniqKey="Wei X">XJ Wei</name>
</author>
<author>
<name sortKey="Rong, W" uniqKey="Rong W">W Rong</name>
</author>
<author>
<name sortKey="Susanto, Ea" uniqKey="Susanto E">EA Susanto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schabowsky, Cn" uniqKey="Schabowsky C">CN Schabowsky</name>
</author>
<author>
<name sortKey="Godfrey, Sb" uniqKey="Godfrey S">SB Godfrey</name>
</author>
<author>
<name sortKey="Holley, Rj" uniqKey="Holley R">RJ Holley</name>
</author>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kline, T" uniqKey="Kline T">T Kline</name>
</author>
<author>
<name sortKey="Kamper, D" uniqKey="Kamper D">D Kamper</name>
</author>
<author>
<name sortKey="Schmit, B" uniqKey="Schmit B">B Schmit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mulas, M" uniqKey="Mulas M">M Mulas</name>
</author>
<author>
<name sortKey="Folgheraiter, M" uniqKey="Folgheraiter M">M Folgheraiter</name>
</author>
<author>
<name sortKey="Gini, G" uniqKey="Gini G">G Gini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hesse, S" uniqKey="Hesse S">S Hesse</name>
</author>
<author>
<name sortKey="Kuhlmann, H" uniqKey="Kuhlmann H">H Kuhlmann</name>
</author>
<author>
<name sortKey="Wilk, J" uniqKey="Wilk J">J Wilk</name>
</author>
<author>
<name sortKey="Tomelleri, C" uniqKey="Tomelleri C">C Tomelleri</name>
</author>
<author>
<name sortKey="Kirker, Sgb" uniqKey="Kirker S">SGB Kirker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rotella, Mf" uniqKey="Rotella M">MF Rotella</name>
</author>
<author>
<name sortKey="Reuther, Ke" uniqKey="Reuther K">KE Reuther</name>
</author>
<author>
<name sortKey="Hofmann, Cl" uniqKey="Hofmann C">CL Hofmann</name>
</author>
<author>
<name sortKey="Hage, Eb" uniqKey="Hage E">EB Hage</name>
</author>
<author>
<name sortKey="Busha, Bf" uniqKey="Busha B">BF BuSha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarakoglou, I" uniqKey="Sarakoglou I">I Sarakoglou</name>
</author>
<author>
<name sortKey="Tsagarakis, Ng" uniqKey="Tsagarakis N">NG Tsagarakis</name>
</author>
<author>
<name sortKey="Caldwell, Dg" uniqKey="Caldwell D">DG Caldwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Ho, Sk" uniqKey="Ho S">SK Ho</name>
</author>
<author>
<name sortKey="Pang, Pk" uniqKey="Pang P">PK Pang</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Tam, Wk" uniqKey="Tam W">WK Tam</name>
</author>
<author>
<name sortKey="Fung, Kl" uniqKey="Fung K">KL Fung</name>
</author>
<author>
<name sortKey="Wei, Xj" uniqKey="Wei X">XJ Wei</name>
</author>
<author>
<name sortKey="Chen, Pn" uniqKey="Chen P">PN Chen</name>
</author>
<author>
<name sortKey="Chen, M" uniqKey="Chen M">M Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wege, A" uniqKey="Wege A">A Wege</name>
</author>
<author>
<name sortKey="Hommel, G" uniqKey="Hommel G">G Hommel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Worsnopp, Tt" uniqKey="Worsnopp T">TT Worsnopp</name>
</author>
<author>
<name sortKey="Peshkin, Ma" uniqKey="Peshkin M">MA Peshkin</name>
</author>
<author>
<name sortKey="Colgate, Je" uniqKey="Colgate J">JE Colgate</name>
</author>
<author>
<name sortKey="Kamper, Dg" uniqKey="Kamper D">DG Kamper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, K" uniqKey="Xing K">K Xing</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z Liu</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellis, Md" uniqKey="Ellis M">MD Ellis</name>
</author>
<author>
<name sortKey="Sukal, T" uniqKey="Sukal T">T Sukal</name>
</author>
<author>
<name sortKey="Demott, T" uniqKey="Demott T">T DeMott</name>
</author>
<author>
<name sortKey="Dewald, Jpa" uniqKey="Dewald J">JPA Dewald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kahn, Le" uniqKey="Kahn L">LE Kahn</name>
</author>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
<author>
<name sortKey="Rymer, Wz" uniqKey="Rymer W">WZ Rymer</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Jj" uniqKey="Chang J">JJ Chang</name>
</author>
<author>
<name sortKey="Tung, Wl" uniqKey="Tung W">WL Tung</name>
</author>
<author>
<name sortKey="Wu, Wl" uniqKey="Wu W">WL Wu</name>
</author>
<author>
<name sortKey="Huang, Mh" uniqKey="Huang M">MH Huang</name>
</author>
<author>
<name sortKey="Su, Fc" uniqKey="Su F">FC Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Volpe, Bt" uniqKey="Volpe B">BT Volpe</name>
</author>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
<author>
<name sortKey="Otr, Le" uniqKey="Otr L">LE OTR</name>
</author>
<author>
<name sortKey="Diels, C" uniqKey="Diels C">C Diels</name>
</author>
<author>
<name sortKey="Aisen, M" uniqKey="Aisen M">M Aisen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabadi, M" uniqKey="Rabadi M">M Rabadi</name>
</author>
<author>
<name sortKey="Galgano, M" uniqKey="Galgano M">M Galgano</name>
</author>
<author>
<name sortKey="Lynch, D" uniqKey="Lynch D">D Lynch</name>
</author>
<author>
<name sortKey="Akerman, M" uniqKey="Akerman M">M Akerman</name>
</author>
<author>
<name sortKey="Lesser, M" uniqKey="Lesser M">M Lesser</name>
</author>
<author>
<name sortKey="Volpe, B" uniqKey="Volpe B">B Volpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ju, Ms" uniqKey="Ju M">MS Ju</name>
</author>
<author>
<name sortKey="Lin, Cck" uniqKey="Lin C">CCK Lin</name>
</author>
<author>
<name sortKey="Lin, Dh" uniqKey="Lin D">DH Lin</name>
</author>
<author>
<name sortKey="Hwang, Is" uniqKey="Hwang I">IS Hwang</name>
</author>
<author>
<name sortKey="Chen, Sm" uniqKey="Chen S">SM Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
<author>
<name sortKey="Rahman, Mh" uniqKey="Rahman M">MH Rahman</name>
</author>
<author>
<name sortKey="Sasaki, M" uniqKey="Sasaki M">M Sasaki</name>
</author>
<author>
<name sortKey="Teramoto, K" uniqKey="Teramoto K">K Teramoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
<author>
<name sortKey="Gallina, P" uniqKey="Gallina P">P Gallina</name>
</author>
<author>
<name sortKey="Masiero, S" uniqKey="Masiero S">S Masiero</name>
</author>
<author>
<name sortKey="Rossi, A" uniqKey="Rossi A">A Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colombo, R" uniqKey="Colombo R">R Colombo</name>
</author>
<author>
<name sortKey="Sterpi, I" uniqKey="Sterpi I">I Sterpi</name>
</author>
<author>
<name sortKey="Mazzone, A" uniqKey="Mazzone A">A Mazzone</name>
</author>
<author>
<name sortKey="Delconte, C" uniqKey="Delconte C">C Delconte</name>
</author>
<author>
<name sortKey="Minuco, G" uniqKey="Minuco G">G Minuco</name>
</author>
<author>
<name sortKey="Pisano, F" uniqKey="Pisano F">F Pisano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
<author>
<name sortKey="Burgar, Cg" uniqKey="Burgar C">CG Burgar</name>
</author>
<author>
<name sortKey="Shor, Pc" uniqKey="Shor P">PC Shor</name>
</author>
<author>
<name sortKey="Majmundar, M" uniqKey="Majmundar M">M Majmundar</name>
</author>
<author>
<name sortKey="Der Loos, Mv" uniqKey="Der Loos M">MV der Loos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
<author>
<name sortKey="Burgar, Cg" uniqKey="Burgar C">CG Burgar</name>
</author>
<author>
<name sortKey="Der Loos, Mv" uniqKey="Der Loos M">MV der Loos</name>
</author>
<author>
<name sortKey="Shor, Pc" uniqKey="Shor P">PC Shor</name>
</author>
<author>
<name sortKey="Majmundar, M" uniqKey="Majmundar M">M Majmundar</name>
</author>
<author>
<name sortKey="Yap, R" uniqKey="Yap R">R Yap</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
<author>
<name sortKey="Burgar, Cg" uniqKey="Burgar C">CG Burgar</name>
</author>
<author>
<name sortKey="Shor, Pc" uniqKey="Shor P">PC Shor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moubarak, S" uniqKey="Moubarak S">S Moubarak</name>
</author>
<author>
<name sortKey="Pham, M" uniqKey="Pham M">M Pham</name>
</author>
<author>
<name sortKey="Pajdla, T" uniqKey="Pajdla T">T Pajdla</name>
</author>
<author>
<name sortKey="Redarce, T" uniqKey="Redarce T">T Redarce</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masiero, S" uniqKey="Masiero S">S Masiero</name>
</author>
<author>
<name sortKey="Celia, A" uniqKey="Celia A">A Celia</name>
</author>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
<author>
<name sortKey="Armani, M" uniqKey="Armani M">M Armani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masiero, S" uniqKey="Masiero S">S Masiero</name>
</author>
<author>
<name sortKey="Armani, M" uniqKey="Armani M">M Armani</name>
</author>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fazekas, G" uniqKey="Fazekas G">G Fazekas</name>
</author>
<author>
<name sortKey="Horvath, M" uniqKey="Horvath M">M Horvath</name>
</author>
<author>
<name sortKey="Troznai, T" uniqKey="Troznai T">T Troznai</name>
</author>
<author>
<name sortKey="Toth, A" uniqKey="Toth A">A Toth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hesse, S" uniqKey="Hesse S">S Hesse</name>
</author>
<author>
<name sortKey="Schulte Tigges, G" uniqKey="Schulte Tigges G">G Schulte-Tigges</name>
</author>
<author>
<name sortKey="Konrad, M" uniqKey="Konrad M">M Konrad</name>
</author>
<author>
<name sortKey="Bardeleben, A" uniqKey="Bardeleben A">A Bardeleben</name>
</author>
<author>
<name sortKey="Werner, C" uniqKey="Werner C">C Werner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hesse, S" uniqKey="Hesse S">S Hesse</name>
</author>
<author>
<name sortKey="Werner, C" uniqKey="Werner C">C Werner</name>
</author>
<author>
<name sortKey="Pohl, M" uniqKey="Pohl M">M Pohl</name>
</author>
<author>
<name sortKey="Rueckriem, S" uniqKey="Rueckriem S">S Rueckriem</name>
</author>
<author>
<name sortKey="Mehrholz, J" uniqKey="Mehrholz J">J Mehrholz</name>
</author>
<author>
<name sortKey="Lingnau, Ml" uniqKey="Lingnau M">ML Lingnau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allington, J" uniqKey="Allington J">J Allington</name>
</author>
<author>
<name sortKey="Spencer, Sj" uniqKey="Spencer S">SJ Spencer</name>
</author>
<author>
<name sortKey="Klein, J" uniqKey="Klein J">J Klein</name>
</author>
<author>
<name sortKey="Buell, M" uniqKey="Buell M">M Buell</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Bobrow, J" uniqKey="Bobrow J">J Bobrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordo, P" uniqKey="Cordo P">P Cordo</name>
</author>
<author>
<name sortKey="Lutsep, H" uniqKey="Lutsep H">H Lutsep</name>
</author>
<author>
<name sortKey="Cordo, L" uniqKey="Cordo L">L Cordo</name>
</author>
<author>
<name sortKey="Wright, Wg" uniqKey="Wright W">WG Wright</name>
</author>
<author>
<name sortKey="Cacciatore, T" uniqKey="Cacciatore T">T Cacciatore</name>
</author>
<author>
<name sortKey="Skoss, R" uniqKey="Skoss R">R Skoss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koeneman, Ej" uniqKey="Koeneman E">EJ Koeneman</name>
</author>
<author>
<name sortKey="Schultz, Rs" uniqKey="Schultz R">RS Schultz</name>
</author>
<author>
<name sortKey="Wolf, Sl" uniqKey="Wolf S">SL Wolf</name>
</author>
<author>
<name sortKey="Herring, De" uniqKey="Herring D">DE Herring</name>
</author>
<author>
<name sortKey="Koeneman, Jb" uniqKey="Koeneman J">JB Koeneman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kutner, Ng" uniqKey="Kutner N">NG Kutner</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R Zhang</name>
</author>
<author>
<name sortKey="Butler, Aj" uniqKey="Butler A">AJ Butler</name>
</author>
<author>
<name sortKey="Wolf, Sl" uniqKey="Wolf S">SL Wolf</name>
</author>
<author>
<name sortKey="Alberts, Jl" uniqKey="Alberts J">JL Alberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosenstein, L" uniqKey="Rosenstein L">L Rosenstein</name>
</author>
<author>
<name sortKey="Ridgel, Al" uniqKey="Ridgel A">AL Ridgel</name>
</author>
<author>
<name sortKey="Thota, A" uniqKey="Thota A">A Thota</name>
</author>
<author>
<name sortKey="Samame, B" uniqKey="Samame B">B Samame</name>
</author>
<author>
<name sortKey="Alberts, Jl" uniqKey="Alberts J">JL Alberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frick, Em" uniqKey="Frick E">EM Frick</name>
</author>
<author>
<name sortKey="Alberts, Jl" uniqKey="Alberts J">JL Alberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, M" uniqKey="Johnson M">M Johnson</name>
</author>
<author>
<name sortKey="Wisneski, K" uniqKey="Wisneski K">K Wisneski</name>
</author>
<author>
<name sortKey="Anderson, J" uniqKey="Anderson J">J Anderson</name>
</author>
<author>
<name sortKey="Nathan, D" uniqKey="Nathan D">D Nathan</name>
</author>
<author>
<name sortKey="Smith, R" uniqKey="Smith R">R Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wisneski, Kj" uniqKey="Wisneski K">KJ Wisneski</name>
</author>
<author>
<name sortKey="Johnson, Mj" uniqKey="Johnson M">MJ Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pignolo, L" uniqKey="Pignolo L">L Pignolo</name>
</author>
<author>
<name sortKey="Dolce, G" uniqKey="Dolce G">G Dolce</name>
</author>
<author>
<name sortKey="Basta, G" uniqKey="Basta G">G Basta</name>
</author>
<author>
<name sortKey="Lucca, Lf" uniqKey="Lucca L">LF Lucca</name>
</author>
<author>
<name sortKey="Serra, S" uniqKey="Serra S">S Serra</name>
</author>
<author>
<name sortKey="Sannita, Wg" uniqKey="Sannita W">WG Sannita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coote, S" uniqKey="Coote S">S Coote</name>
</author>
<author>
<name sortKey="Murphy, B" uniqKey="Murphy B">B Murphy</name>
</author>
<author>
<name sortKey="Harwin, W" uniqKey="Harwin W">W Harwin</name>
</author>
<author>
<name sortKey="Stokes, E" uniqKey="Stokes E">E Stokes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Culmer, Pr" uniqKey="Culmer P">PR Culmer</name>
</author>
<author>
<name sortKey="Jackson, Ae" uniqKey="Jackson A">AE Jackson</name>
</author>
<author>
<name sortKey="Makower, Sg" uniqKey="Makower S">SG Makower</name>
</author>
<author>
<name sortKey="Cozens, Ja" uniqKey="Cozens J">JA Cozens</name>
</author>
<author>
<name sortKey="Levesley, Mc" uniqKey="Levesley M">MC Levesley</name>
</author>
<author>
<name sortKey="Mon Williams, M" uniqKey="Mon Williams M">M Mon-Williams</name>
</author>
<author>
<name sortKey="Bhakta, B" uniqKey="Bhakta B">B Bhakta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
<author>
<name sortKey="Kose, Y" uniqKey="Kose Y">Y Kose</name>
</author>
<author>
<name sortKey="Hayashi, Y" uniqKey="Hayashi Y">Y Hayashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisoli, A" uniqKey="Frisoli A">A Frisoli</name>
</author>
<author>
<name sortKey="Bergamasco, M" uniqKey="Bergamasco M">M Bergamasco</name>
</author>
<author>
<name sortKey="Borelli, L" uniqKey="Borelli L">L Borelli</name>
</author>
<author>
<name sortKey="Montagner, A" uniqKey="Montagner A">A Montagner</name>
</author>
<author>
<name sortKey="Greco, G" uniqKey="Greco G">G Greco</name>
</author>
<author>
<name sortKey="Procopio, C" uniqKey="Procopio C">C Procopio</name>
</author>
<author>
<name sortKey="Carboncini, M" uniqKey="Carboncini M">M Carboncini</name>
</author>
<author>
<name sortKey="Rossi, B" uniqKey="Rossi B">B Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carignan, C" uniqKey="Carignan C">C Carignan</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
<author>
<name sortKey="Roderick, S" uniqKey="Roderick S">S Roderick</name>
</author>
<author>
<name sortKey="Naylor, M" uniqKey="Naylor M">M Naylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fluet, Gg" uniqKey="Fluet G">GG Fluet</name>
</author>
<author>
<name sortKey="Qiu, Q" uniqKey="Qiu Q">Q Qiu</name>
</author>
<author>
<name sortKey="Saleh, S" uniqKey="Saleh S">S Saleh</name>
</author>
<author>
<name sortKey="Ramirez, D" uniqKey="Ramirez D">D Ramirez</name>
</author>
<author>
<name sortKey="Adamovich, S" uniqKey="Adamovich S">S Adamovich</name>
</author>
<author>
<name sortKey="Kelly, D" uniqKey="Kelly D">D Kelly</name>
</author>
<author>
<name sortKey="Parikh, H" uniqKey="Parikh H">H Parikh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolbrecht, Et" uniqKey="Wolbrecht E">ET Wolbrecht</name>
</author>
<author>
<name sortKey="Chan, V" uniqKey="Chan V">V Chan</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Bobrow, Je" uniqKey="Bobrow J">JE Bobrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Housman, Sj" uniqKey="Housman S">SJ Housman</name>
</author>
<author>
<name sortKey="Le, V" uniqKey="Le V">V Le</name>
</author>
<author>
<name sortKey="Rahman, T" uniqKey="Rahman T">T Rahman</name>
</author>
<author>
<name sortKey="Sanchez, Rj" uniqKey="Sanchez R">RJ Sanchez</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Housman, Sj" uniqKey="Housman S">SJ Housman</name>
</author>
<author>
<name sortKey="Scott, Km" uniqKey="Scott K">KM Scott</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, Rj" uniqKey="Sanchez R">RJ Sanchez</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Rao, S" uniqKey="Rao S">S Rao</name>
</author>
<author>
<name sortKey="Shah, P" uniqKey="Shah P">P Shah</name>
</author>
<author>
<name sortKey="Smith, R" uniqKey="Smith R">R Smith</name>
</author>
<author>
<name sortKey="Rahman, T" uniqKey="Rahman T">T Rahman</name>
</author>
<author>
<name sortKey="Cramer, Sc" uniqKey="Cramer S">SC Cramer</name>
</author>
<author>
<name sortKey="Bobrow, Je" uniqKey="Bobrow J">JE Bobrow</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A Gupta</name>
</author>
<author>
<name sortKey="O Alley, M" uniqKey="O Alley M">M O’Malley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lambercy, O" uniqKey="Lambercy O">O Lambercy</name>
</author>
<author>
<name sortKey="Dovat, L" uniqKey="Dovat L">L Dovat</name>
</author>
<author>
<name sortKey="Gassert, R" uniqKey="Gassert R">R Gassert</name>
</author>
<author>
<name sortKey="Burdet, E" uniqKey="Burdet E">E Burdet</name>
</author>
<author>
<name sortKey="Teo, Cl" uniqKey="Teo C">CL Teo</name>
</author>
<author>
<name sortKey="Milner, T" uniqKey="Milner T">T Milner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casadio, M" uniqKey="Casadio M">M Casadio</name>
</author>
<author>
<name sortKey="Giannoni, P" uniqKey="Giannoni P">P Giannoni</name>
</author>
<author>
<name sortKey="Morasso, P" uniqKey="Morasso P">P Morasso</name>
</author>
<author>
<name sortKey="Sanguineti, V" uniqKey="Sanguineti V">V Sanguineti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpinella, I" uniqKey="Carpinella I">I Carpinella</name>
</author>
<author>
<name sortKey="Cattaneo, D" uniqKey="Cattaneo D">D Cattaneo</name>
</author>
<author>
<name sortKey="Abuarqub, S" uniqKey="Abuarqub S">S Abuarqub</name>
</author>
<author>
<name sortKey="Ferrarin, M" uniqKey="Ferrarin M">M Ferrarin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casadio, M" uniqKey="Casadio M">M Casadio</name>
</author>
<author>
<name sortKey="Sanguineti, V" uniqKey="Sanguineti V">V Sanguineti</name>
</author>
<author>
<name sortKey="Solaro, C" uniqKey="Solaro C">C Solaro</name>
</author>
<author>
<name sortKey="Morasso, Pg" uniqKey="Morasso P">PG Morasso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergaro, E" uniqKey="Vergaro E">E Vergaro</name>
</author>
<author>
<name sortKey="Squeri, V" uniqKey="Squeri V">V Squeri</name>
</author>
<author>
<name sortKey="Brichetto, G" uniqKey="Brichetto G">G Brichetto</name>
</author>
<author>
<name sortKey="Casadio, M" uniqKey="Casadio M">M Casadio</name>
</author>
<author>
<name sortKey="Morasso, P" uniqKey="Morasso P">P Morasso</name>
</author>
<author>
<name sortKey="Solaro, C" uniqKey="Solaro C">C Solaro</name>
</author>
<author>
<name sortKey="Sanguineti, V" uniqKey="Sanguineti V">V Sanguineti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deneve, A" uniqKey="Deneve A">A Denève</name>
</author>
<author>
<name sortKey="Moughamir, S" uniqKey="Moughamir S">S Moughamir</name>
</author>
<author>
<name sortKey="Afilal, L" uniqKey="Afilal L">L Afilal</name>
</author>
<author>
<name sortKey="Zaytoon, J" uniqKey="Zaytoon J">J Zaytoon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furuhashi, Y" uniqKey="Furuhashi Y">Y Furuhashi</name>
</author>
<author>
<name sortKey="Nagasaki, M" uniqKey="Nagasaki M">M Nagasaki</name>
</author>
<author>
<name sortKey="Aoki, T" uniqKey="Aoki T">T Aoki</name>
</author>
<author>
<name sortKey="Morita, Y" uniqKey="Morita Y">Y Morita</name>
</author>
<author>
<name sortKey="Ukai, H" uniqKey="Ukai H">H Ukai</name>
</author>
<author>
<name sortKey="Matsui, N" uniqKey="Matsui N">N Matsui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mathai, A" uniqKey="Mathai A">A Mathai</name>
</author>
<author>
<name sortKey="Qiu, Q" uniqKey="Qiu Q">Q Qiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozawa, T" uniqKey="Ozawa T">T Ozawa</name>
</author>
<author>
<name sortKey="Kikuchi, T" uniqKey="Kikuchi T">T Kikuchi</name>
</author>
<author>
<name sortKey="Fukushima, K" uniqKey="Fukushima K">K Fukushima</name>
</author>
<author>
<name sortKey="Akai, H" uniqKey="Akai H">H Akai</name>
</author>
<author>
<name sortKey="Fukuda, T" uniqKey="Fukuda T">T Fukuda</name>
</author>
<author>
<name sortKey="Tanida, S" uniqKey="Tanida S">S Tanida</name>
</author>
<author>
<name sortKey="Fujikawa, T" uniqKey="Fujikawa T">T Fujikawa</name>
</author>
<author>
<name sortKey="Kano, S" uniqKey="Kano S">S Kano</name>
</author>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Wei, R" uniqKey="Wei R">R Wei</name>
</author>
<author>
<name sortKey="Austin, H" uniqKey="Austin H">H Austin</name>
</author>
<author>
<name sortKey="Buchanan, S" uniqKey="Buchanan S">S Buchanan</name>
</author>
<author>
<name sortKey="Herman, R" uniqKey="Herman R">R Herman</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
<author>
<name sortKey="Zanotto, D" uniqKey="Zanotto D">D Zanotto</name>
</author>
<author>
<name sortKey="Secoli, R" uniqKey="Secoli R">R Secoli</name>
</author>
<author>
<name sortKey="Rossi, A" uniqKey="Rossi A">A Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y Tanaka</name>
</author>
<author>
<name sortKey="Ishii, M" uniqKey="Ishii M">M Ishii</name>
</author>
<author>
<name sortKey="Tsuji, T" uniqKey="Tsuji T">T Tsuji</name>
</author>
<author>
<name sortKey="Imamura, N" uniqKey="Imamura N">N Imamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiu Feng, Z" uniqKey="Xiu Feng Z">Z Xiu-Feng</name>
</author>
<author>
<name sortKey="Lin Hong, J" uniqKey="Lin Hong J">J Lin-Hong</name>
</author>
<author>
<name sortKey="Li Yun, G" uniqKey="Li Yun G">G Li-Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nef, T" uniqKey="Nef T">T Nef</name>
</author>
<author>
<name sortKey="Guidali, M" uniqKey="Guidali M">M Guidali</name>
</author>
<author>
<name sortKey="Klamroth Marganska, V" uniqKey="Klamroth Marganska V">V Klamroth-Marganska</name>
</author>
<author>
<name sortKey="Riener, R" uniqKey="Riener R">R Riener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nef, T" uniqKey="Nef T">T Nef</name>
</author>
<author>
<name sortKey="Quinter, G" uniqKey="Quinter G">G Quinter</name>
</author>
<author>
<name sortKey="Muller, R" uniqKey="Muller R">R Müller</name>
</author>
<author>
<name sortKey="Riener, R" uniqKey="Riener R">R Riener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Staubli, P" uniqKey="Staubli P">P Staubli</name>
</author>
<author>
<name sortKey="Nef, T" uniqKey="Nef T">T Nef</name>
</author>
<author>
<name sortKey="Klamroth Marganska, V" uniqKey="Klamroth Marganska V">V Klamroth-Marganska</name>
</author>
<author>
<name sortKey="Riener, R" uniqKey="Riener R">R Riener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gijbels, D" uniqKey="Gijbels D">D Gijbels</name>
</author>
<author>
<name sortKey="Lamers, I" uniqKey="Lamers I">I Lamers</name>
</author>
<author>
<name sortKey="Kerkhofs, L" uniqKey="Kerkhofs L">L Kerkhofs</name>
</author>
<author>
<name sortKey="Alders, G" uniqKey="Alders G">G Alders</name>
</author>
<author>
<name sortKey="Knippenberg, E" uniqKey="Knippenberg E">E Knippenberg</name>
</author>
<author>
<name sortKey="Feys, P" uniqKey="Feys P">P Feys</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loureiro, Rcv" uniqKey="Loureiro R">RCV Loureiro</name>
</author>
<author>
<name sortKey="Lamperd, B" uniqKey="Lamperd B">B Lamperd</name>
</author>
<author>
<name sortKey="Collin, C" uniqKey="Collin C">C Collin</name>
</author>
<author>
<name sortKey="Harwin, Ws" uniqKey="Harwin W">WS Harwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bovolenta, F" uniqKey="Bovolenta F">F Bovolenta</name>
</author>
<author>
<name sortKey="Sale, P" uniqKey="Sale P">P Sale</name>
</author>
<author>
<name sortKey="Dall Rmi, V" uniqKey="Dall Rmi V">V Dall’Armi</name>
</author>
<author>
<name sortKey="Clerici, P" uniqKey="Clerici P">P Clerici</name>
</author>
<author>
<name sortKey="Franceschini, M" uniqKey="Franceschini M">M Franceschini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Treger, I" uniqKey="Treger I">I Treger</name>
</author>
<author>
<name sortKey="Faran, S" uniqKey="Faran S">S Faran</name>
</author>
<author>
<name sortKey="Ring, H" uniqKey="Ring H">H Ring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perry, Jc" uniqKey="Perry J">JC Perry</name>
</author>
<author>
<name sortKey="Rosen, J" uniqKey="Rosen J">J Rosen</name>
</author>
<author>
<name sortKey="Burns, S" uniqKey="Burns S">S Burns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hasegawa, Y" uniqKey="Hasegawa Y">Y Hasegawa</name>
</author>
<author>
<name sortKey="Mikami, Y" uniqKey="Mikami Y">Y Mikami</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K Watanabe</name>
</author>
<author>
<name sortKey="Sankai, Y" uniqKey="Sankai Y">Y Sankai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rocon, E" uniqKey="Rocon E">E Rocon</name>
</author>
<author>
<name sortKey="Belda Lois, Jm" uniqKey="Belda Lois J">JM Belda-Lois</name>
</author>
<author>
<name sortKey="Ruiz, Af" uniqKey="Ruiz A">AF Ruiz</name>
</author>
<author>
<name sortKey="Manto, M" uniqKey="Manto M">M Manto</name>
</author>
<author>
<name sortKey="Moreno, Jc" uniqKey="Moreno J">JC Moreno</name>
</author>
<author>
<name sortKey="Pons, Jl" uniqKey="Pons J">JL Pons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loureiro, Rcv" uniqKey="Loureiro R">RCV Loureiro</name>
</author>
<author>
<name sortKey="Belda Lois, Jm" uniqKey="Belda Lois J">JM Belda-Lois</name>
</author>
<author>
<name sortKey="Lima, Er" uniqKey="Lima E">ER Lima</name>
</author>
<author>
<name sortKey="Pons, Jl" uniqKey="Pons J">JL Pons</name>
</author>
<author>
<name sortKey="Sanchez Lacuesta, Jj" uniqKey="Sanchez Lacuesta J">JJ Sanchez-Lacuesta</name>
</author>
<author>
<name sortKey="Harwin, Ws" uniqKey="Harwin W">WS Harwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pedrocchi, A" uniqKey="Pedrocchi A">A Pedrocchi</name>
</author>
<author>
<name sortKey="Ferrante, S" uniqKey="Ferrante S">S Ferrante</name>
</author>
<author>
<name sortKey="Ambrosini, E" uniqKey="Ambrosini E">E Ambrosini</name>
</author>
<author>
<name sortKey="Gandolla, M" uniqKey="Gandolla M">M Gandolla</name>
</author>
<author>
<name sortKey="Casellato, C" uniqKey="Casellato C">C Casellato</name>
</author>
<author>
<name sortKey="Schauer, T" uniqKey="Schauer T">T Schauer</name>
</author>
<author>
<name sortKey="Klauer, C" uniqKey="Klauer C">C Klauer</name>
</author>
<author>
<name sortKey="Pascual, J" uniqKey="Pascual J">J Pascual</name>
</author>
<author>
<name sortKey="Vidaurre, C" uniqKey="Vidaurre C">C Vidaurre</name>
</author>
<author>
<name sortKey="Gfoehler, M" uniqKey="Gfoehler M">M Gfoehler</name>
</author>
<author>
<name sortKey="Reichenfelser, W" uniqKey="Reichenfelser W">W Reichenfelser</name>
</author>
<author>
<name sortKey="Karner, J" uniqKey="Karner J">J Karner</name>
</author>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Crema, A" uniqKey="Crema A">A Crema</name>
</author>
<author>
<name sortKey="Molteni, F" uniqKey="Molteni F">F Molteni</name>
</author>
<author>
<name sortKey="Rossini, M" uniqKey="Rossini M">M Rossini</name>
</author>
<author>
<name sortKey="Palumbo, G" uniqKey="Palumbo G">G Palumbo</name>
</author>
<author>
<name sortKey="Guanziroli, E" uniqKey="Guanziroli E">E Guanziroli</name>
</author>
<author>
<name sortKey="Jedlitschka, A" uniqKey="Jedlitschka A">A Jedlitschka</name>
</author>
<author>
<name sortKey="Hack, M" uniqKey="Hack M">M Hack</name>
</author>
<author>
<name sortKey="Bulgheroni, M" uniqKey="Bulgheroni M">M Bulgheroni</name>
</author>
<author>
<name sortKey="D Amico, E" uniqKey="D Amico E">E D Amico</name>
</author>
<author>
<name sortKey="Schenk, P" uniqKey="Schenk P">P Schenk</name>
</author>
<author>
<name sortKey="Zwicker, S" uniqKey="Zwicker S">S Zwicker</name>
</author>
<author>
<name sortKey="Duschau Wicke, A" uniqKey="Duschau Wicke A">A Duschau-Wicke</name>
</author>
<author>
<name sortKey="Miseikis, J" uniqKey="Miseikis J">J Miseikis</name>
</author>
<author>
<name sortKey="Graber, L" uniqKey="Graber L">L Graber</name>
</author>
<author>
<name sortKey="Ferrigno, G" uniqKey="Ferrigno G">G Ferrigno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dijkers, Mp" uniqKey="Dijkers M">MP Dijkers</name>
</author>
<author>
<name sortKey="Debear, Pc" uniqKey="Debear P">PC deBear</name>
</author>
<author>
<name sortKey="Erlandson, Rf" uniqKey="Erlandson R">RF Erlandson</name>
</author>
<author>
<name sortKey="Kristy, K" uniqKey="Kristy K">K Kristy</name>
</author>
<author>
<name sortKey="Geer, Dm" uniqKey="Geer D">DM Geer</name>
</author>
<author>
<name sortKey="Nichols, A" uniqKey="Nichols A">A Nichols</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donnan, Ga" uniqKey="Donnan G">GA Donnan</name>
</author>
<author>
<name sortKey="Fisher, M" uniqKey="Fisher M">M Fisher</name>
</author>
<author>
<name sortKey="Macleod, M" uniqKey="Macleod M">M Macleod</name>
</author>
<author>
<name sortKey="Davis, Sm" uniqKey="Davis S">SM Davis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oda, K" uniqKey="Oda K">K Oda</name>
</author>
<author>
<name sortKey="Isozumi, S" uniqKey="Isozumi S">S Isozumi</name>
</author>
<author>
<name sortKey="Ohyama, Y" uniqKey="Ohyama Y">Y Ohyama</name>
</author>
<author>
<name sortKey="Tamida, K" uniqKey="Tamida K">K Tamida</name>
</author>
<author>
<name sortKey="Kikuchi, T" uniqKey="Kikuchi T">T Kikuchi</name>
</author>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kikuchi, T" uniqKey="Kikuchi T">T Kikuchi</name>
</author>
<author>
<name sortKey="Xinghao, H" uniqKey="Xinghao H">H Xinghao</name>
</author>
<author>
<name sortKey="Fukushima, K" uniqKey="Fukushima K">K Fukushima</name>
</author>
<author>
<name sortKey="Oda, K" uniqKey="Oda K">K Oda</name>
</author>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
<author>
<name sortKey="Inoue, A" uniqKey="Inoue A">A Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, R" uniqKey="Sanchez R">R Sanchez</name>
</author>
<author>
<name sortKey="Reinkensmeyer, D" uniqKey="Reinkensmeyer D">D Reinkensmeyer</name>
</author>
<author>
<name sortKey="Shah, P" uniqKey="Shah P">P Shah</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Rao, S" uniqKey="Rao S">S Rao</name>
</author>
<author>
<name sortKey="Smith, R" uniqKey="Smith R">R Smith</name>
</author>
<author>
<name sortKey="Cramer, S" uniqKey="Cramer S">S Cramer</name>
</author>
<author>
<name sortKey="Rahman, T" uniqKey="Rahman T">T Rahman</name>
</author>
<author>
<name sortKey="Bobrow, J" uniqKey="Bobrow J">J Bobrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
<author>
<name sortKey="Aisen, Ml" uniqKey="Aisen M">ML Aisen</name>
</author>
<author>
<name sortKey="Volpe, Bt" uniqKey="Volpe B">BT Volpe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schoone, M" uniqKey="Schoone M">M Schoone</name>
</author>
<author>
<name sortKey="Van Os, P" uniqKey="Van Os P">P van Os</name>
</author>
<author>
<name sortKey="Campagne, A" uniqKey="Campagne A">A Campagne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spencer, Sj" uniqKey="Spencer S">SJ Spencer</name>
</author>
<author>
<name sortKey="Klein, J" uniqKey="Klein J">J Klein</name>
</author>
<author>
<name sortKey="Minakata, K" uniqKey="Minakata K">K Minakata</name>
</author>
<author>
<name sortKey="Le, V" uniqKey="Le V">V Le</name>
</author>
<author>
<name sortKey="Bobrow, Je" uniqKey="Bobrow J">JE Bobrow</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takaiwa, M" uniqKey="Takaiwa M">M Takaiwa</name>
</author>
<author>
<name sortKey="Noritsugu, T" uniqKey="Noritsugu T">T Noritsugu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
<author>
<name sortKey="Gallina, P" uniqKey="Gallina P">P Gallina</name>
</author>
<author>
<name sortKey="Masiero, S" uniqKey="Masiero S">S Masiero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beer, Rf" uniqKey="Beer R">RF Beer</name>
</author>
<author>
<name sortKey="Naujokas, C" uniqKey="Naujokas C">C Naujokas</name>
</author>
<author>
<name sortKey="Bachrach, B" uniqKey="Bachrach B">B Bachrach</name>
</author>
<author>
<name sortKey="Mayhew, D" uniqKey="Mayhew D">D Mayhew</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dovat, L" uniqKey="Dovat L">L Dovat</name>
</author>
<author>
<name sortKey="Lambercy, O" uniqKey="Lambercy O">O Lambercy</name>
</author>
<author>
<name sortKey="Gassert, R" uniqKey="Gassert R">R Gassert</name>
</author>
<author>
<name sortKey="Maeder, T" uniqKey="Maeder T">T Maeder</name>
</author>
<author>
<name sortKey="Milner, T" uniqKey="Milner T">T Milner</name>
</author>
<author>
<name sortKey="Leong, Tc" uniqKey="Leong T">TC Leong</name>
</author>
<author>
<name sortKey="Burdet, E" uniqKey="Burdet E">E Burdet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
<author>
<name sortKey="Iwami, K" uniqKey="Iwami K">K Iwami</name>
</author>
<author>
<name sortKey="Yasuda, M" uniqKey="Yasuda M">M Yasuda</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K Watanabe</name>
</author>
<author>
<name sortKey="Fukuda, T" uniqKey="Fukuda T">T Fukuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schiele, A" uniqKey="Schiele A">A Schiele</name>
</author>
<author>
<name sortKey="Van Der Helm, Fct" uniqKey="Van Der Helm F">FCT van der Helm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, Y" uniqKey="Ren Y">Y Ren</name>
</author>
<author>
<name sortKey="Park, Hs" uniqKey="Park H">HS Park</name>
</author>
<author>
<name sortKey="Zhang, Lq" uniqKey="Zhang L">LQ Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fleischer, C" uniqKey="Fleischer C">C Fleischer</name>
</author>
<author>
<name sortKey="Kondak, K" uniqKey="Kondak K">K Kondak</name>
</author>
<author>
<name sortKey="Wege, A" uniqKey="Wege A">A Wege</name>
</author>
<author>
<name sortKey="Kossyk, I" uniqKey="Kossyk I">I Kossyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klein, J" uniqKey="Klein J">J Klein</name>
</author>
<author>
<name sortKey="Spencer, S" uniqKey="Spencer S">S Spencer</name>
</author>
<author>
<name sortKey="Allington, J" uniqKey="Allington J">J Allington</name>
</author>
<author>
<name sortKey="Bobrow, Je" uniqKey="Bobrow J">JE Bobrow</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A Gupta</name>
</author>
<author>
<name sortKey="O Alley, M" uniqKey="O Alley M">M O’Malley</name>
</author>
<author>
<name sortKey="Patoglu, V" uniqKey="Patoglu V">V Patoglu</name>
</author>
<author>
<name sortKey="Burgar, C" uniqKey="Burgar C">C Burgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burgar, Cg" uniqKey="Burgar C">CG Burgar</name>
</author>
<author>
<name sortKey="Lum, Ps" uniqKey="Lum P">PS Lum</name>
</author>
<author>
<name sortKey="Shor, Pc" uniqKey="Shor P">PC Shor</name>
</author>
<author>
<name sortKey="Der Loos, Hfmv" uniqKey="Der Loos H">HFMV der Loos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Amirabdollahian, F" uniqKey="Amirabdollahian F">F Amirabdollahian</name>
</author>
<author>
<name sortKey="Loureiro, R" uniqKey="Loureiro R">R Loureiro</name>
</author>
<author>
<name sortKey="Gradwell, E" uniqKey="Gradwell E">E Gradwell</name>
</author>
<author>
<name sortKey="Collin, C" uniqKey="Collin C">C Collin</name>
</author>
<author>
<name sortKey="Harwin, W" uniqKey="Harwin W">W Harwin</name>
</author>
<author>
<name sortKey="Johnson, G" uniqKey="Johnson G">G Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Linde, R" uniqKey="Van Der Linde R">R Van Der Linde</name>
</author>
<author>
<name sortKey="Lammertse, P" uniqKey="Lammertse P">P Lammertse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loureiro, Rcv" uniqKey="Loureiro R">RCV Loureiro</name>
</author>
<author>
<name sortKey="Harwin, Ws" uniqKey="Harwin W">WS Harwin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mihelj, M" uniqKey="Mihelj M">M Mihelj</name>
</author>
<author>
<name sortKey="Podobnik, J" uniqKey="Podobnik J">J Podobnik</name>
</author>
<author>
<name sortKey="Munih, M" uniqKey="Munih M">M Munih</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toth, A" uniqKey="Toth A">A Toth</name>
</author>
<author>
<name sortKey="Fazekas, G" uniqKey="Fazekas G">G Fazekas</name>
</author>
<author>
<name sortKey="Arz, G" uniqKey="Arz G">G Arz</name>
</author>
<author>
<name sortKey="Jurak, M" uniqKey="Jurak M">M Jurak</name>
</author>
<author>
<name sortKey="Horvath, M" uniqKey="Horvath M">M Horvath</name>
</author>
<author>
<name sortKey="Passive Robotic Movement Therapy Of The Spastic Hemiparetic Arm With, Reharob" uniqKey="Passive Robotic Movement Therapy Of The Spastic Hemiparetic Arm With R">REHAROB Passive robotic movement therapy of the spastic hemiparetic arm with</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Culmer, Pr" uniqKey="Culmer P">PR Culmer</name>
</author>
<author>
<name sortKey="Jackson, Ae" uniqKey="Jackson A">AE Jackson</name>
</author>
<author>
<name sortKey="Makower, S" uniqKey="Makower S">S Makower</name>
</author>
<author>
<name sortKey="Richardson, R" uniqKey="Richardson R">R Richardson</name>
</author>
<author>
<name sortKey="Cozens, Ja" uniqKey="Cozens J">JA Cozens</name>
</author>
<author>
<name sortKey="Levesley, Mc" uniqKey="Levesley M">MC Levesley</name>
</author>
<author>
<name sortKey="Bhakta, Bb" uniqKey="Bhakta B">BB Bhakta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morales, R" uniqKey="Morales R">R Morales</name>
</author>
<author>
<name sortKey="Badesa, Fj" uniqKey="Badesa F">FJ Badesa</name>
</author>
<author>
<name sortKey="Garcia Aracil, N" uniqKey="Garcia Aracil N">N García-Aracil</name>
</author>
<author>
<name sortKey="Sabater, Jm" uniqKey="Sabater J">JM Sabater</name>
</author>
<author>
<name sortKey="P Rez Vidal, C" uniqKey="P Rez Vidal C">C Pėrez-Vidal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Houtsma, Ja" uniqKey="Houtsma J">JA Houtsma</name>
</author>
<author>
<name sortKey="Houten, Fjamv" uniqKey="Houten F">FJAMV Houten</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, Cd" uniqKey="Takahashi C">CD Takahashi</name>
</author>
<author>
<name sortKey="Der Yeghiaian, L" uniqKey="Der Yeghiaian L">L Der-Yeghiaian</name>
</author>
<author>
<name sortKey="Le, V" uniqKey="Le V">V Le</name>
</author>
<author>
<name sortKey="Motiwala, Rr" uniqKey="Motiwala R">RR Motiwala</name>
</author>
<author>
<name sortKey="Cramer, Sc" uniqKey="Cramer S">SC Cramer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vertechy, R" uniqKey="Vertechy R">R Vertechy</name>
</author>
<author>
<name sortKey="Frisoli, A" uniqKey="Frisoli A">A Frisoli</name>
</author>
<author>
<name sortKey="Dettori, A" uniqKey="Dettori A">A Dettori</name>
</author>
<author>
<name sortKey="Solazzi, M" uniqKey="Solazzi M">M Solazzi</name>
</author>
<author>
<name sortKey="Bergamasco, M" uniqKey="Bergamasco M">M Bergamasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Micera, S" uniqKey="Micera S">S Micera</name>
</author>
<author>
<name sortKey="Carrozza, M" uniqKey="Carrozza M">M Carrozza</name>
</author>
<author>
<name sortKey="Guglielmelli, E" uniqKey="Guglielmelli E">E Guglielmelli</name>
</author>
<author>
<name sortKey="Cappiello, G" uniqKey="Cappiello G">G Cappiello</name>
</author>
<author>
<name sortKey="Zaccone, F" uniqKey="Zaccone F">F Zaccone</name>
</author>
<author>
<name sortKey="Freschi, C" uniqKey="Freschi C">C Freschi</name>
</author>
<author>
<name sortKey="Colombo, R" uniqKey="Colombo R">R Colombo</name>
</author>
<author>
<name sortKey="Mazzone, A" uniqKey="Mazzone A">A Mazzone</name>
</author>
<author>
<name sortKey="Delconte, C" uniqKey="Delconte C">C Delconte</name>
</author>
<author>
<name sortKey="Pisano, F" uniqKey="Pisano F">F Pisano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krebs, H" uniqKey="Krebs H">H Krebs</name>
</author>
<author>
<name sortKey="Ferraro, M" uniqKey="Ferraro M">M Ferraro</name>
</author>
<author>
<name sortKey="Buerger, S" uniqKey="Buerger S">S Buerger</name>
</author>
<author>
<name sortKey="Newbery, M" uniqKey="Newbery M">M Newbery</name>
</author>
<author>
<name sortKey="Makiyama, A" uniqKey="Makiyama A">A Makiyama</name>
</author>
<author>
<name sortKey="Sandmann, M" uniqKey="Sandmann M">M Sandmann</name>
</author>
<author>
<name sortKey="Lynch, D" uniqKey="Lynch D">D Lynch</name>
</author>
<author>
<name sortKey="Volpe, B" uniqKey="Volpe B">B Volpe</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casadio, M" uniqKey="Casadio M">M Casadio</name>
</author>
<author>
<name sortKey="Sanguineti, V" uniqKey="Sanguineti V">V Sanguineti</name>
</author>
<author>
<name sortKey="Morasso, Pg" uniqKey="Morasso P">PG Morasso</name>
</author>
<author>
<name sortKey="Arrichiello, V" uniqKey="Arrichiello V">V Arrichiello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kikuchi, T" uniqKey="Kikuchi T">T Kikuchi</name>
</author>
<author>
<name sortKey="Ozawa, T" uniqKey="Ozawa T">T Ozawa</name>
</author>
<author>
<name sortKey="Akai, H" uniqKey="Akai H">H Akai</name>
</author>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Kahn, Le" uniqKey="Kahn L">LE Kahn</name>
</author>
<author>
<name sortKey="Averbuch, M" uniqKey="Averbuch M">M Averbuch</name>
</author>
<author>
<name sortKey="Mckenna Cole, A" uniqKey="Mckenna Cole A">A McKenna-Cole</name>
</author>
<author>
<name sortKey="Schmit, Bd" uniqKey="Schmit B">BD Schmit</name>
</author>
<author>
<name sortKey="Rymer, Wz" uniqKey="Rymer W">WZ Rymer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lum, P" uniqKey="Lum P">P Lum</name>
</author>
<author>
<name sortKey="Reinkensmeyer, D" uniqKey="Reinkensmeyer D">D Reinkensmeyer</name>
</author>
<author>
<name sortKey="Mahoney, R" uniqKey="Mahoney R">R Mahoney</name>
</author>
<author>
<name sortKey="Rymer, Wz" uniqKey="Rymer W">WZ Rymer</name>
</author>
<author>
<name sortKey="Burgar, C" uniqKey="Burgar C">C Burgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
<author>
<name sortKey="Volpe, Bt" uniqKey="Volpe B">BT Volpe</name>
</author>
<author>
<name sortKey="Williams, D" uniqKey="Williams D">D Williams</name>
</author>
<author>
<name sortKey="Celestino, J" uniqKey="Celestino J">J Celestino</name>
</author>
<author>
<name sortKey="Charles, Sk" uniqKey="Charles S">SK Charles</name>
</author>
<author>
<name sortKey="Lynch, D" uniqKey="Lynch D">D Lynch</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oblak, J" uniqKey="Oblak J">J Oblak</name>
</author>
<author>
<name sortKey="Cikajlo, I" uniqKey="Cikajlo I">I Cikajlo</name>
</author>
<author>
<name sortKey="Matjacic, Z" uniqKey="Matjacic Z">Z Matjacic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caldwell, Dc" uniqKey="Caldwell D">DC Caldwell</name>
</author>
<author>
<name sortKey="Tsagarakis, N" uniqKey="Tsagarakis N">N Tsagarakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pratt, Ga" uniqKey="Pratt G">GA Pratt</name>
</author>
<author>
<name sortKey="Williamson, Mm" uniqKey="Williamson M">MM Williamson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sulzer, Js" uniqKey="Sulzer J">JS Sulzer</name>
</author>
<author>
<name sortKey="Peshkin, Ma" uniqKey="Peshkin M">MA Peshkin</name>
</author>
<author>
<name sortKey="Patton, Jl" uniqKey="Patton J">JL Patton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vanderniepen, I" uniqKey="Vanderniepen I">I Vanderniepen</name>
</author>
<author>
<name sortKey="Van Ham, R" uniqKey="Van Ham R">R Van Ham</name>
</author>
<author>
<name sortKey="Van Damme, M" uniqKey="Van Damme M">M Van Damme</name>
</author>
<author>
<name sortKey="Versluys, R" uniqKey="Versluys R">R Versluys</name>
</author>
<author>
<name sortKey="Lefeber, D" uniqKey="Lefeber D">D Lefeber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosati, G" uniqKey="Rosati G">G Rosati</name>
</author>
<author>
<name sortKey="Cenci, S" uniqKey="Cenci S">S Cenci</name>
</author>
<author>
<name sortKey="Boschetti, G" uniqKey="Boschetti G">G Boschetti</name>
</author>
<author>
<name sortKey="Zanotto, D" uniqKey="Zanotto D">D Zanotto</name>
</author>
<author>
<name sortKey="Masiero, S" uniqKey="Masiero S">S Masiero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolbrecht, Et" uniqKey="Wolbrecht E">ET Wolbrecht</name>
</author>
<author>
<name sortKey="Leavitt, J" uniqKey="Leavitt J">J Leavitt</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Bobrow, Je" uniqKey="Bobrow J">JE Bobrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sasaki, D" uniqKey="Sasaki D">D Sasaki</name>
</author>
<author>
<name sortKey="Noritsugu, T" uniqKey="Noritsugu T">T Noritsugu</name>
</author>
<author>
<name sortKey="Takaiwa, M" uniqKey="Takaiwa M">M Takaiwa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucas, L" uniqKey="Lucas L">L Lucas</name>
</author>
<author>
<name sortKey="Dicicco, M" uniqKey="Dicicco M">M DiCicco</name>
</author>
<author>
<name sortKey="Matsuoka, Y" uniqKey="Matsuoka Y">Y Matsuoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsagarakis, N" uniqKey="Tsagarakis N">N Tsagarakis</name>
</author>
<author>
<name sortKey="Caldwell, D" uniqKey="Caldwell D">D Caldwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, H" uniqKey="Kobayashi H">H Kobayashi</name>
</author>
<author>
<name sortKey="Nozaki, H" uniqKey="Nozaki H">H Nozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chou, Cp" uniqKey="Chou C">CP Chou</name>
</author>
<author>
<name sortKey="Hannaford, B" uniqKey="Hannaford B">B Hannaford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balasubramanian, S" uniqKey="Balasubramanian S">S Balasubramanian</name>
</author>
<author>
<name sortKey="Wei, R" uniqKey="Wei R">R Wei</name>
</author>
<author>
<name sortKey="Perez, M" uniqKey="Perez M">M Perez</name>
</author>
<author>
<name sortKey="Shepard, B" uniqKey="Shepard B">B Shepard</name>
</author>
<author>
<name sortKey="Koeneman, E" uniqKey="Koeneman E">E Koeneman</name>
</author>
<author>
<name sortKey="Koeneman, J" uniqKey="Koeneman J">J Koeneman</name>
</author>
<author>
<name sortKey="He, J" uniqKey="He J">J He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Umemura, A" uniqKey="Umemura A">A Umemura</name>
</author>
<author>
<name sortKey="Saito, Y" uniqKey="Saito Y">Y Saito</name>
</author>
<author>
<name sortKey="Fujisaki, K" uniqKey="Fujisaki K">K Fujisaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pylatiuk, C" uniqKey="Pylatiuk C">C Pylatiuk</name>
</author>
<author>
<name sortKey="Kargov, A" uniqKey="Kargov A">A Kargov</name>
</author>
<author>
<name sortKey="Gaiser, I" uniqKey="Gaiser I">I Gaiser</name>
</author>
<author>
<name sortKey="Werner, T" uniqKey="Werner T">T Werner</name>
</author>
<author>
<name sortKey="Schulz, S" uniqKey="Schulz S">S Schulz</name>
</author>
<author>
<name sortKey="Bretthauer, G" uniqKey="Bretthauer G">G Bretthauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stienen, A" uniqKey="Stienen A">A Stienen</name>
</author>
<author>
<name sortKey="Hekman, E" uniqKey="Hekman E">E Hekman</name>
</author>
<author>
<name sortKey="Prange, G" uniqKey="Prange G">G Prange</name>
</author>
<author>
<name sortKey="Jannink, M" uniqKey="Jannink M">M Jannink</name>
</author>
<author>
<name sortKey="Aalsma, A" uniqKey="Aalsma A">A Aalsma</name>
</author>
<author>
<name sortKey="Van Der Helm, F" uniqKey="Van Der Helm F">F van der Helm</name>
</author>
<author>
<name sortKey="Van Der Kooij, H" uniqKey="Van Der Kooij H">H van der Kooij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stienen, Aha" uniqKey="Stienen A">AHA Stienen</name>
</author>
<author>
<name sortKey="Hekman, Eeg" uniqKey="Hekman E">EEG Hekman</name>
</author>
<author>
<name sortKey="Ter Braak, H" uniqKey="Ter Braak H">H ter Braak</name>
</author>
<author>
<name sortKey="Aalsma, Amm" uniqKey="Aalsma A">AMM Aalsma</name>
</author>
<author>
<name sortKey="Van Der Helm, Fct" uniqKey="Van Der Helm F">FCT van der Helm</name>
</author>
<author>
<name sortKey="Van Der Kooij, H" uniqKey="Van Der Kooij H">H van der Kooij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scherer, R" uniqKey="Scherer R">R Scherer</name>
</author>
<author>
<name sortKey="Pradhan, S" uniqKey="Pradhan S">S Pradhan</name>
</author>
<author>
<name sortKey="Dellon, B" uniqKey="Dellon B">B Dellon</name>
</author>
<author>
<name sortKey="Kim, D" uniqKey="Kim D">D Kim</name>
</author>
<author>
<name sortKey="Klatzky, R" uniqKey="Klatzky R">R Klatzky</name>
</author>
<author>
<name sortKey="Matsuoka, Y" uniqKey="Matsuoka Y">Y Matsuoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winter, Sh" uniqKey="Winter S">SH Winter</name>
</author>
<author>
<name sortKey="Bouzit, M" uniqKey="Bouzit M">M Bouzit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khanicheh, A" uniqKey="Khanicheh A">A Khanicheh</name>
</author>
<author>
<name sortKey="Mintzopoulos, D" uniqKey="Mintzopoulos D">D Mintzopoulos</name>
</author>
<author>
<name sortKey="Weinberg, B" uniqKey="Weinberg B">B Weinberg</name>
</author>
<author>
<name sortKey="Tzika, Aa" uniqKey="Tzika A">AA Tzika</name>
</author>
<author>
<name sortKey="Mavroidis, C" uniqKey="Mavroidis C">C Mavroidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
<author>
<name sortKey="Koyanagi, K" uniqKey="Koyanagi K">K Koyanagi</name>
</author>
<author>
<name sortKey="Imada, Y" uniqKey="Imada Y">Y Imada</name>
</author>
<author>
<name sortKey="Fujii, Y" uniqKey="Fujii Y">Y Fujii</name>
</author>
<author>
<name sortKey="Nakanishi, K" uniqKey="Nakanishi K">K Nakanishi</name>
</author>
<author>
<name sortKey="Domen, K" uniqKey="Domen K">K Domen</name>
</author>
<author>
<name sortKey="Miyakoshi, K" uniqKey="Miyakoshi K">K Miyakoshi</name>
</author>
<author>
<name sortKey="Ryu, U" uniqKey="Ryu U">U Ryu</name>
</author>
<author>
<name sortKey="Takenaka, S" uniqKey="Takenaka S">S Takenaka</name>
</author>
<author>
<name sortKey="Inoue, A" uniqKey="Inoue A">A Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furusho, J" uniqKey="Furusho J">J Furusho</name>
</author>
<author>
<name sortKey="Kikuchi, T" uniqKey="Kikuchi T">T Kikuchi</name>
</author>
<author>
<name sortKey="Oda, K" uniqKey="Oda K">K Oda</name>
</author>
<author>
<name sortKey="Ohyama, Y" uniqKey="Ohyama Y">Y Ohyama</name>
</author>
<author>
<name sortKey="Morita, T" uniqKey="Morita T">T Morita</name>
</author>
<author>
<name sortKey="Shichi, N" uniqKey="Shichi N">N Shichi</name>
</author>
<author>
<name sortKey="Jin, Y" uniqKey="Jin Y">Y Jin</name>
</author>
<author>
<name sortKey="Inoue, A" uniqKey="Inoue A">A Inoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamid, S" uniqKey="Hamid S">S Hamid</name>
</author>
<author>
<name sortKey="Hayek, R" uniqKey="Hayek R">R Hayek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takano, Y" uniqKey="Takano Y">Y Takano</name>
</author>
<author>
<name sortKey="Haneda, Y" uniqKey="Haneda Y">Y Haneda</name>
</author>
<author>
<name sortKey="Maeda, T" uniqKey="Maeda T">T Maeda</name>
</author>
<author>
<name sortKey="Sakai, Y" uniqKey="Sakai Y">Y Sakai</name>
</author>
<author>
<name sortKey="Matsuse, H" uniqKey="Matsuse H">H Matsuse</name>
</author>
<author>
<name sortKey="Kawaguchi, T" uniqKey="Kawaguchi T">T Kawaguchi</name>
</author>
<author>
<name sortKey="Tagawa, Y" uniqKey="Tagawa Y">Y Tagawa</name>
</author>
<author>
<name sortKey="Shiba, N" uniqKey="Shiba N">N Shiba</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freeman, Ct" uniqKey="Freeman C">CT Freeman</name>
</author>
<author>
<name sortKey="Hughes, Am" uniqKey="Hughes A">AM Hughes</name>
</author>
<author>
<name sortKey="Burridge, Jh" uniqKey="Burridge J">JH Burridge</name>
</author>
<author>
<name sortKey="Chappell, Ph" uniqKey="Chappell P">PH Chappell</name>
</author>
<author>
<name sortKey="Lewin, Pl" uniqKey="Lewin P">PL Lewin</name>
</author>
<author>
<name sortKey="Rogers, E" uniqKey="Rogers E">E Rogers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, R" uniqKey="Li R">R Li</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masia, L" uniqKey="Masia L">L Masia</name>
</author>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
<author>
<name sortKey="Cappa, P" uniqKey="Cappa P">P Cappa</name>
</author>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gopura, Rarc" uniqKey="Gopura R">RARC Gopura</name>
</author>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nathan, De" uniqKey="Nathan D">DE Nathan</name>
</author>
<author>
<name sortKey="Johnson, Mj" uniqKey="Johnson M">MJ Johnson</name>
</author>
<author>
<name sortKey="Mcguire, J" uniqKey="Mcguire J">J McGuire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, Gr" uniqKey="Johnson G">GR Johnson</name>
</author>
<author>
<name sortKey="Carus, Da" uniqKey="Carus D">DA Carus</name>
</author>
<author>
<name sortKey="Parrini, G" uniqKey="Parrini G">G Parrini</name>
</author>
<author>
<name sortKey="Marchese, Ss" uniqKey="Marchese S">SS Marchese</name>
</author>
<author>
<name sortKey="Valeggi, R" uniqKey="Valeggi R">R Valeggi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosen, J" uniqKey="Rosen J">J Rosen</name>
</author>
<author>
<name sortKey="Brand, M" uniqKey="Brand M">M Brand</name>
</author>
<author>
<name sortKey="Fuchs, Mb" uniqKey="Fuchs M">MB Fuchs</name>
</author>
<author>
<name sortKey="Arcan, M" uniqKey="Arcan M">M Arcan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
<author>
<name sortKey="Esaki, R" uniqKey="Esaki R">R Esaki</name>
</author>
<author>
<name sortKey="Tsuruta, T" uniqKey="Tsuruta T">T Tsuruta</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K Watanabe</name>
</author>
<author>
<name sortKey="Fukuda, T" uniqKey="Fukuda T">T Fukuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ogce, F" uniqKey="Ogce F">F Ögce</name>
</author>
<author>
<name sortKey="Ozyalcin, H" uniqKey="Ozyalcin H">H Özyalçin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stein, J" uniqKey="Stein J">J Stein</name>
</author>
<author>
<name sortKey="Narendran, K" uniqKey="Narendran K">K Narendran</name>
</author>
<author>
<name sortKey="Mcbean, J" uniqKey="Mcbean J">J McBean</name>
</author>
<author>
<name sortKey="Krebs, K" uniqKey="Krebs K">K Krebs</name>
</author>
<author>
<name sortKey="Hughes, R" uniqKey="Hughes R">R Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stein, J" uniqKey="Stein J">J Stein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gopura, Rar" uniqKey="Gopura R">RAR Gopura</name>
</author>
<author>
<name sortKey="Kiguchi, K" uniqKey="Kiguchi K">K Kiguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, R" uniqKey="Song R">R Song</name>
</author>
<author>
<name sortKey="Tong, Ky" uniqKey="Tong K">KY Tong</name>
</author>
<author>
<name sortKey="Hu, Xl" uniqKey="Hu X">XL Hu</name>
</author>
<author>
<name sortKey="Zheng, Xj" uniqKey="Zheng X">XJ Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D Wang</name>
</author>
<author>
<name sortKey="Du, Z" uniqKey="Du Z">Z Du</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y Song</name>
</author>
<author>
<name sortKey="Sun, L" uniqKey="Sun L">L Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mayr, A" uniqKey="Mayr A">A Mayr</name>
</author>
<author>
<name sortKey="Kofler, M" uniqKey="Kofler M">M Kofler</name>
</author>
<author>
<name sortKey="Saltuari, L" uniqKey="Saltuari L">L Saltuari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawasaki, H" uniqKey="Kawasaki H">H Kawasaki</name>
</author>
<author>
<name sortKey="Ito, S" uniqKey="Ito S">S Ito</name>
</author>
<author>
<name sortKey="Ishigure, Y" uniqKey="Ishigure Y">Y Ishigure</name>
</author>
<author>
<name sortKey="Nishimoto, Y" uniqKey="Nishimoto Y">Y Nishimoto</name>
</author>
<author>
<name sortKey="Aoki, T" uniqKey="Aoki T">T Aoki</name>
</author>
<author>
<name sortKey="Mouri, T" uniqKey="Mouri T">T Mouri</name>
</author>
<author>
<name sortKey="Sakaeda, H" uniqKey="Sakaeda H">H Sakaeda</name>
</author>
<author>
<name sortKey="Abe, M" uniqKey="Abe M">M Abe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M Ding</name>
</author>
<author>
<name sortKey="Ueda, J" uniqKey="Ueda J">J Ueda</name>
</author>
<author>
<name sortKey="Ogasawara, T" uniqKey="Ogasawara T">T Ogasawara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lam, P" uniqKey="Lam P">P Lam</name>
</author>
<author>
<name sortKey="Hebert, D" uniqKey="Hebert D">D Hebert</name>
</author>
<author>
<name sortKey="Boger, J" uniqKey="Boger J">J Boger</name>
</author>
<author>
<name sortKey="Lacheray, H" uniqKey="Lacheray H">H Lacheray</name>
</author>
<author>
<name sortKey="Gardner, D" uniqKey="Gardner D">D Gardner</name>
</author>
<author>
<name sortKey="Apkarian, J" uniqKey="Apkarian J">J Apkarian</name>
</author>
<author>
<name sortKey="Mihailidis, A" uniqKey="Mihailidis A">A Mihailidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casellato, C" uniqKey="Casellato C">C Casellato</name>
</author>
<author>
<name sortKey="Pedrocchi, A" uniqKey="Pedrocchi A">A Pedrocchi</name>
</author>
<author>
<name sortKey="Zorzi, G" uniqKey="Zorzi G">G Zorzi</name>
</author>
<author>
<name sortKey="Vernisse, L" uniqKey="Vernisse L">L Vernisse</name>
</author>
<author>
<name sortKey="Ferrigno, G" uniqKey="Ferrigno G">G Ferrigno</name>
</author>
<author>
<name sortKey="Nardocci, N" uniqKey="Nardocci N">N Nardocci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Terada, T" uniqKey="Terada T">T Terada</name>
</author>
<author>
<name sortKey="Inoue, K" uniqKey="Inoue K">K Inoue</name>
</author>
<author>
<name sortKey="Ito, Y" uniqKey="Ito Y">Y Ito</name>
</author>
<author>
<name sortKey="Ikeda, Y" uniqKey="Ikeda Y">Y Ikeda</name>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H Lee</name>
</author>
<author>
<name sortKey="Komeda, T" uniqKey="Komeda T">T Komeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mali, U" uniqKey="Mali U">U Mali</name>
</author>
<author>
<name sortKey="Munih, M" uniqKey="Munih M">M Munih</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouzit, M" uniqKey="Bouzit M">M Bouzit</name>
</author>
<author>
<name sortKey="Burdea, G" uniqKey="Burdea G">G Burdea</name>
</author>
<author>
<name sortKey="Popescu, G" uniqKey="Popescu G">G Popescu</name>
</author>
<author>
<name sortKey="Boian, R" uniqKey="Boian R">R Boian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Popescu, Vg" uniqKey="Popescu V">VG Popescu</name>
</author>
<author>
<name sortKey="Burdea, Gc" uniqKey="Burdea G">GC Burdea</name>
</author>
<author>
<name sortKey="Bouzit, M" uniqKey="Bouzit M">M Bouzit</name>
</author>
<author>
<name sortKey="Hentz, Vr" uniqKey="Hentz V">VR Hentz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jack, D" uniqKey="Jack D">D Jack</name>
</author>
<author>
<name sortKey="Boian, R" uniqKey="Boian R">R Boian</name>
</author>
<author>
<name sortKey="Merians, As" uniqKey="Merians A">AS Merians</name>
</author>
<author>
<name sortKey="Tremaine, M" uniqKey="Tremaine M">M Tremaine</name>
</author>
<author>
<name sortKey="Burdea, Gc" uniqKey="Burdea G">GC Burdea</name>
</author>
<author>
<name sortKey="Adamovich, Sv" uniqKey="Adamovich S">SV Adamovich</name>
</author>
<author>
<name sortKey="Recce, M" uniqKey="Recce M">M Recce</name>
</author>
<author>
<name sortKey="Poizner, H" uniqKey="Poizner H">H Poizner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adamovich, Sv" uniqKey="Adamovich S">SV Adamovich</name>
</author>
<author>
<name sortKey="Merians, As" uniqKey="Merians A">AS Merians</name>
</author>
<author>
<name sortKey="Boian, R" uniqKey="Boian R">R Boian</name>
</author>
<author>
<name sortKey="Lewis, Ja" uniqKey="Lewis J">JA Lewis</name>
</author>
<author>
<name sortKey="Tremaine, M" uniqKey="Tremaine M">M Tremaine</name>
</author>
<author>
<name sortKey="Burdea, Gs" uniqKey="Burdea G">GS Burdea</name>
</author>
<author>
<name sortKey="Recce, M" uniqKey="Recce M">M Recce</name>
</author>
<author>
<name sortKey="Poizner, H" uniqKey="Poizner H">H Poizner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brewer, Br" uniqKey="Brewer B">BR Brewer</name>
</author>
<author>
<name sortKey="Klatzky, R" uniqKey="Klatzky R">R Klatzky</name>
</author>
<author>
<name sortKey="Matsuoka, Y" uniqKey="Matsuoka Y">Y Matsuoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xydas, Eg" uniqKey="Xydas E">EG Xydas</name>
</author>
<author>
<name sortKey="Louca, Ls" uniqKey="Louca L">LS Louca</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palsbo, Se" uniqKey="Palsbo S">SE Palsbo</name>
</author>
<author>
<name sortKey="Hood Szivek, P" uniqKey="Hood Szivek P">P Hood-Szivek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adamovich, S" uniqKey="Adamovich S">S Adamovich</name>
</author>
<author>
<name sortKey="Fluet, Gg" uniqKey="Fluet G">GG Fluet</name>
</author>
<author>
<name sortKey="Merians, As" uniqKey="Merians A">AS Merians</name>
</author>
<author>
<name sortKey="Mathai, A" uniqKey="Mathai A">A Mathai</name>
</author>
<author>
<name sortKey="Qiu, Q" uniqKey="Qiu Q">Q Qiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adamovich, Sv" uniqKey="Adamovich S">SV Adamovich</name>
</author>
<author>
<name sortKey="Fluet, Gg" uniqKey="Fluet G">GG Fluet</name>
</author>
<author>
<name sortKey="Mathai, A" uniqKey="Mathai A">A Mathai</name>
</author>
<author>
<name sortKey="Qiu, Q" uniqKey="Qiu Q">Q Qiu</name>
</author>
<author>
<name sortKey="Lewis, J" uniqKey="Lewis J">J Lewis</name>
</author>
<author>
<name sortKey="Merians, As" uniqKey="Merians A">AS Merians</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marchal Crespo, L" uniqKey="Marchal Crespo L">L Marchal-Crespo</name>
</author>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patton, Jl" uniqKey="Patton J">JL Patton</name>
</author>
<author>
<name sortKey="Stoykov, Me" uniqKey="Stoykov M">ME Stoykov</name>
</author>
<author>
<name sortKey="Kovic, M" uniqKey="Kovic M">M Kovic</name>
</author>
<author>
<name sortKey="Mussa Ivaldi, Fa" uniqKey="Mussa Ivaldi F">FA Mussa-Ivaldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hogan, N" uniqKey="Hogan N">N Hogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ott, C" uniqKey="Ott C">C Ott</name>
</author>
<author>
<name sortKey="Mukherjee, R" uniqKey="Mukherjee R">R Mukherjee</name>
</author>
<author>
<name sortKey="Nakamura, Y" uniqKey="Nakamura Y">Y Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Frisoli, A" uniqKey="Frisoli A">A Frisoli</name>
</author>
<author>
<name sortKey="Borelli, L" uniqKey="Borelli L">L Borelli</name>
</author>
<author>
<name sortKey="Montagner, A" uniqKey="Montagner A">A Montagner</name>
</author>
<author>
<name sortKey="Marcheschi, S" uniqKey="Marcheschi S">S Marcheschi</name>
</author>
<author>
<name sortKey="Procopio, C" uniqKey="Procopio C">C Procopio</name>
</author>
<author>
<name sortKey="Salsedo, F" uniqKey="Salsedo F">F Salsedo</name>
</author>
<author>
<name sortKey="Bergamasco, M" uniqKey="Bergamasco M">M Bergamasco</name>
</author>
<author>
<name sortKey="Carboncini, Mc" uniqKey="Carboncini M">MC Carboncini</name>
</author>
<author>
<name sortKey="Tolaini, M" uniqKey="Tolaini M">M Tolaini</name>
</author>
<author>
<name sortKey="Rossi, B" uniqKey="Rossi B">B Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ac" uniqKey="Lo A">AC Lo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwakkel, G" uniqKey="Kwakkel G">G Kwakkel</name>
</author>
<author>
<name sortKey="Kollen, Bj" uniqKey="Kollen B">BJ Kollen</name>
</author>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehrholz, J" uniqKey="Mehrholz J">J Mehrholz</name>
</author>
<author>
<name sortKey="Platz, T" uniqKey="Platz T">T Platz</name>
</author>
<author>
<name sortKey="Kugler, J" uniqKey="Kugler J">J Kugler</name>
</author>
<author>
<name sortKey="Pohl, M" uniqKey="Pohl M">M Pohl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Timmermans, Aaa" uniqKey="Timmermans A">AAA Timmermans</name>
</author>
<author>
<name sortKey="Seelen, Ham" uniqKey="Seelen H">HAM Seelen</name>
</author>
<author>
<name sortKey="Willmann, Rd" uniqKey="Willmann R">RD Willmann</name>
</author>
<author>
<name sortKey="Kingma, H" uniqKey="Kingma H">H Kingma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waldner, A" uniqKey="Waldner A">A Waldner</name>
</author>
<author>
<name sortKey="Tomelleri, C" uniqKey="Tomelleri C">C Tomelleri</name>
</author>
<author>
<name sortKey="Hesse, S" uniqKey="Hesse S">S Hesse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, Ac" uniqKey="Lo A">AC Lo</name>
</author>
<author>
<name sortKey="Guarino, Pd" uniqKey="Guarino P">PD Guarino</name>
</author>
<author>
<name sortKey="Richards, Lg" uniqKey="Richards L">LG Richards</name>
</author>
<author>
<name sortKey="Haselkorn, Jk" uniqKey="Haselkorn J">JK Haselkorn</name>
</author>
<author>
<name sortKey="Wittenberg, Gf" uniqKey="Wittenberg G">GF Wittenberg</name>
</author>
<author>
<name sortKey="Federman, Dg" uniqKey="Federman D">DG Federman</name>
</author>
<author>
<name sortKey="Ringer, Rj" uniqKey="Ringer R">RJ Ringer</name>
</author>
<author>
<name sortKey="Wagner, Th" uniqKey="Wagner T">TH Wagner</name>
</author>
<author>
<name sortKey="Krebs, Hi" uniqKey="Krebs H">HI Krebs</name>
</author>
<author>
<name sortKey="Volpe, Bt" uniqKey="Volpe B">BT Volpe</name>
</author>
<author>
<name sortKey="Bever Jr, Ct" uniqKey="Bever Jr C">CT Bever Jr</name>
</author>
<author>
<name sortKey="Bravata, Dm" uniqKey="Bravata D">DM Bravata</name>
</author>
<author>
<name sortKey="Duncan, Pw" uniqKey="Duncan P">PW Duncan</name>
</author>
<author>
<name sortKey="Corn, Bh" uniqKey="Corn B">BH Corn</name>
</author>
<author>
<name sortKey="Maffucci, Ad" uniqKey="Maffucci A">AD Maffucci</name>
</author>
<author>
<name sortKey="Nadeau, Se" uniqKey="Nadeau S">SE Nadeau</name>
</author>
<author>
<name sortKey="Conroy, Ss" uniqKey="Conroy S">SS Conroy</name>
</author>
<author>
<name sortKey="Powell, Jm" uniqKey="Powell J">JM Powell</name>
</author>
<author>
<name sortKey="Huang, Gd" uniqKey="Huang G">GD Huang</name>
</author>
<author>
<name sortKey="Peduzzi, P" uniqKey="Peduzzi P">P Peduzzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brochard, S" uniqKey="Brochard S">S Brochard</name>
</author>
<author>
<name sortKey="Robertson, J" uniqKey="Robertson J">J Robertson</name>
</author>
<author>
<name sortKey="Medee, B" uniqKey="Medee B">B Médée</name>
</author>
<author>
<name sortKey="Remy Neris, O" uniqKey="Remy Neris O">O Rémy-Néris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinkensmeyer, Dj" uniqKey="Reinkensmeyer D">DJ Reinkensmeyer</name>
</author>
<author>
<name sortKey="Boninger, Ml" uniqKey="Boninger M">ML Boninger</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article" xml:lang="en">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Neuroeng Rehabil</journal-id>
<journal-id journal-id-type="iso-abbrev">J Neuroeng Rehabil</journal-id>
<journal-title-group>
<journal-title>Journal of NeuroEngineering and Rehabilitation</journal-title>
</journal-title-group>
<issn pub-type="epub">1743-0003</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24401110</article-id>
<article-id pub-id-type="pmc">4029785</article-id>
<article-id pub-id-type="publisher-id">1743-0003-11-3</article-id>
<article-id pub-id-type="doi">10.1186/1743-0003-11-3</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A survey on robotic devices for upper limb rehabilitation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="A1">
<name>
<surname>Maciejasz</surname>
<given-names>Paweł</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<xref ref-type="aff" rid="I2">2</xref>
<xref ref-type="aff" rid="I3">3</xref>
<email>pawel.maciejasz@inria.fr</email>
</contrib>
<contrib contrib-type="author" corresp="yes" id="A2">
<name>
<surname>Eschweiler</surname>
<given-names>Jörg</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>eschweiler@hia.rwth-aachen.de</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Gerlach-Hahn</surname>
<given-names>Kurt</given-names>
</name>
<xref ref-type="aff" rid="I5">5</xref>
<email>Gerlach-Hahn@hia.rwth-aachen.de</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Jansen-Troy</surname>
<given-names>Arne</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>arne.jansen-troy@hotmail.de</email>
</contrib>
<contrib contrib-type="author" id="A5">
<name>
<surname>Leonhardt</surname>
<given-names>Steffen</given-names>
</name>
<xref ref-type="aff" rid="I5">5</xref>
<email>leonhardt@hia.rwth-aachen.de</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
DEMAR - LIRMM, INRIA, University of Montpellier 2, CNRS, Montpellier, 161 rue Ada, 34095 Montpellier, France</aff>
<aff id="I2">
<label>2</label>
Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. Św. A. Boboli 8, 02-525 Warszawa, Poland</aff>
<aff id="I3">
<label>3</label>
Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</aff>
<aff id="I4">
<label>4</label>
Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</aff>
<aff id="I5">
<label>5</label>
Philips Chair of Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany</aff>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>9</day>
<month>1</month>
<year>2014</year>
</pub-date>
<volume>11</volume>
<fpage>3</fpage>
<lpage>3</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>10</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>3</day>
<month>1</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Maciejasz et al.; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder>Maciejasz et al.; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.jneuroengrehab.com/content/11/1/3"></self-uri>
<abstract>
<p>The existing shortage of therapists and caregivers assisting physically disabled individuals at home is expected to increase and become serious problem in the near future. The patient population needing physical rehabilitation of the upper extremity is also constantly increasing. Robotic devices have the potential to address this problem as noted by the results of recent research studies. However, the availability of these devices in clinical settings is limited, leaving plenty of room for improvement. The purpose of this paper is to document a review of robotic devices for upper limb rehabilitation including those in developing phase in order to provide a comprehensive reference about existing solutions and facilitate the development of new and improved devices. In particular the following issues are discussed: application field, target group, type of assistance, mechanical design, control strategy and clinical evaluation. This paper also includes a comprehensive, tabulated comparison of technical solutions implemented in various systems.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>An individual’s capacity to move is necessary to perform basic activities of daily living (ADL). Movement disorders significantly reduce a patient’s quality of life. Disorders of the upper extremities specifically limit the independence of affected subjects. Fortunately, there are various approaches to restore the functionality of the upper extremity, e.g., orthoses, functional electrical stimulation, and physical therapy. Positive outcome of physical rehabilitation, in the case of neurologically based disorders, depends heavily on: onset, duration, intensity and task-orientation of the training [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
], as well as the patient’s health condition, attention and effort [
<xref ref-type="bibr" rid="B3">3</xref>
]. Intense repetitions of coordinated motor activities constitute a significant burden for the therapists assisting patients. In addition and due to economical reasons, the duration of primary rehabilitation is getting shorter and shorter [
<xref ref-type="bibr" rid="B4">4</xref>
]. These problems will probably exacerbate in the future as life expectancy continues to increase accompanied by the prevalence of both moderate and severe motor disabilities in the elderly population [
<xref ref-type="bibr" rid="B5">5</xref>
] and consequently increasing their need of physical assistance. To counteract these problems, prevailing research studies present a wide variety of devices specifically assisting physical rehabilitation. Robotic devices with the ability to perform repetitive tasks on patients are among these technically advanced devices. In fact, robotic devices are already used in clinical practice as well as clinical evaluation. However, considering the number of devices described in the literature, so far only a few of them have succeeded to target the subject group — for more details see Table
<xref ref-type="table" rid="T1">1</xref>
. Furthermore, it seems that the outcome of the use of devices already in clinical practice is not as positive as expected [
<xref ref-type="bibr" rid="B3">3</xref>
]. New solutions are being considered. Most of the literature reviews on robotic devices for upper extremity rehabilitation (e.g. [
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B7">7</xref>
]) concentrate on devices that have already undergone clinical evaluation. Gopura and Kiguchi [
<xref ref-type="bibr" rid="B8">8</xref>
] compared the mechanical design of selected robotic devices for upper extremity rehabilitation. However, no other publication presents a summary of different robotic solutions for upper extremity rehabilitation, including those being in the development phase. An assessment of different technical solutions would provide developers of robotic devices for upper limb rehabilitation an evaluation of solutions that have already been considered, and thus learn from successes as well as shortfalls from other research teams. Hence, a comparison of various robotic devices would facilitate the development of new and improved devices for robotic upper limb rehabilitation. The aim of this paper is to summarize existing technical solutions for physical therapy of the upper limb.</p>
<table-wrap position="float" id="T1">
<label>Table 1</label>
<caption>
<p>Robotic devices for upper limb rehabilitation</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>System name</bold>
,
<bold>references</bold>
</th>
<th align="left">
<bold>DOF</bold>
</th>
<th align="left">
<bold>Supported movements</bold>
</th>
<th align="left">
<bold>Main control inputs</bold>
</th>
<th align="left">
<bold>Actuators</bold>
</th>
<th align="left">
<bold>Type; field of application</bold>
</th>
<th align="left">
<bold>Stage of development; additional information</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kiguchi [
<xref ref-type="bibr" rid="B114">114</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting elbow movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Cheng [
<xref ref-type="bibr" rid="B9">9</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 5 stroke + 5 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Cozens [
<xref ref-type="bibr" rid="B10">10</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric servo-motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 10 stroke + MS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kiguchi [
<xref ref-type="bibr" rid="B170">170</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 2 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MARIONET</italic>
, Sulzer [
<xref ref-type="bibr" rid="B142">142</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle
<hr></hr>
</td>
<td align="justify" valign="bottom">AC servomotor (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 6 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Mavroidis [
<xref ref-type="bibr" rid="B11">11</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Force/torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable orthosis (continuous passive motion device); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MEM-MRB</italic>
, Oda [
<xref ref-type="bibr" rid="B104">104</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[1]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Elbow – flexion]
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angular velocity, torque
<hr></hr>
</td>
<td align="justify" valign="bottom">MRF brake
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Myomo e100</italic>
, Myomo, Inc.; Stein [
<xref ref-type="bibr" rid="B172">172</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (FDA clearance); CI study: 8 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Ögce [
<xref ref-type="bibr" rid="B171">171</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC step motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable shoulder-elbow orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 2 traumatic brachial plexus injury
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Pylatiuk [
<xref ref-type="bibr" rid="B153">153</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">Hydraulic
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">First prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Rosen [
<xref ref-type="bibr" rid="B169">169</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs; predecessor of
<italic>CADEN-7</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Song [
<xref ref-type="bibr" rid="B12">12</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">AC servo motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI studies: 8 cS [
<xref ref-type="bibr" rid="B12">12</xref>
], 7 cS [
<xref ref-type="bibr" rid="B13">13</xref>
], 3 cS [
<xref ref-type="bibr" rid="B14">14</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Vanderniepen [
<xref ref-type="bibr" rid="B143">143</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (x2) (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; orthopedic physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting forearm movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kung [
<xref ref-type="bibr" rid="B15">15</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle, torque
<hr></hr>
</td>
<td align="justify" valign="bottom">AC servomotor (1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 7 cS + 8 hs [
<xref ref-type="bibr" rid="B16">16</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting wrist movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ASSIST</italic>
, Sasaki [
<xref ref-type="bibr" rid="B146">146</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist – flexion
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle
<hr></hr>
</td>
<td align="justify" valign="bottom">Rotary-type pneumatic actuators (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 5 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Colombo [
<xref ref-type="bibr" rid="B17">17</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Torque
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 20(8) cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Hu [
<xref ref-type="bibr" rid="B18">18</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 15 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Loureiro [
<xref ref-type="bibr" rid="B100">100</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[1]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Wrist – FE]
<hr></hr>
</td>
<td align="justify" valign="bottom">Hand motion (tremor)
<hr></hr>
</td>
<td align="justify" valign="bottom">MRF brake
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; tremor suppression
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 1 ET
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>PolyJbot</italic>
, Song [
<xref ref-type="bibr" rid="B175">175</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG, joint angle and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC servomotor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 27(15) cS [
<xref ref-type="bibr" rid="B19">19</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting finger(s) movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Amadeo</italic>
, tyromotion GmbH
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Fingers (each) – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position and force
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system; CI study: 7 aS [
<xref ref-type="bibr" rid="B20">20</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Chen [
<xref ref-type="bibr" rid="B21">21</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Independent linear movement of each finger
<hr></hr>
</td>
<td align="justify" valign="bottom">Fingers positions and forces, sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC linear motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>CyberGrasp</italic>
, CyberGlove Systems LLC; Turner [
<xref ref-type="bibr" rid="B22">22</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[5]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Resistive force to each finger]
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles (
<italic>CyberGlove</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Force-feedback glove; interactions with virtual environment
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system for other applications, used in some clinical studies e.g. [
<xref ref-type="bibr" rid="B191">191</xref>
,
<xref ref-type="bibr" rid="B192">192</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Ertas [
<xref ref-type="bibr" rid="B23">23</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Concurrent FE of 3 joints of a single finger
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Finger exoskeleton (underactuated mechanism); tendon physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 4 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Fuxiang [
<xref ref-type="bibr" rid="B24">24</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Index finger– FE (x3), AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint positions and toques
<hr></hr>
</td>
<td align="justify" valign="bottom">Linear stepping motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Modular-finger exoskeleton (continuous passive motion device); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 3 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Gloreha</italic>
, Idrogenet srl
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Independent passive movement of each finger
<hr></hr>
</td>
<td align="justify" valign="bottom">Fingers positions
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable (Gloreha Lite)/Movable (Gloreha Professional) (end-effector-based, cable-driven); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (CE mark); CII study: 10(5) sS [
<xref ref-type="bibr" rid="B25">25</xref>
], CI studies: 9 stroke + 3 other diseases [
<xref ref-type="bibr" rid="B26">26</xref>
], 4 cS [
<xref ref-type="bibr" rid="B27">27</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Hand of Hope</italic>
, Rehab-Robotics Comp. Ltd., Ho [
<xref ref-type="bibr" rid="B28">28</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Each finger separately - FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC linear motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable system (orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (CE Mark), CI study: 8 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>HandCARE</italic>
, Dovat [
<xref ref-type="bibr" rid="B113">113</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Independent linear movement of each finger (1 at a time)
<hr></hr>
</td>
<td align="justify" valign="bottom">Fingers positions and forces
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1!)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, cable-driven); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 5 cS + 8 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>HEXORR</italic>
, Schabowsky [
<xref ref-type="bibr" rid="B29">29</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Thumb – FE, other fingers together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Fingers positions and forces
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1), AC motor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, cable-driven); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 5 cS + 9 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>HIFE</italic>
, Mali [
<xref ref-type="bibr" rid="B183">183</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">1 finger – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Haptic interface (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>InMotion HAND</italic>
, previous name
<italic>InMotion 5.0</italic>
, Interactive Motion Tech., Inc.; Masia [
<xref ref-type="bibr" rid="B165">165</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">All fingers together – GR
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Add-on module for
<italic>InMotion ARM</italic>
; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kline [
<xref ref-type="bibr" rid="B30">30</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">All fingers together – extension
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable glove; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 1 stroke + hs (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Lucas [
<xref ref-type="bibr" rid="B147">147</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Index finger – flexion (passive extension)
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; grasp assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 1 SCI
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MR_CHIROD v.2</italic>
, Khanicheh [
<xref ref-type="bibr" rid="B158">158</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[1]
<hr></hr>
</td>
<td align="justify" valign="bottom">[All fingers together – GR]
<hr></hr>
</td>
<td align="justify" valign="bottom">Finger position and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">ERF brake
<hr></hr>
</td>
<td align="justify" valign="bottom">Exercising device (handle-like); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: hs (np); fMRI compatible
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MRAGES</italic>
, Winter [
<xref ref-type="bibr" rid="B157">157</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[5]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Fingers (each) – FE]
<hr></hr>
</td>
<td align="justify" valign="bottom">Finger positions and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">MRF brakes (5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Force-feedback glove; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Mulas [
<xref ref-type="bibr" rid="B31">31</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Thumb – FE, other fingers together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG, pulleys position
<hr></hr>
</td>
<td align="justify" valign="bottom">DC servo motors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 1 sS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Nathan [
<xref ref-type="bibr" rid="B167">167</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">All fingers together – grasp (passive release)
<hr></hr>
</td>
<td align="justify" valign="bottom">Hand-held trigger, index and thumb fingers joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">FES
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis (glove); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 2 stroke + 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>PowerGrip</italic>
, Broaden Horizons, Inc.
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Thumb, index and middle finger together – GR
<hr></hr>
</td>
<td align="justify" valign="bottom">Switches or sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; grasp assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Reha-Digit</italic>
, Reha-Stim; Hesse [
<xref ref-type="bibr" rid="B32">32</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">4 fingers (except the thumb) together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">None
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable system (rotating handle); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (CE mark); CII study: 8(4) sS, CI study: 1 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Rosati [
<xref ref-type="bibr" rid="B144">144</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">4 fingers (except the thumb) together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Not selected yet
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Design
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Rotella [
<xref ref-type="bibr" rid="B33">33</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Index finger flexion (x2) (passive extension), thumb – flexion, other fingers together – flexion
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; grasp assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">Design
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Rutgers Master II-ND</italic>
, Bouzit [
<xref ref-type="bibr" rid="B184">184</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Thumb, index, middle, and ring finger – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Actuator translation and inclination
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Force-feedback glove; interactions with virtual environment
<hr></hr>
</td>
<td align="justify" valign="bottom">Research device; often used for hand therapy (e.g. [
<xref ref-type="bibr" rid="B185">185</xref>
-
<xref ref-type="bibr" rid="B187">187</xref>
])
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Salford Hand Exoskeleton</italic>
, Sarakoglou [
<xref ref-type="bibr" rid="B34">34</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">7
<hr></hr>
</td>
<td align="justify" valign="bottom">Index, middle, and ring finger – FE (x2), thumb – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis (exoskeleton); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: hs (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Tong [
<xref ref-type="bibr" rid="B35">35</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">10
<hr></hr>
</td>
<td align="justify" valign="bottom">Each finger – FE (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric linear motors (x10)
<hr></hr>
</td>
<td align="justify" valign="bottom">Portable system (wearable orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 2 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>TU Berlin Finger Exoskeleton</italic>
, Wege [
<xref ref-type="bibr" rid="B36">36</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">1 finger – FE (x3), AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Finger exoskeleton; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>TU Berlin Hand Exoskeleton</italic>
, Fleischer [
<xref ref-type="bibr" rid="B117">117</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">20
<hr></hr>
</td>
<td align="justify" valign="bottom">FE and AA of all major joints of each finger
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, end-point force, sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis (exoskeleton); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Worsnopp [
<xref ref-type="bibr" rid="B37">37</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Index finger – FE (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless servomotors (x6)
<hr></hr>
</td>
<td align="justify" valign="bottom">Finger exoskeleton; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Xing [
<xref ref-type="bibr" rid="B38">38</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Thumb – FE, other fingers together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Position, force
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (PAMs) (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 3 hs
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder and elbow movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ACRE</italic>
, Schoone [
<xref ref-type="bibr" rid="B108">108</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">Electrical motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI: 10 sS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ACT</italic>
<sup>
<italic>3D</italic>
</sup>
, Ellis [
<xref ref-type="bibr" rid="B39">39</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy and assessment of therapy results
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 6 stroke
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ARC-MIME</italic>
, Lum [
<xref ref-type="bibr" rid="B137">137</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1+[2]
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (longitudinal movements of the forearm) [forearm’s elevation and yaw]
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm position and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1), magnetic particle brakes (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">An attempt to commercialize; CI study: 4 cS; merges concepts from
<italic>MIME</italic>
and
<italic>ARM Guide</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ARM Guide</italic>
, Reinkensmeyer [
<xref ref-type="bibr" rid="B136">136</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1+[2]
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (longitudinal movements of the forearm) [forearm’s elevation and yaw]
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm position and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motor (x1), magnetic particle brakes (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 19(10) cS [
<xref ref-type="bibr" rid="B40">40</xref>
]; see also:
<italic>ARC-MIME</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>BFIAMT</italic>
, Chang [
<xref ref-type="bibr" rid="B41">41</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (bilateral longitudinal movements of the forearms)
<hr></hr>
</td>
<td align="justify" valign="bottom">End point position and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC servomotor (x2), magnetic particle brakes (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 20 cS [
<xref ref-type="bibr" rid="B41">41</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>BONES</italic>
, Klein [
<xref ref-type="bibr" rid="B118">118</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, cylinder pressure
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (parallel robot + exoskeleton-based distal part); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; see also:
<italic>Supinator extender (SUE)</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Dampace</italic>
, Stienen [
<xref ref-type="bibr" rid="B154">154</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[4]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Shoulder – FE, AA, RT, elbow – FE]
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Hydraulic brake actuators (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: stroke (np); see also
<italic>Limpact</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Freeman [
<xref ref-type="bibr" rid="B163">163</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Handle torque and position
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brusheless servomotors (x2), FES
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 18 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>InMotion ARM</italic>
, previous name
<italic>InMotion 2.0</italic>
, Interactive Motion Tech., Inc.; based on:
<italic>MIT Manus</italic>
, Krebs [
<xref ref-type="bibr" rid="B107">107</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2+[1]
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (in the plane + gravity compensation)
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint positions, angular velocity and torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system, CIII/CIV studies: 127(49) cS [
<xref ref-type="bibr" rid="B203">203</xref>
], CII studies: 56(30) aS [
<xref ref-type="bibr" rid="B42">42</xref>
], 30(10) aS [
<xref ref-type="bibr" rid="B43">43</xref>
] and others
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Ju [
<xref ref-type="bibr" rid="B44">44</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Handle torque and position
<hr></hr>
</td>
<td align="justify" valign="bottom">AC motors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: stroke (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kiguchi [
<xref ref-type="bibr" rid="B45">45</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wheelchair mounted system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: hs (np); see also: shoulder, elbow and shoulder-elbow-forearm orthoses developed by Kiguchi and
<italic>SUEFUL-7</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kobayashi [
<xref ref-type="bibr" rid="B149">149</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angle
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (PAMs) (x10)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable (but not portable) orthosis (”muscle suit“); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 5 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Limpact</italic>
, Stienen [
<xref ref-type="bibr" rid="B155">155</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Rotational hydroelastic actuator (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Design; based on
<italic>Dampace</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MariBot</italic>
, Rosati [
<xref ref-type="bibr" rid="B46">46</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">Motor positions
<hr></hr>
</td>
<td align="justify" valign="bottom">DC frameless brushless motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, cable-driven robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; successor of
<italic>NeReBot</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MEMOS</italic>
, Micera [
<xref ref-type="bibr" rid="B132">132</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Torque and handle position
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 20(12) cS [
<xref ref-type="bibr" rid="B17">17</xref>
], CI study: 18 cS [
<xref ref-type="bibr" rid="B47">47</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MIME</italic>
, Burgar [
<xref ref-type="bibr" rid="B120">120</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm position, orientation, torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed servomotors (
<italic>PUMA 560</italic>
robot)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII studies: 27(13) cS [
<xref ref-type="bibr" rid="B48">48</xref>
] and 30(24) sS [
<xref ref-type="bibr" rid="B49">49</xref>
], CI study: 13 cS [
<xref ref-type="bibr" rid="B50">50</xref>
]; see also
<italic>ARC-MIME</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Moubarak [
<xref ref-type="bibr" rid="B51">51</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint position, velocity and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless motors (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wheelchair-mounted system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>NeReBot</italic>
, Rosati [
<xref ref-type="bibr" rid="B111">111</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">Motor positions
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, cable-driven robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII studies: 24(12) sS [
<xref ref-type="bibr" rid="B111">111</xref>
], 35 (17) aS [
<xref ref-type="bibr" rid="B52">52</xref>
], 21(11) sS [
<xref ref-type="bibr" rid="B53">53</xref>
]; predecessor of
<italic>MariBot</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>REHAROB</italic>
, Toth [
<xref ref-type="bibr" rid="B125">125</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">12
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Electrical motors (
<italic>ABB IRB 140</italic>
and
<italic>IRB 1400H</italic>
robots)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (2 modified industrial robots); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 22 (13) stroke + 8(2) TBI [
<xref ref-type="bibr" rid="B54">54</xref>
], CI study: 6 cS + 2 sS + 4 hs [
<xref ref-type="bibr" rid="B125">125</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting forearm and wrist movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Bi-Manu-Track</italic>
, Reha-Stim; Hesse [
<xref ref-type="bibr" rid="B55">55</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS * wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system, CII study: 44 (22) sA [
<xref ref-type="bibr" rid="B56">56</xref>
], CI study: 12 cS [
<xref ref-type="bibr" rid="B55">55</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>CRAMER</italic>
, Spencer [
<xref ref-type="bibr" rid="B109">109</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Hand accelerations (Nintendo Wii console)
<hr></hr>
</td>
<td align="justify" valign="bottom">Digital servomotors (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (parallel robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>InMotion WRIST</italic>
, previous name
<italic>InMotion 3.0</italic>
, Interactive Motion Tech., Inc.; Krebs [
<xref ref-type="bibr" rid="B138">138</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE * AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system, may be used as an add-on for
<italic>InMotion ARM</italic>
; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>RiceWrist</italic>
, Gupta [
<xref ref-type="bibr" rid="B119">119</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE * AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and forces
<hr></hr>
</td>
<td align="justify" valign="bottom">Frameless DC brushless motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; extension for
<italic>MIME</italic>
, see also:
<italic>MAHI</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Supinator extender (SUE)</italic>
, Allington [
<xref ref-type="bibr" rid="B57">57</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and forces
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 8 cS; extension for
<italic>BONES</italic>
and
<italic>ArmeoSpring</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Takaiwa [
<xref ref-type="bibr" rid="B110">110</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Torque
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x6)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (parallel robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>W-EXOS</italic>
, Gopura [
<xref ref-type="bibr" rid="B174">174</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG, hand force, forearm torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 2hs; see also: SUEFUL-7
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting wrist and fingers movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>AMES</italic>
, Cordo [
<xref ref-type="bibr" rid="B58">58</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">wrist and MCP joints of 4 fingers (coupled together)
<hr></hr>
</td>
<td align="justify" valign="bottom">Flexion/Extension torque, sEMG (optional)
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motor + 2 vibrators (for flexor and extensor tendons)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (with desktop mounted orthosis), physical therapy (at home)
<hr></hr>
</td>
<td align="justify" valign="bottom">FDA clearance; CI study: 20(11) cS; a modified version of the system is used for ankle rehabilitation
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Hand Mentor™</italic>
, Kinematic Muscles, Inc.; Koeneman [
<xref ref-type="bibr" rid="B59">59</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">1
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist and 4 fingers (except the thumb) extension
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist angle, flexion torque
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (PAM) (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (FDA Class I Device); CII study: 21(11) sS [
<xref ref-type="bibr" rid="B60">60</xref>
], CI studies: 1 cS [
<xref ref-type="bibr" rid="B61">61</xref>
], 1 cS [
<xref ref-type="bibr" rid="B62">62</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>HWARD</italic>
, Takahashi [
<xref ref-type="bibr" rid="B130">130</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist – FE, thumb – FE, other fingers together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (with desktop mounted orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 13(13) cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>My Scrivener</italic>
, Obslap Reseach, LLC; Palsbo [
<xref ref-type="bibr" rid="B190">190</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Wrist * fingers
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position and torque (
<italic>Novint Falcon</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (
<italic>Novint Falcon</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, using haptic device); fine motor hand therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 18 children with weak handwriting skills
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder, elbow and forearm movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ADLER</italic>
, Johnson [
<xref ref-type="bibr" rid="B63">63</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3+{3}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 8 hs [
<xref ref-type="bibr" rid="B64">64</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ARAMIS</italic>
, Pignolo [
<xref ref-type="bibr" rid="B65">65</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6x2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (x6 per exoskeleton)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (2 exoskeletons); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 14 sS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Gentle/S</italic>
, Amirabdollahian [
<xref ref-type="bibr" rid="B121">121</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3+{3}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 31(31) sS + cS [
<xref ref-type="bibr" rid="B66">66</xref>
]; predecessor of
<italic>Gentle/G</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>iPAM</italic>
, Culmer [
<xref ref-type="bibr" rid="B67">67</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (2 robotic arms); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 16 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kiguchi [
<xref ref-type="bibr" rid="B68">68</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, elbow – FE, forearm – AA
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wheelchair mounted system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs; see also: shoulder, elbow and shoulder-elbow orthoses developed by Kiguchi and
<italic>SUEFUL-7</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>L-Exos</italic>
, Frisoli [
<xref ref-type="bibr" rid="B197">197</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE {forearm – PS}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 9 cS [
<xref ref-type="bibr" rid="B69">69</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MGA</italic>
, Carignan [
<xref ref-type="bibr" rid="B70">70</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, VD, elbow – FE, {forearm – PS}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushless motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MULOS</italic>
, Johnson [
<xref ref-type="bibr" rid="B168">168</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS
<hr></hr>
</td>
<td align="justify" valign="bottom">Joystick (4 DOF)
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (x5)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wheelchair-mounted system (exoskeleton-based); power assistance and physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>NJIT-RAVR</italic>
, Fluet [
<xref ref-type="bibr" rid="B71">71</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3+{3}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy of children
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 8 CP
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>RehabExos</italic>
, Vertechy [
<xref ref-type="bibr" rid="B131">131</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE {forearm – PS}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Custom-made frameless brushless motor (x3), DC motor (x1)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">First prototype
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder, elbow and fingers movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Pneu-WREX</italic>
, Wolbrecht [
<xref ref-type="bibr" rid="B145">145</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4+{1}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, HD, elbow – FE, {fingers – GR}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, grasp force, cylinder pressure
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 11 cS [
<xref ref-type="bibr" rid="B72">72</xref>
]; see also:
<italic>T-WREX</italic>
and
<italic>ArmeoSpring</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>T-WREX</italic>
, Sanchez [
<xref ref-type="bibr" rid="B106">106</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">{5}
<hr></hr>
</td>
<td align="justify" valign="bottom">{Shoulder – FE, AA, RT, elbow – FE, fingers – GR}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, grasp force
<hr></hr>
</td>
<td align="justify" valign="bottom">None
<hr></hr>
</td>
<td align="justify" valign="bottom">Wheelchair mounted gravity balancing orthosis; physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII studies: 23(11) cS [
<xref ref-type="bibr" rid="B73">73</xref>
], 28(14) cS [
<xref ref-type="bibr" rid="B74">74</xref>
], CI studies: 9cS + 5cS (2 studies) [
<xref ref-type="bibr" rid="B75">75</xref>
]; see also:
<italic>Pneu-WREX</italic>
and
<italic>ArmeoSpring</italic>
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting elbow, forearm and wrist movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Ding [
<xref ref-type="bibr" rid="B179">179</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles (a Motion Capture System is used)
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (x8)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable (but not portable) orthosis; power assistance for explicitly specified muscles
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 6 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MAHI</italic>
, Gupta [
<xref ref-type="bibr" rid="B76">76</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Elbow – FE, forearm – PS, wrist – FE * AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">Frameless DC brushless motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis (force-feedback exoskeleton); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; extension for
<italic>MIME</italic>
; see also:
<italic>RiceWrist</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>WOTAS</italic>
, Rocon [
<xref ref-type="bibr" rid="B99">99</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[3]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Elbow – FE, forearm – PS, wrist – FE]
<hr></hr>
</td>
<td align="justify" valign="bottom">Angular velocity, torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; tremor suppression
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 10 mainly ET
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting forearm, wrist and fingers movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Haptic Knob</italic>
, Lambercy [
<xref ref-type="bibr" rid="B77">77</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS * wrist – FE, fingers – GR
<hr></hr>
</td>
<td align="justify" valign="bottom">Position, torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (2 parallelograms); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 3 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Hasegawa [
<xref ref-type="bibr" rid="B98">98</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">11
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE, AA, thumb – FE (x2), index finger – FE (x3), other fingers together –FE (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x11)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable orthosis; grasp assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Kawasaki [
<xref ref-type="bibr" rid="B178">178</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">18
<hr></hr>
</td>
<td align="justify" valign="bottom">Forearm – PS, wrist – FE, thumb – FE (x3), AA, other fingers – FE (x2), AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles of healthy hand
<hr></hr>
</td>
<td align="justify" valign="bottom">Servo motors (x22)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Scherer [
<xref ref-type="bibr" rid="B156">156</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[1]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Forearm and fingers twisting movements * wrist – FE]
<hr></hr>
</td>
<td align="justify" valign="bottom">Position, torque
<hr></hr>
</td>
<td align="justify" valign="bottom">Magnetic particle brake
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, rotating handle); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 2 stroke + 1 MS
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder, elbow, forearm and wrist movements</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Braccio di Ferro</italic>
, Casadio [
<xref ref-type="bibr" rid="B134">134</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the horizonatal or vertical plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Device joint angles, end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">AC brushless servomotors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI studies: 10 cS + 4 hs [
<xref ref-type="bibr" rid="B78">78</xref>
], 7 MS + 9 hs [
<xref ref-type="bibr" rid="B79">79</xref>
], 11 MS + 11 hs [
<xref ref-type="bibr" rid="B80">80</xref>
], 8 MS [
<xref ref-type="bibr" rid="B81">81</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>CADEN-7</italic>
, Perry [
<xref ref-type="bibr" rid="B97">97</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2x7
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG, joint angles, angular velocities and forces/torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (2x7)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based), 2 robotic arms; power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 1 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Denève [
<xref ref-type="bibr" rid="B82">82</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">Device joint angles, end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">AC brushless motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>EMUL</italic>
, Furusho [
<xref ref-type="bibr" rid="B159">159</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors + ERF clutches
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 6 stroke; predecessor of
<italic>PLEMO</italic>
, see also:
<italic>Robotherapist</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ESTEC exoskeleton</italic>
, Schiele [
<xref ref-type="bibr" rid="B115">115</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">9
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, VD, HD, elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles
<hr></hr>
</td>
<td align="justify" valign="bottom">Not selected yet
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">First prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Furuhashi [
<xref ref-type="bibr" rid="B83">83</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x3)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Hybrid-PLEMO</italic>
, Kikuchi [
<xref ref-type="bibr" rid="B135">135</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the adjustable plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Device joint angles, end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">DC servomotors (x2) + ERF clutches/brakes (x4)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; based on
<italic>PLEMO</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Lam [
<xref ref-type="bibr" rid="B180">180</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position, abnormal trunk position detection
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 8 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Li [
<xref ref-type="bibr" rid="B176">176</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, elbow – FE, forearm – PS, wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG signals from not affected arm
<hr></hr>
</td>
<td align="justify" valign="bottom">AC (x3) and DC (x2) servo motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MACARM</italic>
, Beer [
<xref ref-type="bibr" rid="B112">112</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position and force
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors (x8)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, cable-driven robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 5 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Mathai [
<xref ref-type="bibr" rid="B84">84</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">3
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 4 cS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MIME-RiceWrist</italic>
, Gupta [
<xref ref-type="bibr" rid="B119">119</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">10
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">See separate information for MIME and RiceWrist system
<hr></hr>
</td>
<td align="justify" valign="bottom">See separate information for MIME and RiceWrist system
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (robotic arm + orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: stroke (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>PLEMO</italic>
, Kikuchi [
<xref ref-type="bibr" rid="B105">105</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[2]
<hr></hr>
</td>
<td align="justify" valign="bottom">[Shoulder * elbow * (forearm) * wrist] (in the adjustable plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Device joint angles, end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">ERF brakes
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 6 stroke + 27 hs [
<xref ref-type="bibr" rid="B85">85</xref>
]; successor of
<italic>EMUL</italic>
, predecessor of Hybrid-PLEMO
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Robotherapist</italic>
, Furusho [
<xref ref-type="bibr" rid="B160">160</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motors + ERF clutches
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; see also:
<italic>EMUL</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>RUPERT IV</italic>
, Balasubrama- nian [
<xref ref-type="bibr" rid="B151">151</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">5
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – AA, RT, elbow – FE, forearm – PS, wrist – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint torques and actuators pressure
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic (PAMs)
<hr></hr>
</td>
<td align="justify" valign="bottom">Wearable system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 6 cS [
<xref ref-type="bibr" rid="B86">86</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Salford Arm Rehabilitation Exoskeleton</italic>
, Tsagarakis [
<xref ref-type="bibr" rid="B148">148</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">7
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint positions and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Linear pneumatic actuators (PAMs) (x14)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Sophia-3</italic>
, Rosati [
<xref ref-type="bibr" rid="B87">87</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position and force
<hr></hr>
</td>
<td align="justify" valign="bottom">AC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, planar cable-driven robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">First prototype; see also:
<italic>Sophia-4</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Sophia-4</italic>
, Rosati [
<xref ref-type="bibr" rid="B87">87</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point position and force
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based, planar cable-driven robot); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype; see also:
<italic>Sophia-3</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>SUEFUL-7</italic>
, Gopura [
<xref ref-type="bibr" rid="B166">166</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">7
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG/joint forces/torques
<hr></hr>
</td>
<td align="justify" valign="bottom">DC servo motors (x7)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); power assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 2 hs; shoulder-elbow orthosis integrated with
<italic>W-EXOS</italic>
system
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Takahashi [
<xref ref-type="bibr" rid="B182">182</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">End point position
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric servomotors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 5 stroke + 2 Guillain-Bare syndrome
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Tanaka [
<xref ref-type="bibr" rid="B88">88</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point force and position
<hr></hr>
</td>
<td align="justify" valign="bottom">AC linear motor (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: 6 hs
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>UHD</italic>
, Oblak [
<xref ref-type="bibr" rid="B139">139</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">3 configurations possible: 1) shoulder * elbow, 2) forearm – PS, wrist – FE, 3) forearm – PS, wrist – AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Torque and handle position
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x2), (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 1 cS; reconfigurable robot
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Umemura [
<xref ref-type="bibr" rid="B152">152</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">7
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, AA
<hr></hr>
</td>
<td align="justify" valign="bottom">Actuators pressure
<hr></hr>
</td>
<td align="justify" valign="bottom">Hydraulic
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>UMH</italic>
, Morales [
<xref ref-type="bibr" rid="B127">127</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * forearm * wrist
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Pneumatic
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (two robotic arms); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">C0 study: hs (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Xiu-Feng [
<xref ref-type="bibr" rid="B89">89</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">2
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow * (forearm) * wrist (in the plane)
<hr></hr>
</td>
<td align="justify" valign="bottom">Device joint angles, end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">AC servomotors (x2)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (end-effector-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 30 stroke
<hr></hr>
</td>
</tr>
<tr>
<td colspan="7" align="center" valign="bottom">
<bold>Systems assisting shoulder, elbow, forearm, wrist and finger movements (whole arm)</bold>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ArmeoPower</italic>
, Hocoma AG; based on:
<italic>ARMin III</italic>
, Nef [
<xref ref-type="bibr" rid="B90">90</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6{+1}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, {fingers – GR}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, grasp force
<hr></hr>
</td>
<td align="justify" valign="bottom">DC motors (x6)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system; CI studies: 3 cS (ARMin I) [
<xref ref-type="bibr" rid="B91">91</xref>
], 4 cS (ARMin II) [
<xref ref-type="bibr" rid="B92">92</xref>
]
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ArmeoSpring</italic>
, Hocoma AG; based on:
<italic>T-WREX</italic>
, Sanchez [
<xref ref-type="bibr" rid="B106">106</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">{7}
<hr></hr>
</td>
<td align="justify" valign="bottom">{Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, fingers – GR}
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles, grasp force
<hr></hr>
</td>
<td align="justify" valign="bottom">None
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Commercial system (CE Mark, FDA clearance); CI study: 10 MS [
<xref ref-type="bibr" rid="B93">93</xref>
]; see also:
<italic>T-WREX</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>ARMOR</italic>
, Mayr [
<xref ref-type="bibr" rid="B177">177</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">8
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, elbow – FE, forearm – PS, wrist – FE, thumb – FE, other fingers together – FE
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles of the master hand
<hr></hr>
</td>
<td align="justify" valign="bottom">Electric motor
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary master-slave system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 8(8) sS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>Gentle/G</italic>
, Loureiro [
<xref ref-type="bibr" rid="B123">123</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">6{+3}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (3 DOF,
<italic>HapticMaster</italic>
), {forearm – PS, wrist – FE, AA}, thumb – FE, other fingers together – FE (x2) (grasp robot)
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
) joint angels and end-point force (grasp robot)
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
and grasp robot)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (robotic arm + orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CII study: 4(4) sS [
<xref ref-type="bibr" rid="B94">94</xref>
]; based on
<italic>Gentle/S</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>HEnRiE</italic>
, Mihelj [
<xref ref-type="bibr" rid="B124">124</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">4{+2}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder * elbow (3 DOF,
<italic>HapticMaster</italic>
), {wrist – FE, AA}, thumb, middle and index finger together – GR
<hr></hr>
</td>
<td align="justify" valign="bottom">End-point torque, position and velocity (
<italic>HapticMaster</italic>
) joint angels and end-point force
<hr></hr>
</td>
<td align="justify" valign="bottom">DC brushed motors (
<italic>HapticMaster</italic>
) electric motors (grasping device)
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (robotic arm + orthosis); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">Prototype (with spring instead of an actuator in the hand part); C0 study: 1 hs; based on
<italic>Gentle/S</italic>
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>IntelliArm</italic>
, Ren [
<xref ref-type="bibr" rid="B116">116</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">8{+2}
<hr></hr>
</td>
<td align="justify" valign="bottom">Shoulder – FE, AA, RT, VD, {HD (x2)}, elbow – FE, forearm – PS, wrist – FE, all fingers together – GR
<hr></hr>
</td>
<td align="justify" valign="bottom">Joint angles and torques
<hr></hr>
</td>
<td align="justify" valign="bottom">Not specified
<hr></hr>
</td>
<td align="justify" valign="bottom">Stationary system (exoskeleton-based); physical therapy
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: stroke (np)
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">
<italic>MUNDUS</italic>
, Pedrocchi [
<xref ref-type="bibr" rid="B101">101</xref>
]
<hr></hr>
</td>
<td align="left" valign="bottom">[3]+{2}+1
<hr></hr>
</td>
<td align="justify" valign="bottom">[Shoulder – FE, AA, elbow – FE], optional: forearm – PS, wrist – FE (shoulder-elbow-wrist exoskeleton), optional: all fingers together – GR (hand orthosis)
<hr></hr>
</td>
<td align="justify" valign="bottom">sEMG, button, eye-movement or Bran Computer Interface; object labels – radio frequency identification
<hr></hr>
</td>
<td align="justify" valign="bottom">elastic elements or DC brakes (shoulder-elbow-wrist exoskeleton), FES (optional), DC motor (optional hand orthosis)
<hr></hr>
</td>
<td align="justify" valign="bottom">Modular wheelchair-mounted system (exoskeleton-based); movement assistance
<hr></hr>
</td>
<td align="justify" valign="bottom">CI study: 3 SCI + 2 MS
<hr></hr>
</td>
</tr>
<tr>
<td align="justify">
<italic>ReoGo</italic>
, Motorica Medical Inc.</td>
<td align="left">2+{1}</td>
<td align="justify">Shoulder * elbow; also {* wrist} or {fingers - FE} if special handle used</td>
<td align="justify">End-point position</td>
<td align="justify">Electric motors (x4)</td>
<td align="justify">Portable system (end-effector-based) with various handles; physical therapy</td>
<td align="justify">Commercial system; CIII/CIV study: 60(np) sS [
<xref ref-type="bibr" rid="B198">198</xref>
], CI studies: 14 cS [
<xref ref-type="bibr" rid="B95">95</xref>
], 10 sS [
<xref ref-type="bibr" rid="B96">96</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>All the systems in the following table are grouped according to the joint movement they support. For the sake of convenience, we consider the shoulder complex, the forearm and the hand (fingers) as single joints. Thus, we distinguish the following “joints”: shoulder, elbow, forearm, wrist and fingers. Devices assisting movements of only one “joint” (starting from shoulder and ending with fingers) are described first followed by devices assisting movement of two, three and four joints (in that order). The end of the table presents systems assisting movement of the whole arm.</p>
<p>For some systems it was difficult to classify them into a particular group. One of such cases includes the end-effector-based systems with a splint. A specific classification to particular group may depend on the joints constrained in particular case by the splint. Furthermore, some devices allow for movements in some joints only in a limited range.</p>
<p>In some cases the same system may appear multiple times in the table on various stages of development. We have accepted such occurrences only if, in our opinion, the difference between two versions of the system justified considering them as two various systems. Otherwise, information included in the table includes only the most recent version of the system available at the time of this publication.</p>
<p>System names are provided in italics. Whenever possible, the first column of the table provides the system name and reference (including the name of the first author) to the publication in which the system is described. We only provide the appropriate reference for systems without a name. The names of commercial systems are followed by their producer names. Appropriate information is provided following a semicolon for commercial systems based on systems being described in scientific publication before commercialization. Except one case, i.e.
<italic>ArmeoSpring</italic>
based on
<italic>T-WREX</italic>
system, the description of the predecessors is not provided elsewhere in the table because we found no significant differences between the predecessors and their commercial versions.</p>
<p>The last column contains information about the current stage of system development, clinical trials performed using the system and some additional information are provided. If the system has undergone clinical evaluation, information about the category of the trial, number of participants enrolled and their condition, as well as reference to the paper presenting results of the study is also provided. We distinguish four categories of the studies marked as C0, CI, CII, CIII/CIV. For a description, see Table
<xref ref-type="table" rid="T7">7</xref>
. Categories CII and CIII/CIV provide two numbers of subjects. The first number indicates the total number of participants enrolled in the study. The number in parenthesis indicates number of participants undergoing therapy using the particular system. We made this distinction because there is often a control group undergoing other form of therapy in the CII and CIII/CIV studies. If both numbers are equal, all participants underwent therapy using the specified system but other parameter of the study varied between the groups (e.g. training intensity, device control strategy, or order in which various forms of therapy were applied). No reference after the number and condition of participants indicates that the reference is the same as the one provided in the first column. Information about predecessors or successors is also provided, if available. We use the following symbols and abbreviations: - for degrees of freedom of the device (DOF) and supported movements (second and third column of the table respectively): [ ] - indicates passive (i.e. exerting only resistive force) and { } - indicates not-actuated degrees of freedom or movements, otherwise active. - for supported movements (third column): (joint name) - indicates that range of movements for that joint is limited to a very small range, AA – adduction/abduction, FE – flexion/extension, GR – grasp and release, PS – pronation/supination, RT – internal/external rotation, HD - horizonatal displacement, VD - vertical displacement (both in the shoulder girdle), MCP – metacarpophalangeal joint, * - indicates that the direction of the movement of the device does not correspond to the direction of any of basic anatomical movements (e.g. pronation/supination, flexion/extension, rotation) but is a combination of many, (x number) - indicates that a few particular movements are possible (e.g. flexion in a few joints of one finger), (in the plane) - indicates that the end effector of the device moves only in a specified plane; for the explanation of anatomical terms of motion see Figure
<xref ref-type="fig" rid="F2">2</xref>
. - for main control inputs and actuators (fourth and fifth column respectively): (
<italic>commercial system name</italic>
) - indicates that the particular commercial device (usually robot or haptic interface) is incorporated in the described system and that the particular sensors or actuators are part of that commercial system. - for main control (forth column): sEMG - surface electromyography. - for actuators (fifth column): AC - alternating current, DC - direct current, ERF - electrorheological fluid based, FES - functional electrical stimulation, MRF - magnetorheological fluid based, PAM - pneumatic artificial muscle, SEA - series elastic actuator, (x number) - number of particular actuators being used (provided only if such an information was available). - for clinical studies (last column): C0, CI, CII, CIII/CIV - category of the study: 0, I, II and III/IV, respectively (for category descriptions see the subsection
<italic>Clinical studies</italic>
of the survey); subject condition: aS - acute stroke, CP - cerebral palsy, cS - chronic stroke, ET - essential tremor, hs - healthy subject(s), MS - multiple sclerosis, SCI - spinal cord injury, sS - subacute stroke, TBI - traumatic brain injury; np - number of subjects is not provided.</p>
</table-wrap-foot>
</table-wrap>
<p>The survey of robotic devices is comprised of advanced technology systems. As defined in this report, the design of advance technology systems includes sensors, actuators, and control units; purely mechanical solutions are excluded from this survey. Although the research team made an effort to identify as many systems as possible, it is reasonable to acknowledge that many systems are left unmentioned. Nevertheless, this documentation is intended to be a valuable source of information for engineers, scientists and physiotherapists working on new solutions for physical rehabilitation.</p>
</sec>
<sec>
<title>The survey</title>
<sec>
<title>Scope of the survey</title>
<p>At the outset, the research team identified literature associated with the subject matter based on searches in PubMed, the Institute of Electrical and Electronics Engineers (IEEE), Science Direct and Google Scholar databases using various combinations of the following keywords: upper extremity, arm, hand, rehabilitation, therapy, training, movement, motion, assistance, support, robot, robotized, robotic, mechatronic, and motorized. Additionally, referenced literature from the selected publications was included in the survey as well. The information obtained from this literature compendium is supplemented with the data acquired from professional caregivers and manufacturers’ catalogs and websites, as well as direct communications with rehabilitation professionals, manufacturers and patients. Over 120 systems are summarized and compared in Table
<xref ref-type="table" rid="T1">1</xref>
; this tabulated summary constitutes the reference for information provided in subsequent sections. As previously mentioned, the scope of this report is generally limited to the devices that support or retrain movement or manipulation abilities of disabled individuals. This survey excludes systems developed for movement assessment, occupational purposes or boosting physical abilities of healthy people. We however considered some academic, not yet specialized systems, supporting upper-extremity movements, especially if they have potential to be used for rehabilitation purposes (e.g.
<italic>CADEN-7</italic>
[
<xref ref-type="bibr" rid="B97">97</xref>
]). This survey also excludes devices that substitute movements of the disabled extremity but do not replace the movement itself (e.g. wheelchair mounted manipulators or autonomous robots). Although these devices improve the patient’s quality of life, they differ significantly from systems described in this survey and constitute a separate category of devices. Some companies (e.g. CSMi Computer Sports Medicine, Inc.; Biodex Medical Systems, Inc.; BTE Technologies, Inc.) manufacture sensorized equipment for rehabilitation of various joints and muscles and whose principle of operation often resembles that of exercising devices found at fitness centers. Those devices are used mainly to strengthen muscles and joints and provide some predefined resistance (e.g. isotonic, isometric or isokinetic exercises) or active force (e.g. continuous passive motion exercises). These devices also constitute a different category from the systems included in this survey because their functions are performed along a predefined operation pathway. Although difficult to clearly identify, the aforementioned were also excluded from this review.</p>
<p>Throughout this report, the term “number of degrees of freedom (DOF)” describes the sum of all independent movements (i.e. displacements or rotations) that can be performed in all the joints of the device. The number of DOF is defined in order to determine the exact position and orientation of all segments of the device. Also, some sections in this report are supplemented by an explanation of the most important terminology for readers who are not familiar with the technical vocabulary.</p>
</sec>
<sec>
<title>Application field and target group</title>
<p>A description of the specific field of application for upper limb rehabilitation devices often determines solutions for which the device itself may be applied. Upper-extremity rehabilitation involves actions that stimulate patients’ independence and quality of life. Two main application fields of robotic devices stand out: support to perform some ADLs (e.g. by power assistance or tremor suppression) and providing physical training (therapy). Although there is a significant need for
<bold>powered devices supporting basic ADL at home</bold>
, there are only a few of such devices proposed so far (see sixth column in Table
<xref ref-type="table" rid="T1">1</xref>
). This is mainly due to technical and economical restrictions. Such devices should significantly improve the lives of their users, otherwise patients become dissatisfied and discontinue their use shortly after. They should be also safe, easily to handle and inexpensive. Portability is also often expected from devices assisting patients to perform basic ADL; in such cases the amount of available energy is limited by the capacity to store energy. Furthermore, if the device is supposed to support movements of multiple joints, the number of needed actuators increases as well as the weight of the device. Therefore, the number of portable actuated devices supporting upper extremity movements is typically low. Instead, purely mechanical solutions are used for that purpose. A few examples of portable powered devices for upper extremity assistance used in daily living are
<italic>PowerGrip</italic>
system (Broaden Horizons, Inc., USA) and a system proposed by Hasegawa, et al. [
<xref ref-type="bibr" rid="B98">98</xref>
] (both for grasp assistance), as well as
<italic>WOTAS</italic>
orthosis [
<xref ref-type="bibr" rid="B99">99</xref>
] and a system proposed by Loureiro, et al. [
<xref ref-type="bibr" rid="B100">100</xref>
] (both for tremor suppression). However, portability is not always necessary. Often, especially after a stroke or a spinal cord injury, disorders of the upper extremity are accompanied by lower extremity disabilities. These scenarios are typically characterized by immobilized conditions and require a wheelchair. Therefore, many systems assisting upper limb movements are installed close to the patient (e.g. modular wheelchair-mounted system
<italic>MUNDUS</italic>
[
<xref ref-type="bibr" rid="B101">101</xref>
]).</p>
<p>Another group of the robotic devices used for rehabilitation purposes, much bigger than the group of devices supporting basic ADLs, constitute
<bold>devices providing physical therapy</bold>
. These may be designed for either specialized therapeutic institutes or home-based conditions. A vast majority of these devices may be used only at therapeutic institutes since they require supervised assistance from qualified personnel. Their price is often prohibitive for personal use due to their complexity. The patient demand for home-based therapy is expected to increase. Along this context, the concept of the
<italic>Gloreha</italic>
system (Idrogenet srl) is provided in two versions: (1) a more complex and more adaptable professional version intended for use at hospitals and rehabilitation centers and (2) a simplified low-cost version intended for patient use at home. However, according to Dijkers, et al. [
<xref ref-type="bibr" rid="B102">102</xref>
], many therapists may stop using devices if set-up takes more than 5 minutes. Thus new developed devices for physical training should be intuitive, easy and fast to set-up and have a reasonable price.</p>
<p>Stroke is the most common cause among diseases and injuries for upper limb movement disorders. It is estimated that by 2030, stroke will be the fourth leading cause of reduced disability-adjusted life-years (DALY) in western countries. DALY takes into account years of life lost due to premature death as wells as years of life lived in less than full health [
<xref ref-type="bibr" rid="B103">103</xref>
]. Other causes include traumatic brain injury, spinal cord injury and injuries to motoneurons, as well as certain neurological diseases such as multiple sclerosis, cerebral palsy, Guillain-Barre syndrome, essential tremor and Parkinson’s disease. Currently proposed robotic systems for upper limb rehabilitation are typically tested on stroke patients. Only a fraction of these systems are investigated on subjects suffering from other diseases (see last column of Table
<xref ref-type="table" rid="T1">1</xref>
).</p>
</sec>
<sec>
<title>Type of assistance</title>
<p>The most important terminology introduced in this section is explained in Table
<xref ref-type="table" rid="T2">2</xref>
. Devices for upper limb rehabilitation may provide different types of motion assistance: active, passive, haptic and coaching.
<bold>Active devices</bold>
provide active motion assistance and possess at least one actuator, thus they are able to produce movement of the upper-extremity. Most of the devices discussed in this survey are active (see Table
<xref ref-type="table" rid="T1">1</xref>
). Such assistance of movements is required if patient is too weak to perform specific exercises. However, even with active devices, an exercise is considered passive when a patient’s effort is not required. For example, devices providing continuous passive motion exercises are active, but those exercises are categorized as passive because the subject remains inactive while the device actively moves the joint through a controlled range of motion. It is not necessary to apply active assistance to resist patient’s movement, to increase patient’s force or to ensure the patient is following the desired trajectory. Instead,
<bold>passive devices</bold>
may be applied that are equipped with actuators providing resistive force only (i.e. brakes). Such actuators consume less energy and are cheaper than the heavier actuators for active assistance. Devices using only resistive actuators include both devices for physical therapy, e.g.
<italic>MEM-MRB</italic>
[
<xref ref-type="bibr" rid="B104">104</xref>
] and
<italic>PLEMO</italic>
[
<xref ref-type="bibr" rid="B105">105</xref>
], and systems for tremor suppression, e.g.
<italic>WOTAS</italic>
[
<xref ref-type="bibr" rid="B99">99</xref>
] orthosis and a system proposed by Loureiro, et al. [
<xref ref-type="bibr" rid="B100">100</xref>
].</p>
<table-wrap position="float" id="T2">
<label>Table 2</label>
<caption>
<p>Glossary of terms concerning type of assistance</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Active device
<hr></hr>
</td>
<td align="justify" valign="bottom">A device able to move limbs. Under such condition, this device requires active actuators which may increase the weight. It may also apply to subjects completely unable to move their limb.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Passive device
<hr></hr>
</td>
<td align="justify" valign="bottom">A device unable to move limbs, but may resist the movement when exerted in the wrong direction. This type of device may only be used for rehabilitation of subjects able to move their limbs. It is usually lighter than active device since it possesses no actuators other than brakes.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Haptic device
<hr></hr>
</td>
<td align="justify" valign="bottom">A device that interfaces with the user through the sense of touch. In most cases it provides some amount of resistive force, often also some other sensation (e.g. vibration). It is sometimes also able to generate specific movements. However, the force it generates is usually small. Haptic devices are commonly used in rehabilitation settings with virtual environments.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Coaching device
<hr></hr>
</td>
<td align="justify" valign="bottom">A device that neither assists nor resists movement. However, it is able to track the movement and provide feedback related to the performance of the subject. As haptic devices, coaching devices are also commonly used in rehabilitation settings with virtual environments.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Active exercise
<hr></hr>
</td>
<td align="justify" valign="bottom">An exercise in which subjects actively move their limb, although some assistance of the device may be provided. Such type of the exercise may be performed using any of the above listed types of devices.
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Passive exercise</td>
<td align="justify">An exercise in which the subject remains passive, while a device moves the limb. This type of exercise requires an active device. Continuous passive motion (CPM) training is an example of passive exercise with active devices.</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>
<bold>Haptic devices</bold>
constitute another group of systems interacting with the user through the sense of touch. Haptic devices are similarly classified as either active or passive, depending on their type of actuator. In this report, haptic devices are independently categorized because their main function is not to cause or resist movement but rather to provide tactile sensation to the user. Other non-actuated devices for upper limb rehabilitation do not generate any forces but provide different feedback. These systems are labeled
<bold>coaching devices</bold>
throughout this report. Because coaching devices are sensorized, they serve as input interface for interaction with therapeutic games in virtual reality (VR) (e.g.
<italic>T-WREX</italic>
[
<xref ref-type="bibr" rid="B106">106</xref>
],
<italic>ArmeoSpring</italic>
from Hocoma AG) or for telerehabilitation (i.e. remotely supervised therapy). Coaching systems using video-based motion recognition (e.g. Microsoft Kinect) would also belong to this category if it were not for their lack of any mechanical part in contact with the patient. Therefore, these systems will not be further discussed in this survey.</p>
<p>Passive and non-actuated systems are less complex, safer and cheaper than their active counterparts. However, they are often modified in the development process with more active characteristics. Still, the main characteristic that identifies a non-actuated or passive device is the lack of the ability to perform movement; they may be an option for continuation of the rehabilitation process, rather than for training of people with significant movement disorders at an early stage of rehabilitation.</p>
</sec>
<sec>
<title>Mechanical design</title>
<p>The most important terminology introduced in this section is explained in Table
<xref ref-type="table" rid="T3">3</xref>
. When comparing the mechanical structure of robotic devices for movement rehabilitation often two categories of devices are considered: end-effector-based and exoskeleton-based. The difference between the two categories is how the movement is transferred from the device to the patient’s upper extremity. End-effector-based devices contact the patient’s limb only at its most distal part that is attached to patient’s upper extremity (i.e. end effector). Movements of the end effector change the position of the upper limb to which it is attached. However, segments of the upper extremity create a mechanical chain. Thus, movements of the end effector also indirectly change the position of other segments of the patient’s body as well. Compared to end effectors, exoskeleton-based devices have a mechanical structure that mirrors the skeletal structure of patient’s limb. Therefore movement in the particular joint of the device directly produces a movement of the specific joint of the limb.</p>
<table-wrap position="float" id="T3">
<label>Table 3</label>
<caption>
<p>Glossary of terms concerning mechanical design of robots for rehabilitation</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="justify" valign="bottom">End-effector based device
<hr></hr>
</td>
<td align="justify" valign="bottom">Contacts a subject’s limb only at its most distal part. It simplifies the structure of the device. However, it may complicate the control of the limb position in cases with multiple possible degrees of freedom.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Exoskeleton-based device
<hr></hr>
</td>
<td align="justify" valign="bottom">A device with a mechanical structure that mirrors the skeletal structure of the limb, i.e. each segment of the limb associated with a joint movement is attached to the corresponding segment of the device. This design allows independent, concurrent and precise control of movements in a few limb joints. It is, however, more complex than an end-effector based device. Orthoses restricting or assisting movement in one or more joints may be also considered exoskeleton-based devices.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Planar robot
<hr></hr>
</td>
<td align="justify" valign="bottom">A device, usually end-effector based, moving in a specific plane. Design of planar robots, decreases costs as well as the range of movements that may be exercised. Although this device performs movements in a plane, joints of the limb may still move in a three-dimensional space.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Back-drivability
<hr></hr>
</td>
<td align="justify" valign="bottom">A property of mechanical design indicating that the patient is able to move the device, even when the device is in passive state. It increases patient safety, because it does not constrain limb movements and keeps patient’s limb in a comfortable position.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Modularity
<hr></hr>
</td>
<td align="justify" valign="bottom">A property of a device indicating that optional parts may adapt it to a specific condition or simply to perform additional exercises.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify">Reconfigurability</td>
<td align="justify">A property of a device indicating that its mechanical structure may be modified without adding additional parts in order to adapt it to the condition of the subject or to perform other form of training.</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The advantage of the
<bold>end-effector-based</bold>
systems is their simpler structure and thus less complicated control algorithms. However, it is difficult to isolate specific movements of a particular joint because these systems produce complex movements. The manipulator allows up to six unique movements (i.e. 3 rotations and 3 translations). Control of the movements of the patients upper limb is possible only if the sum of possible anatomical movements of patient arm in all assisted joints is limited to six. Increasing the number of defined movements for the same position of the end-point of the manipulator results in redundant configurations of the patient’s arm, thus inducing risk of injuries and complicated control algorithms.</p>
<p>The typical end-effector-based systems include serial manipulators (e.g.
<italic>MIT Manus</italic>
[
<xref ref-type="bibr" rid="B107">107</xref>
] - Figure
<xref ref-type="fig" rid="F1">1</xref>
B,
<italic>ACRE</italic>
[
<xref ref-type="bibr" rid="B108">108</xref>
]), parallel (e.g.
<italic>CRAMER</italic>
[
<xref ref-type="bibr" rid="B109">109</xref>
] and a system proposed by Takaiwa and Noritsugu [
<xref ref-type="bibr" rid="B110">110</xref>
], both for wrist rehabilitation), and cable-driven robots (e.g.
<italic>NeReBot</italic>
[
<xref ref-type="bibr" rid="B111">111</xref>
] - Figure
<xref ref-type="fig" rid="F1">1</xref>
C,
<italic>MACARM</italic>
[
<xref ref-type="bibr" rid="B112">112</xref>
]). The mechanical structure of
<italic>HandCARE</italic>
[
<xref ref-type="bibr" rid="B113">113</xref>
] may be also recognized as the series of end-effector-based cable-driven robots, each of which induce movement of one finger. In this system a clutch system allows independent movement of each finger using only one actuator.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Examples of mechanical structures of robotic devices for upper limb rehabilitation.</bold>
<bold>A:</bold>
<italic>ARM Guide</italic>
- simple system using linear bearing to modify orientation [
<xref ref-type="bibr" rid="B136">136</xref>
];
<bold>B:</bold>
<italic>InMotion ARM</italic>
- end-effector-based commercial system [
<xref ref-type="bibr" rid="B133">133</xref>
];
<bold>C:</bold>
<italic>NeReBot</italic>
- cable-driven robot, Ⓒ2007 IEEE. Reprinted, with permission, from [
<xref ref-type="bibr" rid="B111">111</xref>
];
<bold>D:</bold>
<italic>ArmeoPower</italic>
- exoskeleton-based commercial system (courtesy of Hocoma AG).</p>
</caption>
<graphic xlink:href="1743-0003-11-3-1"></graphic>
</fig>
<p>Application of the
<bold>exoskeleton-based</bold>
approach allows for independent and concurrent control of particular movement of patient’s arm in many joints, even if the overall number of assisted movements is higher than six. However, in order to avoid patient injury, it is necessary to adjust lengths of particular segments of the manipulator to the lengths of the segments of the patient arm. Therefore setting-up such device for a particular patient, especially if the device has many segments, may take a significant amount of time. Furthermore, the position of the center of rotation of many joints of human body, especially of the shoulder complex [
<xref ref-type="bibr" rid="B114">114</xref>
], may change significantly during movement. Special mechanisms are necessary to ensure patient safety and comfort when an exoskeleton-based robot assists the movements of these joints [
<xref ref-type="bibr" rid="B114">114</xref>
]. For this reason, the mechanical and control algorithm complexity of such devices is usually significantly higher than of the end-effector-based devices. The complexity escalates as the number of DOF increases.</p>
<p>In case of systems for the rehabilitation of the whole limb the number of DOF reaches nine (
<italic>ESTEC exoskeleton</italic>
[
<xref ref-type="bibr" rid="B115">115</xref>
]) or ten (
<italic>IntelliArm</italic>
[
<xref ref-type="bibr" rid="B116">116</xref>
]). Some systems for fingers or hand rehabilitation have an even higher number of DOF. Examples include the system proposed by Hasegawa, et al. with eleven DOF [
<xref ref-type="bibr" rid="B98">98</xref>
] and the hand exoskeleton developed at the Technical University (TU) of Berlin with twenty DOF [
<xref ref-type="bibr" rid="B117">117</xref>
]. Even at such a high number of DOF some of these devices still remain wearable (i.e. the user is able to walk within a limited area due to connections to power source and control unit, e.g.
<italic>ESTEC</italic>
and hand exoskeleton developed at the TU Berlin) or portable (i.e. the area within which the user may walk is not limited, e.g. the system proposed by Hasegawa).</p>
<p>Apart from purely exoskeleton- or end-effector-based devices, there are many
<bold>systems combining a few approaches</bold>
. In the
<italic>ArmeoSpring</italic>
system (Hocoma AG) for example, only the distal part – comprising the elbow, forearm and wrist – is designed as an exoskeleton. Therefore the limb posture is statically fully determined (as in exoskeleton-based systems) and the shoulder joint is not constrained, allowing easy individual system adaptation to different patients. A similar concept was applied in Biomimetic Orthosis for the Neurorehabilitation of the Elbow and Shoulder –
<italic>BONES</italic>
[
<xref ref-type="bibr" rid="B118">118</xref>
]. In that case, a parallel robot consisting of passive sliding rods pivoting with respect to a fixed frame provides shoulder movements. Such application of sliding rods allows internal/external rotation of the arm without any circular bearing element. The distal part allowing for flexing/extending the elbow resembles the exoskeleton structure. In the
<italic>MIME-RiceWrist</italic>
rehabilitation system [
<xref ref-type="bibr" rid="B119">119</xref>
] the end-effector-based
<italic>MIME</italic>
[
<xref ref-type="bibr" rid="B120">120</xref>
] system for shoulder and elbow rehabilitation is integrated with the parallel wrist mechanism used in the
<italic>MAHI</italic>
exoskeleton (known as
<italic>RiceWrist</italic>
[
<xref ref-type="bibr" rid="B119">119</xref>
]).</p>
<p>Another example is the 6 DOF
<italic>Gentle/S</italic>
[
<xref ref-type="bibr" rid="B121">121</xref>
] system allowing for relatively large reaching movements (three actuated DOF of the end-effector-based commercial haptic interface
<italic>HapticMaster</italic>
, Moog in the Netherlands BV [
<xref ref-type="bibr" rid="B122">122</xref>
]) and arbitrary positioning of the hand (connection mechanism with three passive DOF). The
<italic>Gentle/S</italic>
system was further supplemented with a three-active-DOF hand exoskeleton to allow grasp and release movements. This new nine DOF system is known as
<italic>Gentle/G</italic>
[
<xref ref-type="bibr" rid="B123">123</xref>
].</p>
<p>The
<italic>HEnRiE</italic>
[
<xref ref-type="bibr" rid="B124">124</xref>
] is a similar system based on the
<italic>Gentle/S</italic>
system. In addition to the three active DOF of
<italic>HapticMaster</italic>
,
<italic>HEnRiE</italic>
includes a connection mechanism with two passive DOF for positioning of the hand and grasping device (two parallelogram mechanisms allowing parallel opening and closing of fingers attachments) with only one active DOF.</p>
<p>Some systems combine
<bold>more than one robot at the same time</bold>
. This approach may be considered as the combination of end-effector-approach, where only the most distal parts of robots are attached to the patient’s upper limb, with the exoskeleton-based approach, where movements of few segments are directly controlled at the same time. Use of two robots to control the movements of the limb may allow for mimicking the operations performed by therapist using two hands. Examples of systems using two-robot-concept include
<italic>REHAROB</italic>
[
<xref ref-type="bibr" rid="B125">125</xref>
] (using two six-DOF manipulators),
<italic>iPAM</italic>
[
<xref ref-type="bibr" rid="B126">126</xref>
] and
<italic>UMH</italic>
[
<xref ref-type="bibr" rid="B127">127</xref>
] (both having six DOF in total). Researchers at the University of Twente, in Enschede, Netherlands, made an attempt to use two
<italic>HapticMaster</italic>
systems to provide coordinated bilateral arm training, but limitations in hardware and software caused the virtual exercise to behave differently to the real-life [
<xref ref-type="bibr" rid="B128">128</xref>
]. In some cases
<bold>industrial robots</bold>
have also been used. The
<italic>REHAROB</italic>
uses
<italic>IRB 140</italic>
and
<italic>IRB 1400H</italic>
from ABB Ltd., while
<italic>MIME</italic>
[
<xref ref-type="bibr" rid="B120">120</xref>
] uses
<italic>PUMA 560</italic>
robot. In general, industrial robots reduce costs; however, such robots have significantly higher impedance than the human upper limb and, according to Krebs, et al. [
<xref ref-type="bibr" rid="B129">129</xref>
], should not be in close physical contact with patients. Therefore most of the robots used for the rehabilitation of the upper limb are designed with a low intrinsic impedance. Some of those devices are also
<bold>back drivable</bold>
(e.g.
<italic>HWARD</italic>
[
<xref ref-type="bibr" rid="B130">130</xref>
] and
<italic>RehabExos</italic>
[
<xref ref-type="bibr" rid="B131">131</xref>
]), meaning that the patient’s force is able to cause movement of those devices when they are in passive state. Back-drivability further increases safety of the patient because the device does not constrain patient movements. It also allows for using the device as an assessment tool to measure patient’s range of motion.</p>
<p>The majority of the devices presented in Table
<xref ref-type="table" rid="T1">1</xref>
allow movements in three dimensions; however there are also
<bold>planar robots</bold>
, i.e., systems allowing movements only on a specified plane (e.g.
<italic>MEMOS</italic>
[
<xref ref-type="bibr" rid="B132">132</xref>
] and
<italic>PLEMO</italic>
[
<xref ref-type="bibr" rid="B105">105</xref>
]). Also the
<italic>MIT Manus</italic>
system initially allowed movements only on one plane [
<xref ref-type="bibr" rid="B107">107</xref>
]. Subsequently, an anti-gravity module added possibility to perform vertical movements [
<xref ref-type="bibr" rid="B133">133</xref>
] (Figure
<xref ref-type="fig" rid="F1">1</xref>
B). Designing the device as a planar robot reduces the range of movements that can be exercised for particular joint. It also reduces the cost of the device. Furthermore, when the working plane is well selected, the range of training motion may suffice in most of therapeutic scenarios. Some of such planar devices allow changes in the working space between horizontal and vertical (
<italic>Braccio di Ferro</italic>
[
<xref ref-type="bibr" rid="B134">134</xref>
]) or even almost freely selecting the working plane (e.g.
<italic>PLEMO</italic>
and
<italic>Hybrid-PLEMO</italic>
[
<xref ref-type="bibr" rid="B135">135</xref>
]). It further increases the range of possible exercise scenarios while keeping the cost of the device at a minimum.</p>
<p>In the
<italic>ARM Guide</italic>
[
<xref ref-type="bibr" rid="B136">136</xref>
] (Figure
<xref ref-type="fig" rid="F1">1</xref>
A) and
<italic>ARC-MIME</italic>
[
<xref ref-type="bibr" rid="B137">137</xref>
] systems, with which patients practice reaching movements, the working space is limited to linear movements because the forearm typically follows a straight-line trajectory. However the orientation of the slide that assists forearm movements can be adjusted to reach multiple workspace regions and fit different scenarios.</p>
<p>
<bold>Modularity</bold>
and
<bold>reconfigurability</bold>
are concepts that could reduce therapy costs by adopting therapeutic devices for various disabilities or stages in patient recovery. However there are still only a few systems using these concepts. For example,
<italic>InMotion ARM</italic>
robot (the commercial version of
<italic>MIT Manus</italic>
, previously called
<italic>InMotion 2.0</italic>
) from Interactive Motion Technologies, Inc., may be extended by
<italic>InMotion WRIST</italic>
robot (previously
<italic>InMotion 3.0</italic>
), developed at MIT [
<xref ref-type="bibr" rid="B138">138</xref>
] as a stand-alone system, and
<italic>InMotion HAND</italic>
add-on module (previously
<italic>InMotion 5.0</italic>
) for grasp and release training. Another example of modular system is
<italic>MUNDUS</italic>
[
<xref ref-type="bibr" rid="B101">101</xref>
], consisting of various modules that may be included depending on the patient condition, starting from muscle weakness to complete lost of residual muscle function. For example as command input residual voluntary muscular activation, head/eye motion, or brain signals may be used. However, this system’s complexity might make commercialization of the device very difficult.</p>
<p>A very interesting solution was implemented in the
<italic>Universal Haptic Drive (UHD)</italic>
[
<xref ref-type="bibr" rid="B139">139</xref>
]. It has only two DOF and, depending on the chosen configuration, it can train either shoulder and elbow during reaching tasks or forearm (flexion/extension) and wrist. For the latter setting option, it is also possible to select a flexion/extension or pronation/supination training for the wrist. See Figure
<xref ref-type="fig" rid="F2">2</xref>
for an explanation of anatomical terms used for description of upper limb motion.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Main movements (degrees of freedom) of the upper extremity.</bold>
1: arm flexion/extension; 2: arm adduction/abduction; 3: arm internal(medial)/external(lateral) rotation; 4: elbow flexion/extension; 5: forearm pronation/supination; 6: wrist flexion/extension; 7: wrist adduction(ulnar deviation)/abduction(radial deviation); 8: hand grasp/release.</p>
</caption>
<graphic xlink:href="1743-0003-11-3-2"></graphic>
</fig>
</sec>
<sec>
<title>Actuation and power transmission</title>
<p>The most important terminology introduced in this section is explained in Table
<xref ref-type="table" rid="T4">4</xref>
. Traditionally, energy to the actuators is provided in three forms: electric current, hydraulic fluid or pneumatic pressure. The selection of the energy source determines the type of actuators used in the system. Most of the devices for upper extremity rehabilitation use electric actuators but there are also other systems with pneumatic and hydraulic actuators. The
<bold>electric actuators</bold>
are most common because of their ease to provide and store electrical energy as well as their relatively higher power. Various types and sizes of electrical motors and servomotors are currently commercially available. Some authors (e.g. Caldwell and Tsagarakis [
<xref ref-type="bibr" rid="B140">140</xref>
]) argue that electric actuators are too heavy, compared to their pneumatic counterparts, and their impedance is too high to be used in rehabilitation applications. However, the relatively high power-to-weight ratio of pneumatic actuators is achieved by neglecting the weight of the power source. Adding an elastic element in series with the actuator may also mitigate the high impedance of electric motors. This concept lead to the development of the so called
<bold>Series Elastic Actuators (SEAs)</bold>
. SEAs decrease inertia and user interface impedance to provide an accurate and stable force control [
<xref ref-type="bibr" rid="B141">141</xref>
], thus increasing the safety of the patient. The disadvantage of application with an elastic element is the lower functional bandwidth. Still, the field of rehabilitation does not usually require high bandwidths. SEAs with electric motors are investigated in
<italic>MARIONET</italic>
[
<xref ref-type="bibr" rid="B142">142</xref>
] and
<italic>UHD</italic>
[
<xref ref-type="bibr" rid="B139">139</xref>
] systems, as well as in systems proposed by Vanderniepen, et al. (referred to as MACCEPA actuators) [
<xref ref-type="bibr" rid="B143">143</xref>
] and Rosati, et al. [
<xref ref-type="bibr" rid="B144">144</xref>
].</p>
<table-wrap position="float" id="T4">
<label>Table 4</label>
<caption>
<p>Glossary of terms concerning actuation of robots for rehabilitation</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="justify" valign="bottom">Electric actuators
<hr></hr>
</td>
<td align="justify" valign="bottom">Actuators powered by electric current. They are the most common because they easily provide a relatively high power and are able to store energy. There is a wide selection of commercially available electric actuators; however, some of them are heavy and/or their impedance is too high for rehabilitation settings.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Hydraulic actuators
<hr></hr>
</td>
<td align="justify" valign="bottom">Actuators powered by hydraulic pressure (usually oil). They are able to generate high forces. Their system is relatively complex considering the maintenance of pressurized oil under pressure to prevent leakage. Commercial hydraulic actuators are also heavy, therefore, only specially designed hydraulic actuators are used in rehabilitation robotics.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Pneumatic actuators
<hr></hr>
</td>
<td align="justify" valign="bottom">Actuators powered by compressed air. They have lower impedance and weigh less than electric actuators. Special compressors or containers with compressed air are required for power.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Pneumatic Artificial Muscle (PAM, McKibben type actuator)
<hr></hr>
</td>
<td align="justify" valign="bottom">A special type of pneumatic actuator with an internal bladder surrounded by a braided mesh shell with flexible, but non-extensible threads. Because of their specific design, an actuator under pressure shortens, similarly to the contracting muscle. It is relatively light and exerts force in a single direction. It is difficult to control because of its slow and non-linear dynamic functions.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Series Elastic Actuator (SEA)
<hr></hr>
</td>
<td align="justify" valign="bottom">A generic name used for a mechanism with an elastic element placed in series with an actuator. This solution is relatively often met in the design of rehabilitation robots. It decreases the inertia and intrinsic impedance of the actuator to allow a more accurate and stable force control and increase patient safety.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify">Functional Electrical Stimulation (FES)</td>
<td align="justify">It is a technique that uses electrical current to activate nerves and contract their innervated muscles. It produces the movement of the limb using natural actuators of the body. However, it is difficult to achieve precise and repeatable movement using this technique and it may be painful for the patient.</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>A few systems use
<bold>pneumatic actuators</bold>
. Pneumatic actuators are lighter and have lower inherent impedance than the electric counterparts. Because such actuators require pneumatic pressure, the system is generally either stationary (e.g.
<italic>Pneu-WREX</italic>
[
<xref ref-type="bibr" rid="B145">145</xref>
]), its service area is limited (e.g.
<italic>ASSIST</italic>
[
<xref ref-type="bibr" rid="B146">146</xref>
]) or the compressor is installed on the patient’s wheelchair (e.g. system proposed by Lucas, et al. [
<xref ref-type="bibr" rid="B147">147</xref>
]). Special type of pneumatic actuators, called
<bold>Pneumatic Artificial Muscles (PAMs)</bold>
, Pneumatic Muscle Actuators or McKibben type actuators are often used in rehabilitation robotics (e.g.
<italic>Salford Arm Rehabilitation Exoskeleton</italic>
[
<xref ref-type="bibr" rid="B148">148</xref>
] or system proposed by Kobayashi and Nozaki [
<xref ref-type="bibr" rid="B149">149</xref>
]). Such actuators consist of an internal bladder surrounded by braided mesh shell with flexible, but non-extensible, threads. When the bladder is pressurized, the actuator increases its diameter and shortens according to its volume, thus providing tension at its ends [
<xref ref-type="bibr" rid="B150">150</xref>
]. Due to such physical configuration, PAMs’ weight is generally light compared to other actuators, but also have slow and non-linear dynamic response (especially large PAMs), in consequence they are not practical for clinical rehabilitation scenarios [
<xref ref-type="bibr" rid="B131">131</xref>
,
<xref ref-type="bibr" rid="B151">151</xref>
]. In addition, at least two actuators are necessary in order to provide antagonistic movements due to the unidirectional contracting. The
<italic>ASSIST</italic>
system has a special type of PAM with rotary pneumatic actuators that allows bending movements [
<xref ref-type="bibr" rid="B146">146</xref>
].</p>
<p>A total of four systems using
<bold>hydraulic actuators</bold>
were identified in this survey. All four of them are not standard and use actuators developed specially for that purpose. Reasons to evade industrial hydraulic actuators include weight, impedance, fluid leakages and difficulties to provide fluid. Large, noisy systems are usually necessary for that purpose. Mono-and bi-articular types of Hydraulic Bilateral Servo Actuators (HBSAs) are used in the wheelchair-mounted exoskeleton proposed by Umemura, et al. [
<xref ref-type="bibr" rid="B152">152</xref>
]. Miniaturized and flexible fluidic actuators (FFA) were applied in the elbow orthosis proposed by Pylatiuk, et al. [
<xref ref-type="bibr" rid="B153">153</xref>
]. Hydraulic SEAs are used in two other systems: the
<italic>Dampace</italic>
system [
<xref ref-type="bibr" rid="B154">154</xref>
] is equipped with powered hydraulic disk brakes; the
<italic>Limpact</italic>
system [
<xref ref-type="bibr" rid="B155">155</xref>
], developed by the same group, uses an active rotational Hydro-Elastic Actuator (rHEA).</p>
<p>In passive systems, it is often desired to modify the amount of resistance during the exercise. This modification increases the resistance when the patient departs from the desired trajectory or to provide haptic feedback for VR interactions. In existing systems, different solutions for provision of
<bold>adjustable resistive force</bold>
have been implemented. Powered hydraulic brakes, for example, controlled by electromotors in a SEA are used in
<italic>Dampace</italic>
system [
<xref ref-type="bibr" rid="B154">154</xref>
]. Magnetic particle brakes are used in
<italic>ARM Guide</italic>
[
<xref ref-type="bibr" rid="B136">136</xref>
] (Figure
<xref ref-type="fig" rid="F1">1</xref>
A), in its successor
<italic>ARC-MIME</italic>
[
<xref ref-type="bibr" rid="B137">137</xref>
] to resist other than longitudinal movements of the forearm, and in the device for training of multi-finger twist motion proposed by Scherer, et al. [
<xref ref-type="bibr" rid="B156">156</xref>
]. A few groups have also investigated the application of brakes incorporating magnetorheological (MRF brakes) and electrorheological fluids (ERF brakes). These fluids change their rheological properties (i.e. viscosity) depending on the applied magnetic or electric field, respectively. Thanks to those properties it is possible to achieve brakes with high-performance (with rapid and repeatable brake torque) [
<xref ref-type="bibr" rid="B105">105</xref>
]. MRF brakes are used in
<italic>MRAGES</italic>
[
<xref ref-type="bibr" rid="B157">157</xref>
] and
<italic>MEM-MRB</italic>
[
<xref ref-type="bibr" rid="B104">104</xref>
] systems. ERF brakes are used in
<italic>PLEMO</italic>
[
<xref ref-type="bibr" rid="B105">105</xref>
] and
<italic>MR_CHIROD v.2</italic>
[
<xref ref-type="bibr" rid="B158">158</xref>
] systems. The same group that developed the
<italic>PLEMO</italic>
also proposed ERF clutches to control the force provided by an electric motor in active systems. Such an actuation system was implemented in
<italic>EMUL</italic>
[
<xref ref-type="bibr" rid="B159">159</xref>
],
<italic>Robotherapist</italic>
[
<xref ref-type="bibr" rid="B160">160</xref>
] and
<italic>Hybrid-PLEMO</italic>
[
<xref ref-type="bibr" rid="B135">135</xref>
] devices.</p>
<p>The natural actuators of body muscles can be used instead of external actuators. For this purpose, an electrical stimulation of the muscles leading to their contraction can be applied. This specific electrical stimulation is known as
<bold>Functional Electrical Stimulation (FES)</bold>
. FES significantly reduces the weight of the device. From a therapeutic point of view, FES allows patients to exercise muscles, improving muscle bulk and strength and preventing muscular atrophy [
<xref ref-type="bibr" rid="B161">161</xref>
]. It has been also shown that FES, complemented by conventional physiotherapy, may enhance the rehabilitation outcome [
<xref ref-type="bibr" rid="B162">162</xref>
]. However, FES may cause strong involuntary muscle contractions and can be painful for patient. Furthermore, it is difficult to control movements using FES because of the non-linear force characteristic of contracting muscles, muscles fatigue and dependency of the achieved contraction on the quality of the contact between stimulating electrodes and the body tissue. There are two commercial systems using FES for upper limb rehabilitation:
<italic>Ness H200</italic>
(Bioness, Inc., US) and
<italic>NeuroMove</italic>
(Zynex Medical, Inc., US). Two other systems combining FES with assistive force were proposed by Freeman, et al. [
<xref ref-type="bibr" rid="B163">163</xref>
] and Li, et al. [
<xref ref-type="bibr" rid="B164">164</xref>
].</p>
<p>When selecting actuators, it is also important to consider their location, especially with exoskeleton-based mechanical structures. The actuators can be placed distally, close to the joints on which they actuate (e.g.
<italic>ArmeoPower</italic>
system, Figure
<xref ref-type="fig" rid="F1">1</xref>
D). This specification simplifies the power transmission by using direct drives. However, it increases the weight of the distal part of the device and inertia and makes it more difficult to control the system. On the other hand, locating the actuators in the proximal part of the device, often in the part that remains constrained, reduces the weight and inertia of the distal part. However, a power transmission mechanism complicates the mechanical structure and may lead to difficulties with control due to friction. For example, the same group who developed
<italic>InMotion HAND</italic>
system proposed an earlier prototype of the hand module with eight active DOF and cable-driven mechanism for power transmission. The friction in that mechanism and its level of complexity was too high for clinical scenarios [
<xref ref-type="bibr" rid="B165">165</xref>
]. Nevertheless, there are systems, in which power transmission using cables and gear drives was successfully applied, like for example
<italic>CADEN-7</italic>
[
<xref ref-type="bibr" rid="B97">97</xref>
] and
<italic>SUEFUL-7</italic>
[
<xref ref-type="bibr" rid="B166">166</xref>
].</p>
</sec>
<sec>
<title>Control signals</title>
<p>The most important terminology introduced in this section is explained in Table
<xref ref-type="table" rid="T5">5</xref>
. Various signals may be used as control input of the device.
<bold>Switches</bold>
are often used to simplify design. Examples include the
<italic>PowerGrip</italic>
system from Broaden Horizons, Inc., hand held triggers (e.g. FES based system for grasp assistance proposed by Nathan, et al. [
<xref ref-type="bibr" rid="B167">167</xref>
]) and a joystick (e.g.
<italic>MULOS</italic>
[
<xref ref-type="bibr" rid="B168">168</xref>
]). Most of the systems having more complex control strategies use either
<bold>kinematic, dynamic or a mix of both input signals</bold>
(see Table
<xref ref-type="table" rid="T1">1</xref>
for a comparison). The type of the signal used as control input is partially determined by the low-level control strategy and vice-versa. In some cases, signals provided by actuator encoders (concerning position or torque) may be directly used for control purposes. However, usually torque measured by the encoder is a sum of the torque exerted by the user on device and internal torques in the device. Therefore, for better control of forces between patient and device, it is useful to apply additional sensors that will measure those forces directly.</p>
<table-wrap position="float" id="T5">
<label>Table 5</label>
<caption>
<p>Glossary of terms concerning input control signals of robots for rehabilitation</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Dynamic signals
<hr></hr>
</td>
<td align="justify" valign="bottom">Signals related to the torque or force exerted by the subject on various joints of the device (exoskeleton-based device) or at its end effector (end-effector-based device).
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Kinematic signals
<hr></hr>
</td>
<td align="justify" valign="bottom">Signals related to positions, orientations, velocities and accelerations of particular segments or joints of the device or of the limb.
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Trigger signal</td>
<td align="justify">A signal initiating a specific action. In simple cases, a switch or a button triggers the signal. In more complex cases, a threshold value of some signal is specified to trigger the action (e.g. a sEMG value corresponding to a level of muscle contraction).</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>Some systems use
<bold>surface electromyography (sEMG)</bold>
as an input signal, which provides information about intention of the person to perform particular movement. Therefore it is possible to detect and support it. Most of such systems support elbow movements, as sEMG signals from muscles controlling this joints (i.e. biceps brachii or triceps brachii) are relatively easily measured. Among proposed solutions are both stationary (e.g. systems proposed by Rosen, et al. [
<xref ref-type="bibr" rid="B169">169</xref>
] and Kiguchi, et al. [
<xref ref-type="bibr" rid="B170">170</xref>
]) and portable systems (e.g. systems proposed by Ögce and Özyalçin [
<xref ref-type="bibr" rid="B171">171</xref>
] and Pylatiuk, et al. [
<xref ref-type="bibr" rid="B153">153</xref>
]). So far the most successful of those systems is the one DOF portable orthosis developed at the Massachusetts Institute of Technology (MIT), Cambridge, US [
<xref ref-type="bibr" rid="B172">172</xref>
]. The system successfully sustained clinical trials, received FDA approval and was commercialized as
<italic>Myomo e100</italic>
system (Myomo, Inc.) [
<xref ref-type="bibr" rid="B173">173</xref>
]. Examples of sEMG-controlled systems supporting movements of other joints include those proposed by Kiguchi, et al. [
<xref ref-type="bibr" rid="B114">114</xref>
] for shoulder rehabilitation,
<italic>W-EXOS</italic>
[
<xref ref-type="bibr" rid="B174">174</xref>
] for forearm and wrist rehabilitation,
<italic>PolyJbot</italic>
[
<xref ref-type="bibr" rid="B175">175</xref>
] for wrist rehabilitation,
<italic>SUEFUL-7</italic>
[
<xref ref-type="bibr" rid="B166">166</xref>
] exoskeleton for whole limb (excluding fingers) movement assistance,
<italic>TU Berlin Hand Exoskeleton</italic>
[
<xref ref-type="bibr" rid="B117">117</xref>
] for fingers rehabilitation, as well as 11-DOF portable orthosis for grasp assistance proposed by Hasegawa, et al. [
<xref ref-type="bibr" rid="B98">98</xref>
]. The sEMG signals from the contralateral healthy limb have been also used to control movements of the affected one (see system proposed by Li, et al. [
<xref ref-type="bibr" rid="B176">176</xref>
]). The concept of using
<bold>movements of the not affected limb</bold>
to control motion of the affected one has been also implemented in
<italic>Bi-Manu-Track</italic>
system (Reha-Stim, Germany),
<italic>ARMOR</italic>
exoskeleton [
<xref ref-type="bibr" rid="B177">177</xref>
] and device proposed by Kawasaki, et al. [
<xref ref-type="bibr" rid="B178">178</xref>
]. Using the other limb to control the affected one is especially useful during rehabilitation after stroke. In cases of hemiparesis (or hemiplegia), often only one side of the body is affected.</p>
<p>In some systems also
<bold>contact-less movement detection</bold>
methods have been used. For example, Ding, et al. [
<xref ref-type="bibr" rid="B179">179</xref>
] proposed a system to assist the load of arbitrary selected muscles using motion capture systems in order to calculate the actual muscle force.</p>
</sec>
<sec>
<title>Feedback to the user</title>
<p>Different types of feedback may be provided to the user, among them: visual, tactile, audio and in the form of electrical stimulation. Some systems, for example those proposed by Lam, et al. [
<xref ref-type="bibr" rid="B180">180</xref>
] and Nathan, et al. [
<xref ref-type="bibr" rid="B167">167</xref>
], use vibrational stimulation of the muscle tendons to support their contraction. It was also suggested that providing tactile feedback to flexor and extensor surfaces of the skin at the appropriate location could produce more naturalistic movements and improve clinical outcomes [
<xref ref-type="bibr" rid="B3">3</xref>
]. Some other systems combine other types of the feedback, for example system proposed by Casellato, et al. [
<xref ref-type="bibr" rid="B181">181</xref>
] combines visual and haptic feedback to improve motor performance of children with dystonia.</p>
<p>A significant number of systems provide
<bold>training in virtual reality (VR) scenarios</bold>
. VR provides a much more interesting training surrounding to the patient, compared to the typically available conditions presented in therapeutic units. Furthermore, it allows for fast modification of training scenarios, increasing patient attention and motivation to perform the exercise. Therefore it may also improve positive outcome of the therapy. It also adapts the system for various patients in a very short time frame and restarts the task if the object was dropped or misplaced. Haptic devices are especially well suited for provision of therapy in VR because they provide an impression of manipulating the virtual objects. Some groups developed own versions of haptic systems. For example Takahashi, et al. [
<xref ref-type="bibr" rid="B182">182</xref>
] proposed haptic device for arm rehabilitation, which can apply multiple types of force including resistance, assistance, elasticity, viscosity and friction. Other examples are: a two DOF
<italic>Haptic Interface for Finger Exercise</italic>
(
<italic>HAFI</italic>
), which provides rehabilitation of only one finger at a time [
<xref ref-type="bibr" rid="B183">183</xref>
]; a force reflecting glove, named
<italic>MRAGES</italic>
, using magneto-rheological fluid [
<xref ref-type="bibr" rid="B157">157</xref>
];
<italic>MR_CHIROD v.2</italic>
, a one DOF grasp exercise device for functional magnetic resonance imaging [
<xref ref-type="bibr" rid="B158">158</xref>
] and force-feedback glove
<italic>Rutgers Master II-ND</italic>
[
<xref ref-type="bibr" rid="B184">184</xref>
], developed at the Rutgers University (Piscataway, US) and used in hand therapy scenarios (e.g. [
<xref ref-type="bibr" rid="B185">185</xref>
-
<xref ref-type="bibr" rid="B187">187</xref>
]).</p>
<p>Many groups have investigated application of a few of commercial haptic devices for rehabilitation of upper extremity. Among such haptic interfaces are: -
<italic>HapticMaster</italic>
incorporated for example in
<italic>Gentle/S</italic>
[
<xref ref-type="bibr" rid="B121">121</xref>
] (for other examples see Table
<xref ref-type="table" rid="T1">1</xref>
),- in-parallel robots
<italic>Phantom Omni</italic>
and
<italic>Premium</italic>
(Geomagic, Inc., US) - used e.g. in experiments performed by Casellato, et al. [
<xref ref-type="bibr" rid="B181">181</xref>
], Brewer, et al. [
<xref ref-type="bibr" rid="B188">188</xref>
], and Xydas and Louca [
<xref ref-type="bibr" rid="B189">189</xref>
], - parallel robot
<italic>Falcon</italic>
(Novint Technology, Inc., US) - used in
<italic>My Scrivener</italic>
system for hand writing training (Obslap Research LLC, US) [
<xref ref-type="bibr" rid="B190">190</xref>
],- force-feedback glove
<italic>CyberGrasp</italic>
(CyberGlove Systems LLC,US) - used among others in therapeutic scenarios investigated by Adamovich, et al. [
<xref ref-type="bibr" rid="B191">191</xref>
,
<xref ref-type="bibr" rid="B192">192</xref>
].</p>
<p>Because the entertainment industry have recently introduced many new devices to capture motion of the healthy people for interaction with VR-based games, it may be expected that soon some of those devices will be also adapted for rehabilitation purposes, providing so called “serious games”.</p>
</sec>
<sec>
<title>Control strategy</title>
<p>The most important terminology introduced in this section is explained in Table
<xref ref-type="table" rid="T6">6</xref>
. Following the example of Marchal-Crespo and Reinkensmeyer [
<xref ref-type="bibr" rid="B193">193</xref>
] we will consider “high-” and “low-level” control strategies used by rehabilitation robots. “High-level” control algorithms are explicitly designed to provoke motor plasticity whereas “low-level” strategies control the force, position, impedance or admittance factors of the “high-level” control strategies.</p>
<table-wrap position="float" id="T6">
<label>Table 6</label>
<caption>
<p>Glossary of terms concerning control strategy of robots for rehabilitation</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="justify" valign="bottom">“High-level” control strategy
<hr></hr>
</td>
<td align="justify" valign="bottom">A control strategy with control algorithms explicitly designed to induce motor plasticity.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Assistive control
<hr></hr>
</td>
<td align="justify" valign="bottom">A “high-level” control strategy in which a device provides the physical assistance to aid the patient in accomplishing an intended movement.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Challenge-based control
<hr></hr>
</td>
<td align="justify" valign="bottom">A “high-level” control strategy in which a device challenges the patient to accomplish an intended movement.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Haptic stimulation
<hr></hr>
</td>
<td align="justify" valign="bottom">A “high-level” control strategy in which a robotic device is used as a haptic interface to perform activities in virtual reality environment.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Couching control
<hr></hr>
</td>
<td align="justify" valign="bottom">A “high-level” control strategy in which a robotic device neither physically assists nor resists the movement of the subject. It only quantifies and provides feedback (visual, acoustic or other) concerning the performance of the subject during exercise.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">“Low-level” control strategy
<hr></hr>
</td>
<td align="justify" valign="bottom">A control strategy considered in the implementation of the “high-level” control strategy in a device by appropriate control of the force, position, impedance or admittance.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify" valign="bottom">Admittance control
<hr></hr>
</td>
<td align="justify" valign="bottom">A “low-level” control strategy in which the force exerted by the user is measured, and the device generates the corresponding displacement.
<hr></hr>
</td>
</tr>
<tr>
<td align="justify">Impedance control</td>
<td align="justify">A “low-level” control strategy in which the motion of the limb is measured and the robot provides the corresponding force feedback.</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>This terminology is mostly based on the one proposed by Marchal-Crespo and Reinkensmeyer [
<xref ref-type="bibr" rid="B193">193</xref>
].</p>
</table-wrap-foot>
</table-wrap>
<sec>
<title>“High-level” control strategies</title>
<p>There is a myriad of “high-level” control strategies for robotic movement training. This section briefly summarizes the classification of those strategies presented by Marchal-Crespo and Reinkensmeyer [
<xref ref-type="bibr" rid="B193">193</xref>
]. They identify four categorizes of control strategies: (a) assistive control, (b) challenge-based control, (c) haptic stimulation, and (d) non-contacting coaching. Although some systems may fall into a few of these categorizes, this classification well illustrates main notions in the “high-level” control of robotic devices for upper limb rehabilitation. Those control strategies in most cases correspond also to active, passive, haptic and coaching types of motion assistance described before.</p>
<p>The
<bold>assistive control strategy</bold>
makes tasks safer and easier to accomplish, allowing more repetitions. There are four types of assistive strategies: impedance-based, counterbalance-based, EMG-based and performance-based adaptive control. In the impedance-based strategy, the patient follows a particular trajectory. The device does not intervene as long as the patient follows this trajectory. However, as the patient leaves the trajectory, the device produces a restoring force that increases along with the deviation from the desired trajectory. Often some margin of deviation from allowed trajectory is accepted before restoring force is provided. Counterbalance-based strategies provide a partial, passive or active weight counterbalance to a limb, those making the exercises easier, as the amount of force needed to move the limb against the gravity may be significantly reduced. EMG-based approach uses the patient’s own sEMG signals to either trigger or proportionally control the assistance. Both of those approaches encourage patients’ effort. However, the triggered method is more susceptible to slacking, as the patient may learn to provide only the amount of force needed to trigger the assistance. Finally, the performance-based adaptive control strategies monitor the performance of the patient and adapt some aspects of the assistance (e.g. force, stiffness, time, path) according to the current performance of the patient, as well as performance during particular number of preceding task repetitions.</p>
<sec>
<title>Challenge-based control strategies</title>
<p>fall into three groups: resistive, amplifying error and constraint-induced. The resistive strategies resist the desired movements, those increasing the effort and attention of the patient. The error amplifying strategies are based on the theory that faster improvements are achieved when error is increased [
<xref ref-type="bibr" rid="B194">194</xref>
]. Therefore they track the deviations from the desired trajectories and either increase the observed kinematic error or amplify its visual representation on the screen. The constraint-induced robotic rehabilitation strategy, similarly to conventional constraint-induced therapy, promotes the use of the affected limb by constraining the not affected one.</p>
</sec>
<sec>
<title>Haptic stimulation strategies</title>
<p>make use of haptic devices described above, providing tactile sensation for interactions with virtual reality objects. These strategies support training of basic ADLs in safe conditions and without long set-up. They provide alternate tasks in various environments, attracting attention and providing conditions for implicit learning.</p>
</sec>
<sec>
<title>Non-contacting coaching strategy</title>
<p>is applied in systems that do not contact participants but rather monitor their activity and provide instructions to the patient. Instructions indicate how to perform particular activities or what should be improved. Since such devices do not contact the patient, they are not applicable for systems described herein. However, this category may be extended to include also some sensorized, but not-actuated exoskeletons, such as the gravity balancing orthosis
<italic>T-WREX</italic>
[
<xref ref-type="bibr" rid="B106">106</xref>
].</p>
</sec>
</sec>
<sec>
<title>“Low-level” control strategies</title>
<p>Different “low-level” control strategies are combined to develop “high-level” rehabilitation strategies. Many “low-level” control strategies may be proposed during following stages of development of a robotic rehabilitation device. This report provides a short description of basic approaches and does not include a comprehensive comparison of “low-level” control strategies. General books on control engineering provide a more detailed description, in addition to articles referenced in Table
<xref ref-type="table" rid="T1">1</xref>
.</p>
<p>As the rehabilitation robots interact with human body, it is necessary to consider the manipulator and patient as a coupled mechanical system. The application of force or position control is not enough to ensure appropriate and safe dynamic interaction between human and robot [
<xref ref-type="bibr" rid="B195">195</xref>
]. Other control strategies, such as impedance or admittance control are implemented in most of the robots for upper limb rehabilitation. In the
<bold>impedance control approach</bold>
the motion of the limb is measured and the robot provides the corresponding force feedback, whereas in the
<bold>admittance control approach</bold>
the force exerted by the user is measured, and the device generates the corresponding displacement. The advantages and disadvantages of the impedance and admittance control systems are complementary [
<xref ref-type="bibr" rid="B196">196</xref>
]. In general, robots with impedance control have stable interaction but poor accuracy in free-space due to friction. This low accuracy can be improved using inner loop torque sensors and low-friction joints or direct drives. Admittance control in contrast compensates the mass and friction of the device and provides higher accuracy in non-contact tasks, but can be unstable during dynamic interactions. This problem is eliminated using SEAs. Devices using admittance control require also high transmission ratios (e.g. harmonic drives) for precise motion control [
<xref ref-type="bibr" rid="B196">196</xref>
]. In some cases both of theses approaches may be combined together. Impedance control strategy has been implemented for example in
<italic>MIT Manus</italic>
[
<xref ref-type="bibr" rid="B107">107</xref>
] (Figure
<xref ref-type="fig" rid="F1">1</xref>
B) and
<italic>L-Exos</italic>
exoskeleton [
<xref ref-type="bibr" rid="B197">197</xref>
], admittance control is found in
<italic>MEMOS</italic>
[
<xref ref-type="bibr" rid="B132">132</xref>
] and
<italic>iPAM</italic>
[
<xref ref-type="bibr" rid="B126">126</xref>
].</p>
</sec>
</sec>
<sec>
<title>Clinical evidence</title>
<sec>
<title>Clinical studies</title>
<p>As previously discussed, there has been a significant effort during last two decades to improve the design and control strategy of robotic rehabilitation devices. Yet, less has been done to prove the efficacy of such systems in rehabilitation settings. Although the results of clinical evaluation of therapy applying robots are still sparse, the problem is slowly being recognized. The focus in rehabilitation robotics is starting to move from technical laboratories to clinics. References to clinical trials in which robotic rehabilitation devices have been used are provided in the last column of Table
<xref ref-type="table" rid="T1">1</xref>
. The classification of clinical trials used in this review is summarized in Table
<xref ref-type="table" rid="T7">7</xref>
.</p>
<table-wrap position="float" id="T7">
<label>Table 7</label>
<caption>
<p>The classification of clinical trials of rehabilitation robots used in this review</p>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead valign="top">
<tr>
<th align="left">
<bold>Term</bold>
</th>
<th align="left">
<bold>Description</bold>
</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="bottom">Category 0
<hr></hr>
</td>
<td align="justify" valign="bottom">Initial feasibility studies: Trials performed with low number of healthy volunteers, often using the prototype of a device, in order to evaluate its safety and clinical feasibility.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Category I
<hr></hr>
</td>
<td align="justify" valign="bottom">Pilot Consideration-of-Concept studies: Clinical trials aimed at testing device safety, clinical feasibility and potential benefit. They are performed in a small population of subjects suffering from the target disease. There is either no control group in the trial, or healthy subjects are used as control.
<hr></hr>
</td>
</tr>
<tr>
<td align="left" valign="bottom">Category II
<hr></hr>
</td>
<td align="justify" valign="bottom">Development-of-Concept studies: Clinical studies aiming at verification of device efficacy. Include a standardized description of the intervention, a control group, randomization and blinded outcome assessment.
<hr></hr>
</td>
</tr>
<tr>
<td align="left">Category III/IV</td>
<td align="justify">Demonstration-of-Concept-Studies/Proof-of-Concept studies: Further evaluation of the device efficacy. Similar to category II, however, usually these are multicentered studies with high number of participants.</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>This classification is based on guidelines provided by Lo [
<xref ref-type="bibr" rid="B198">198</xref>
] and supplemented by Category 0.</p>
</table-wrap-foot>
</table-wrap>
<p>From the developer and manufacturer’s point of view, there may be at least three objectives in performing clinical trials. The first one is to address regulatory requirements. The devices described in this review are considered medical devices in most countries and as such the studies proving device efficacy and safety may be required before they are authorized for distribution. Although in some cases the exemption from providing the clinical data may be granted, e.g. if the device is recognized as low risk (Class 1 device in the European Union and the USA) or if equivalent device has been already approved for commercialization, the clinical data may be required by health insurance authorities in order to provide reimbursement. In this case the objective of the trial is to obtain a proof of clinical or financial benefit of the use of the device as compared to the existing modes of therapy. The third objective of clinical trials is to provide the professional community with the clinical evidence of device’s efficacy. Although, the three objectives may seem to be similar, the requirements are not the same, therefore when designing a clinical trial it should be considered if the obtained results will allow to satisfy requirements of those three objectives. For the study design requirements to satisfy the marketing and reimbursement objectives, we refer the readers to the legal regulations in the country of interest. Whereas, for a review on the process to design a clinical train with sound scientific results we refer to Lo [
<xref ref-type="bibr" rid="B198">198</xref>
].</p>
<p>From the clinical point of view, the objective of the clinical study may be different than to validate a particular device. For therapists the robotic device is a tool that provides a therapy protocol rather than an end product [
<xref ref-type="bibr" rid="B198">198</xref>
], thus they are rather interested in responses to questions concerning optimal training intensity, disorders for which such form of training may be beneficial, and whether robotic therapy should substitute or complement other forms of therapy.</p>
<p>This survey includes a search into the US Clinical Trials database (
<ext-link ext-link-type="uri" xlink:href="http://clinicaltrials.gov/">http://clinicaltrials.gov/</ext-link>
) from October 2013 using a combination of keywords: robotic, robot, therapy and rehabilitation. This is an web-based database existing since 1997 and maintained by the US National Library of Medicine at the National Institutes of Health. Under the American Food and Drug Administration Amendments Act (FDAAA) of 2007 all the applicable clinical trials (what concerns category II and III/IV studies in our survey) performed in the USA and starting after 2007 have to be registered in this database. However, it includes also some category I studies and many other studies performed in other countries. Results of this search identified 197 clinical trials out of which 62 are relevant to this survey. The selected trials are divided into two categories. The main objective of the first category is to proof the efficacy or safety of the device, therefore there was either no control group or a control group was undergoing the standard form of the therapy. The main objective of the second category is to determine a more efficient form of the therapy. In the latter category, the participants were assigned to groups undergoing similar forms of therapy, but at different intensities, using various devices or undergoing various forms of therapy in different order. A total of 31 studies aim at device safety or efficacy validation while 27 address better forms of therapy. A total of four trials were excluded. The objective of these trials was to validate other forms of therapy; devices described in this review have only been used as a reference. As indicated in Figure
<xref ref-type="fig" rid="F3">3</xref>
, the number of participants enrolled in studies for therapy improvement significantly increased during last three years compared to the number of participants in the device safety/efficacy validation studies. This suggests that the objective of the studies changes from validating forms of therapy to finding optimal applications methods. This survey identified a total of 21 devices out of the 58 clinical studies. However, it was not possible to determine the robotic device in 11 studies. Surprisingly, almost only stroke survivors (54 studies) were enrolled. In the remaining four studies subjects with cerebral palsy, spinal cord injury, traumatic brain injury and rotator cuff tear were involved.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Number of clinical studies and enrolled subjects depending on study objective and start year.</bold>
Results based on a search in the clinicaltrials.gov database in October 2013. Numbers on and above the bars indicate the number of studies in each category starting in the particular year.</p>
</caption>
<graphic xlink:href="1743-0003-11-3-3"></graphic>
</fig>
</sec>
<sec>
<title>Outcomes of clinical studies</title>
<p>Many questions concerning effective robotic upper-limb rehabilitation still remain unanswered. One of the most important reasons is that the most effective interventions to optimize neural plasticity are still not clear and it is not possible to implement them in rehabilitation robotics [
<xref ref-type="bibr" rid="B7">7</xref>
]. The other is that the results of the clinical controlled trials remains limited and those already available are difficult to compare with each other [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B193">193</xref>
]. It is also questionable which measures should be used to evaluate the effects of therapy and which outcome should be compared: short-term or long-term. Scales based on evaluation of abilities influencing the quality of life are often not objective enough, since they rely on therapist expertise.</p>
<p>Although it is not possible to indicate the best control strategy for the rehabilitation, there is already some evidence showing that some strategies are producing better outcomes, whereas some can even decrease recovery time compared to possible non-robotic strategies [
<xref ref-type="bibr" rid="B193">193</xref>
].</p>
<sec>
<title>Most accepted theories about robotic rehabilitation</title>
<p>are clear: The goal of the rehabilitation training is not only to maximize the number of repetition but to maximize the patients attention and effort as well [
<xref ref-type="bibr" rid="B3">3</xref>
]. The monotonous exercises provide worse retention of a skill compared with alternate training [
<xref ref-type="bibr" rid="B7">7</xref>
]. Adaptive therapy and assistance as needed provide better results as fixed pattern therapy [
<xref ref-type="bibr" rid="B193">193</xref>
]. Robotic therapy can possibly decrease recovery if it encourages slacking since the patient may decrease effort and attention due to the use of adaptive algorithm [
<xref ref-type="bibr" rid="B193">193</xref>
]. Because learning is error based, faster improvement may be achieved when error is increased [
<xref ref-type="bibr" rid="B194">194</xref>
]. Implicit learning, allowing patients to learn skills without awareness, may result in greater learning effect [
<xref ref-type="bibr" rid="B7">7</xref>
]. Many functional gains are more dependent on wrist and hand movements than on the mobility of shoulder and elbow [
<xref ref-type="bibr" rid="B7">7</xref>
]. It is not the maximal voluntary contraction (strength of the muscles) but appropriately timed activity of agonist and antagonist (coordination of the movements) that significantly improve the rehabilitation [
<xref ref-type="bibr" rid="B3">3</xref>
].</p>
<p>As previously stated, the objective of this report is not to review the results of clinical studies performed so far. A detailed review of clinical studies is referenced in other publications [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B198">198</xref>
-
<xref ref-type="bibr" rid="B202">202</xref>
]. The most important results are still worth mentioning. Systematic review and meta-analysis of the trials performed in stroke patients suggest that robotic training improves motor impairment and strength but do not improve ability to perform ADLs [
<xref ref-type="bibr" rid="B199">199</xref>
,
<xref ref-type="bibr" rid="B200">200</xref>
]. The results of the first large randomized multicenter study in which training with
<italic>MIT-Manus</italic>
robotic system have been compared with intensive therapist-provided therapy and usual care have revealed that there is no significant difference in the outcomes of the two intensive forms of the therapy [
<xref ref-type="bibr" rid="B203">203</xref>
]. Thus the most important advantage of robotic systems is their ability to provide intensive repetitive training without over-burdening therapists [
<xref ref-type="bibr" rid="B204">204</xref>
]. Another advantage is the ability to provide more motivating training context, by means of a computer gaming environment with quantitative feedback to motivate practice [
<xref ref-type="bibr" rid="B205">205</xref>
]. Concerning cost-effectiveness of robotic rehabilitation, the results of the previously mentioned multicenter trial have shown that when the total cost of the therapy is compared, i.e. the cost of the therapy plus the cost of all the other health care use, the costs of the two forms of the intensive therapy (i.e. robot-assisted and therapist-provided) are similar [
<xref ref-type="bibr" rid="B203">203</xref>
]. However, the cost of technology is expected to decrease, as opposed to the cost of human labor. Therefore cost-effective advantage toward robot-therapy may be expected [
<xref ref-type="bibr" rid="B198">198</xref>
].</p>
</sec>
</sec>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Due to population changes, shortage of professional therapists, and the increasing scientific and technical potential, many research groups have proposed devices with the potential to facilitate the rehabilitation process. Many devices for upper limb rehabilitation have already been proposed. A vast majority of these proposed devices are technically advanced and are designed for clinical settings. However, there is still significant need to improve efficiency and reduce cost of home-based devices for therapy and ADLs assistance. The effectiveness of robotic over conventional therapy is arguable and the best therapy strategy is still not clear. The situation may change soon, because more and more devices are being commercialized and more scientific results will be available. It may encourage next groups to propose their own solutions. Developing new devices and improving those already in the market will be easier, when taking advantage from the already existing solutions. We hope that this survey will help to navigate between those solutions and select best of them, thus facilitating development of new and better systems for robotic upper limb rehabilitation. We also hope that it will be a valuable source of information for all the professionals looking for a comprehensive reference.</p>
</sec>
<sec>
<title>Competing interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<sec>
<title>Authors’ contributions</title>
<p>PM performed systematical review of papers and drafted the manuscript. JE, KGH, and AJ contributed to the review of various systems and revised the manuscript. SL contributed to the concept, paper structure and revised the manuscript. All authors read and approved the manuscript.</p>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>We would like to thank Mrs. Christine Azevedo-Coste, Ph.D. for her critical reading and revising the manuscript and Mr. Gabriel David Nevarez, P.E. for proofreading the English.</p>
<p>The work of PM has been supported by the European Union in the framework of European Social Fund through the Warsaw University of Technology Development Program. He would also like to thank the Center for Advanced Studies of the Warsaw University of Technology for the support that he received during preparation of this work and the Chair of Medical Engineering (mediTEC), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University for the possibility of performing the majority of the work on this manuscript during scientific stay in that institution.</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="journal">
<name>
<surname>Platz</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>Evidenzbasierte Armrehabilitation: Eine systematische Literaturübersicht [Evidence-based arm rehabilitation–a systematic review of the literature]</bold>
</article-title>
<source>Nervenarzt</source>
<year>2003</year>
<volume>74</volume>
<issue>10</issue>
<fpage>841</fpage>
<lpage>849</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00115-003-1549-7">http://dx.doi.org/10.1007/s00115-003-1549-7</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1007/s00115-003-1549-7</pub-id>
<pub-id pub-id-type="pmid">14551687</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Feys</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Weerdt</surname>
<given-names>WD</given-names>
</name>
<name>
<surname>Verbeke</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Steck</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Capiau</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kiekens</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Dejaeger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hoydonck</surname>
<given-names>GV</given-names>
</name>
<name>
<surname>Vermeersch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cras</surname>
<given-names>P</given-names>
</name>
<article-title>
<bold>Early and repetitive stimulation of the arm can substantially improve the long-term outcome after stroke: a 5-year follow-up study of a randomized trial</bold>
</article-title>
<source>Stroke</source>
<year>2004</year>
<volume>35</volume>
<issue>4</issue>
<fpage>924</fpage>
<lpage>929</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1161/01.STR.0000121645.44752.f7">http://dx.doi.org/10.1161/01.STR.0000121645.44752.f7</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1161/01.STR.0000121645.44752.f7</pub-id>
<pub-id pub-id-type="pmid">15001789</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Patton</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Rymer</surname>
<given-names>WZ</given-names>
</name>
<article-title>
<bold>Functional restoration for the stroke survivor: informing the efforts of engineers</bold>
</article-title>
<source>Top Stroke Rehabil</source>
<year>2008</year>
<volume>15</volume>
<issue>6</issue>
<fpage>521</fpage>
<lpage>541</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1310/tsr1506-521">http://dx.doi.org/10.1310/tsr1506-521</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1310/tsr1506-521</pub-id>
<pub-id pub-id-type="pmid">19158061</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Richards</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hanson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wellborn</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Driving motor recovery after stroke</bold>
</article-title>
<source>Top Stroke Rehabil</source>
<year>2008</year>
<volume>15</volume>
<issue>5</issue>
<fpage>397</fpage>
<lpage>411</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1310/tsr1505-397">http://dx.doi.org/10.1310/tsr1505-397</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1310/tsr1505-397</pub-id>
<pub-id pub-id-type="pmid">19008201</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="other">
<collab>WHO</collab>
<source>The global burden of disease: 2004 Update. World Health Organization (WHO)</source>
<year>2008</year>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf">http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Riener</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nef</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Robot-aided neurorehabilitation of the upper extremities</bold>
</article-title>
<source>Med Biol Eng Comput</source>
<year>2005</year>
<volume>43</volume>
<fpage>2</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1007/BF02345116</pub-id>
<pub-id pub-id-type="pmid">15742713</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Brewer</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>McDowell</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Worthen-Chaudhari</surname>
<given-names>LC</given-names>
</name>
<article-title>
<bold>Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results</bold>
</article-title>
<source>Top Stroke Rehabil</source>
<year>2007</year>
<volume>14</volume>
<issue>6</issue>
<fpage>22</fpage>
<lpage>44</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1310/tsr1406-22">http://dx.doi.org/10.1310/tsr1406-22</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1310/tsr1406-22</pub-id>
<pub-id pub-id-type="pmid">18174114</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="book">
<name>
<surname>Gopura</surname>
<given-names>RARC</given-names>
</name>
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<article-title>
<bold>Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>178</fpage>
<lpage>187</lpage>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Cheng</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CCK</given-names>
</name>
<article-title>
<bold>Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals</bold>
</article-title>
<source>J Biomech Eng</source>
<year>2003</year>
<volume>125</volume>
<issue>6</issue>
<fpage>881</fpage>
<lpage>886</lpage>
<pub-id pub-id-type="doi">10.1115/1.1634284</pub-id>
<pub-id pub-id-type="pmid">14986414</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Cozens</surname>
<given-names>JA</given-names>
</name>
<article-title>
<bold>Robotic assistance of an active upper limb exercise in neurologically impaired patients</bold>
</article-title>
<source>Rehabil Eng, IEEE Trans</source>
<year>1999</year>
<volume>7</volume>
<issue>2</issue>
<fpage>254</fpage>
<lpage>256</lpage>
<pub-id pub-id-type="doi">10.1109/86.769416</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Mavroidis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nikitczuk</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Danaher</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jensen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Prugnarola</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Stuart</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Arango</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Leahey</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pavone</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Provo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yasevac</surname>
<given-names>D</given-names>
</name>
<article-title>
<bold>Smart portable rehabilitation devices</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2005</year>
<volume>2</volume>
<fpage>18</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-2-18">http://dx.doi.org/10.1186/1743-0003-2-18</ext-link>
]</comment>
<pub-id pub-id-type="pmid">16011801</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>yu Tong</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<article-title>
<bold>Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2008</year>
<volume>16</volume>
<issue>4</issue>
<fpage>371</fpage>
<lpage>379</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2008.926707">http://dx.doi.org/10.1109/TNSRE.2008.926707</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18701384</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>PO</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<article-title>
<bold>Variation of muscle coactivation patterns in chronic stroke during robot-assisted elbow training</bold>
</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2007</year>
<volume>88</volume>
<issue>8</issue>
<fpage>1022</fpage>
<lpage>1029</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.apmr.2007.05.006">http://dx.doi.org/10.1016/j.apmr.2007.05.006</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.apmr.2007.05.006</pub-id>
<pub-id pub-id-type="pmid">17678665</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L</given-names>
</name>
<article-title>
<bold>The therapeutic effects of myoelectrically controlled robotic system for persons after stroke–a pilot study</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2006</year>
<volume>1</volume>
<fpage>4945</fpage>
<lpage>4948</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2006.260186">http://dx.doi.org/10.1109/IEMBS.2006.260186</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17946664</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="book">
<name>
<surname>Kung</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CCK</given-names>
</name>
<article-title>
<bold>Design of a forearm rehabilitation robot</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>228</fpage>
<lpage>233</lpage>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="book">
<name>
<surname>Kung</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CCK</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SM</given-names>
</name>
<article-title>
<bold>Time course of abnormal synergies of stroke patients treated and assessed by a neuro-rehabilitation robot</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>12</fpage>
<lpage>17</lpage>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Colombo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pisano</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mazzone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Delconte</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Carrozza</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Dario</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Minuco</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Design strategies to improve patient motivation during robot-aided rehabilitation</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2007</year>
<volume>4</volume>
<fpage>3</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-4-3">http://dx.doi.org/10.1186/1743-0003-4-3</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17309790</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Lui</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>WWF</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Au-Yeung</surname>
<given-names>SSY</given-names>
</name>
<article-title>
<bold>Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training</bold>
</article-title>
<source>J Electromyogr Kinesiol</source>
<year>2009</year>
<volume>19</volume>
<issue>4</issue>
<fpage>639</fpage>
<lpage>650</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jelekin.2008.04.002">http://dx.doi.org/10.1016/j.jelekin.2008.04.002</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.jelekin.2008.04.002</pub-id>
<pub-id pub-id-type="pmid">18490177</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>WWF</given-names>
</name>
<article-title>
<bold>A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke</bold>
</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2009</year>
<volume>23</volume>
<issue>8</issue>
<fpage>837</fpage>
<lpage>846</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/1545968309338191">http://dx.doi.org/10.1177/1545968309338191</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1177/1545968309338191</pub-id>
<pub-id pub-id-type="pmid">19531605</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Sale</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lombardi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Franceschini</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis</bold>
</article-title>
<source>Stroke Res Treat</source>
<year>2012</year>
<volume>2012</volume>
<fpage>820931</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1155/2012/820931">http://dx.doi.org/10.1155/2012/820931</ext-link>
]</comment>
<pub-id pub-id-type="pmid">23320252</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="book">
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>PMK</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>DTW</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<article-title>
<bold>Interactive rehabilitation robot for hand function training</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>777</fpage>
<lpage>780</lpage>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="book">
<name>
<surname>Turner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gomez</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Tremblay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cutkosky</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Preliminary tests of an arm-grounded haptic feedback device in telemanipulation</bold>
</article-title>
<source>Proc. of the ASME Dynamic Systems and Control Division</source>
<year>1998</year>
<publisher-name>Anaheim, CA</publisher-name>
<fpage>145</fpage>
<lpage>149</lpage>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="book">
<name>
<surname>Ertas</surname>
<given-names>IH</given-names>
</name>
<name>
<surname>Hocaoglu</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Barkana</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Patoglu</surname>
<given-names>V</given-names>
</name>
<article-title>
<bold>Finger exoskeleton for treatment of tendon injuries</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>194</fpage>
<lpage>201</lpage>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="book">
<name>
<surname>Fuxiang</surname>
<given-names>Z</given-names>
</name>
<person-group person-group-type="editor">Kommu SS</person-group>
<article-title>
<bold>An Embedded Control Platform of a Continuous Passive Motion Machine for Injured Fingers</bold>
</article-title>
<source>Rehabilitation Robotics</source>
<year>2007</year>
<publisher-name>Vienna, Austria: I-Tech Education Publishing</publisher-name>
<fpage>579</fpage>
<lpage>606</lpage>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="book">
<name>
<surname>Vanoglio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Luisa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Garofali</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mora</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>Evaluation of the effectiveness of Gloreha (Hand Rehabilitation Glove) on hemiplegic patients. Pilot study</bold>
</article-title>
<source>XIII Congress of Italian Society of Neurorehabilitation, 18-20 April</source>
<year>2013</year>
<publisher-name>Italy: Bari</publisher-name>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="book">
<name>
<surname>Parrinello</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Faletti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Santus</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Use of a continuous passive motion device for hand rehabilitation: clinical trial on neurological patients</bold>
</article-title>
<source>41 National Congress of Italian Society of Medicine and Physical Rehabilitation, 14-16 October</source>
<year>2013</year>
<publisher-name>Rome, Italy</publisher-name>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="book">
<name>
<surname>Varalta</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Smania</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Geroin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fonte</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gandolfi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Picelli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munari</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ianes</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Montemezzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>La Marchina</surname>
<given-names>E</given-names>
</name>
<article-title>
<bold>Effects of passive rehabilitation of the upper limb with robotic device Gloreha on visual-spatial and attentive exploration capacities of patients with stroke issues</bold>
</article-title>
<source>XIII Congress of Italian Society of Neurorehabilitation, 18-20 April</source>
<year>2013</year>
<publisher-name>Bari, Italy</publisher-name>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Ho</surname>
<given-names>NSK</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Rong</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Susanto</surname>
<given-names>EA</given-names>
</name>
<article-title>
<bold>An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation</bold>
</article-title>
<source>IEEE Int Conf Rehabil Robot; Boston, MA</source>
<year>2011</year>
<volume>2011</volume>
<fpage>5975340</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/ICORR.2011.5975340">http://dx.doi.org/10.1109/ICORR.2011.5975340</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Schabowsky</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Godfrey</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Holley</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<collab>Development and pilot testing of HEXORR</collab>
<article-title>
<bold>hand EXOskeleton rehabilitation robot</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2010</year>
<volume>7</volume>
<fpage>36</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-7-36">http://dx.doi.org/10.1186/1743-0003-7-36</ext-link>
]</comment>
<pub-id pub-id-type="pmid">20667083</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="book">
<name>
<surname>Kline</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kamper</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Schmit</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>Control system for pneumatically controlled glove to assist in grasp activities</bold>
</article-title>
<source>Proc. 9th International Conference on Rehabilitation Robotics ICORR</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>78</fpage>
<lpage>81</lpage>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="book">
<name>
<surname>Mulas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Folgheraiter</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gini</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>An EMG-controlled exoskeleton for hand rehabilitation</bold>
</article-title>
<source>Proc. 9th International Conference on Rehabilitation Robotics ICORR</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>371</fpage>
<lpage>374</lpage>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Hesse</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kuhlmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wilk</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tomelleri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kirker</surname>
<given-names>SGB</given-names>
</name>
<article-title>
<bold>A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2008</year>
<volume>5</volume>
<fpage>21</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-5-21">http://dx.doi.org/10.1186/1743-0003-5-21</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18771581</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="book">
<name>
<surname>Rotella</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Reuther</surname>
<given-names>KE</given-names>
</name>
<name>
<surname>Hofmann</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Hage</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>BuSha</surname>
<given-names>BF</given-names>
</name>
<article-title>
<bold>An Orthotic Hand-Assistive Exoskeleton for Actuated Pinch and Grasp</bold>
</article-title>
<source>Bioengineering Conference, IEEE 35th Annual Northeast</source>
<year>2009</year>
<publisher-name>Boston, MA</publisher-name>
<fpage>1</fpage>
<lpage>2</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/NEBC.2009.4967693">http://dx.doi.org/10.1109/NEBC.2009.4967693</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="book">
<name>
<surname>Sarakoglou</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Tsagarakis</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Caldwell</surname>
<given-names>DG</given-names>
</name>
<article-title>
<bold>Occupational and physical therapy using a hand exoskeleton based exerciser</bold>
</article-title>
<source>Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</source>
<year>2004</year>
<publisher-name>Sendai, Japan</publisher-name>
<fpage>2973</fpage>
<lpage>2978</lpage>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="book">
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Fung</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>PN</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>An intention driven hand functions task training robotic system</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2010</year>
<publisher-name>Buenos Aires, Argentina</publisher-name>
<fpage>3406</fpage>
<lpage>3409</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2010.5627930">http://dx.doi.org/10.1109/IEMBS.2010.5627930</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="book">
<name>
<surname>Wege</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hommel</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Development and control of a hand exoskeleton for rehabilitation of hand injuries</bold>
</article-title>
<source>Intelligent Robots and Systems, (IROS 2005). 2005 IEEE/RSJ International Conference on</source>
<year>2005</year>
<publisher-name>Edmonton, Canada</publisher-name>
<fpage>3046</fpage>
<lpage>3051</lpage>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="book">
<name>
<surname>Worsnopp</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Peshkin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Colgate</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Kamper</surname>
<given-names>DG</given-names>
</name>
<article-title>
<bold>An Actuated Finger Exoskeleton for Hand Rehabilitation Following Stroke</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>896</fpage>
<lpage>901</lpage>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="book">
<name>
<surname>Xing</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
<article-title>
<bold>A wearable device for repetitive hand therapy</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics BioRob</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>919</fpage>
<lpage>923</lpage>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="book">
<name>
<surname>Ellis</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Sukal</surname>
<given-names>T</given-names>
</name>
<name>
<surname>DeMott</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dewald</surname>
<given-names>JPA</given-names>
</name>
<article-title>
<bold>ACT 3D exercise targets gravity-induced discoordination and improves reaching work area in individuals with stroke</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>890</fpage>
<lpage>895</lpage>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Kahn</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Rymer</surname>
<given-names>WZ</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>2006</year>
<volume>43</volume>
<issue>5</issue>
<fpage>619</fpage>
<lpage>630</lpage>
<pub-id pub-id-type="doi">10.1682/JRRD.2005.03.0056</pub-id>
<pub-id pub-id-type="pmid">17123203</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Chang</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Tung</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>WL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>FC</given-names>
</name>
<article-title>
<bold>Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke</bold>
</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2007</year>
<volume>88</volume>
<issue>10</issue>
<fpage>1332</fpage>
<lpage>1338</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.apmr.2007.07.016">http://dx.doi.org/10.1016/j.apmr.2007.07.016</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.apmr.2007.07.016</pub-id>
<pub-id pub-id-type="pmid">17908578</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<name>
<surname>Volpe</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>OTR</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Diels</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Aisen</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation</bold>
</article-title>
<source>Neurology</source>
<year>2000</year>
<volume>54</volume>
<issue>10</issue>
<fpage>1938</fpage>
<lpage>1944</lpage>
<pub-id pub-id-type="doi">10.1212/WNL.54.10.1938</pub-id>
<pub-id pub-id-type="pmid">10822433</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Rabadi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Galgano</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Akerman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lesser</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial</bold>
</article-title>
<source>Clin Rehabil</source>
<year>2008</year>
<volume>22</volume>
<issue>12</issue>
<fpage>1071</fpage>
<lpage>1082</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/0269215508095358">http://dx.doi.org/10.1177/0269215508095358</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1177/0269215508095358</pub-id>
<pub-id pub-id-type="pmid">19052246</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Ju</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CCK</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>SM</given-names>
</name>
<article-title>
<bold>A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2005</year>
<volume>13</volume>
<issue>3</issue>
<fpage>349</fpage>
<lpage>358</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2005.847354">http://dx.doi.org/10.1109/TNSRE.2005.847354</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1109/TNSRE.2005.847354</pub-id>
<pub-id pub-id-type="pmid">16200758</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Teramoto</surname>
<given-names>K</given-names>
</name>
<article-title>
<bold>Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist</bold>
</article-title>
<source>Robotics and Autonomous Systems</source>
<year>2008</year>
<volume>56</volume>
<issue>8</issue>
<fpage>678</fpage>
<lpage>691</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.sciencedirect.com/science/article/B6V16-4R8MDRP-1/2/7d307e7bbef3e5958a6960e3da652723">http://www.sciencedirect.com/science/article/B6V16-4R8MDRP-1/2/7d307e7bbef3e5958a6960e3da652723</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.robot.2007.11.007</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="book">
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gallina</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Masiero</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Design of a new 5 d.o.f. wire-based robot for rehabilitation</bold>
</article-title>
<source>Proc. 9th International Conference on Rehabilitation Robotics ICORR</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>430</fpage>
<lpage>433</lpage>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<name>
<surname>Colombo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sterpi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Mazzone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Delconte</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Minuco</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pisano</surname>
<given-names>F</given-names>
</name>
<article-title>
<bold>Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2010</year>
<volume>18</volume>
<fpage>75</fpage>
<lpage>85</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2009.2028831">http://dx.doi.org/10.1109/TNSRE.2009.2028831</ext-link>
]</comment>
<pub-id pub-id-type="pmid">19666344</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Burgar</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Shor</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Majmundar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>der Loos</surname>
<given-names>MV</given-names>
</name>
<article-title>
<bold>Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke</bold>
</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2002</year>
<volume>83</volume>
<issue>7</issue>
<fpage>952</fpage>
<lpage>959</lpage>
<pub-id pub-id-type="doi">10.1053/apmr.2001.33101</pub-id>
<pub-id pub-id-type="pmid">12098155</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Burgar</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>der Loos</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Shor</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Majmundar</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yap</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>2006</year>
<volume>43</volume>
<issue>5</issue>
<fpage>631</fpage>
<lpage>642</lpage>
<pub-id pub-id-type="doi">10.1682/JRRD.2005.02.0044</pub-id>
<pub-id pub-id-type="pmid">17123204</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Burgar</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Shor</surname>
<given-names>PC</given-names>
</name>
<article-title>
<bold>Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2004</year>
<volume>12</volume>
<issue>2</issue>
<fpage>186</fpage>
<lpage>194</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2004.827225">http://dx.doi.org/10.1109/TNSRE.2004.827225</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1109/TNSRE.2004.827225</pub-id>
<pub-id pub-id-type="pmid">15218933</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="book">
<name>
<surname>Moubarak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pham</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pajdla</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Redarce</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>Design Results of an Upper Extremity Exoskeleton</bold>
</article-title>
<source>Proc. 4th European Conference of the International Federation for Medical and Biological Engineering</source>
<year>2008</year>
<publisher-name>Antwerp, Belgium</publisher-name>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Masiero</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Celia</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Armani</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Robotic-assisted rehabilitation of the upper limb after acute stroke</bold>
</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2007</year>
<volume>88</volume>
<issue>2</issue>
<fpage>142</fpage>
<lpage>149</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.apmr.2006.10.032">http://dx.doi.org/10.1016/j.apmr.2006.10.032</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.apmr.2006.10.032</pub-id>
<pub-id pub-id-type="pmid">17270510</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Masiero</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Armani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>2011</year>
<volume>48</volume>
<issue>4</issue>
<fpage>355</fpage>
<lpage>366</lpage>
<pub-id pub-id-type="doi">10.1682/JRRD.2010.04.0063</pub-id>
<pub-id pub-id-type="pmid">21674388</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Fazekas</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Troznai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Toth</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study</bold>
</article-title>
<source>J Rehabil Med</source>
<year>2007</year>
<volume>39</volume>
<issue>7</issue>
<fpage>580</fpage>
<lpage>582</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.ingentaconnect.com/content/mjl/sreh/2007/00000039/00000007/art00013">http://www.ingentaconnect.com/content/mjl/sreh/2007/00000039/00000007/art00013</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.2340/16501977-0087</pub-id>
<pub-id pub-id-type="pmid">17724559</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Hesse</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schulte-Tigges</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Konrad</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bardeleben</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects</bold>
</article-title>
<source>Arch Phys Med Rehabil</source>
<year>2003</year>
<volume>84</volume>
<issue>6</issue>
<fpage>915</fpage>
<lpage>920</lpage>
<pub-id pub-id-type="doi">10.1016/S0003-9993(02)04954-7</pub-id>
<pub-id pub-id-type="pmid">12808550</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Hesse</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pohl</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rueckriem</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mehrholz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lingnau</surname>
<given-names>ML</given-names>
</name>
<article-title>
<bold>Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers</bold>
</article-title>
<source>Stroke</source>
<year>2005</year>
<volume>36</volume>
<issue>9</issue>
<fpage>1960</fpage>
<lpage>1966</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1161/01.STR.0000177865.37334.ce">http://dx.doi.org/10.1161/01.STR.0000177865.37334.ce</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1161/01.STR.0000177865.37334.ce</pub-id>
<pub-id pub-id-type="pmid">16109908</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Allington</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Buell</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2011</year>
<volume>2011</volume>
<fpage>1579</fpage>
<lpage>1582</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2011.6090459">http://dx.doi.org/10.1109/IEMBS.2011.6090459</ext-link>
]</comment>
<pub-id pub-id-type="pmid">22254624</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<name>
<surname>Cordo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lutsep</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cordo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Cacciatore</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Skoss</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients</bold>
</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2009</year>
<volume>23</volume>
<fpage>67</fpage>
<lpage>77</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/1545968308317437">http://dx.doi.org/10.1177/1545968308317437</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18645190</pub-id>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<name>
<surname>Koeneman</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Schultz</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Herring</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Koeneman</surname>
<given-names>JB</given-names>
</name>
<article-title>
<bold>A pneumatic muscle hand therapy device</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2004</year>
<volume>4</volume>
<fpage>2711</fpage>
<lpage>2713</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2004.1403777">http://dx.doi.org/10.1109/IEMBS.2004.1403777</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17270836</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<name>
<surname>Kutner</surname>
<given-names>NG</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Alberts</surname>
<given-names>JL</given-names>
</name>
<article-title>
<bold>Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial</bold>
</article-title>
<source>Phys Ther</source>
<year>2010</year>
<volume>90</volume>
<issue>4</issue>
<fpage>493</fpage>
<lpage>504</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2522/ptj.20090160">http://dx.doi.org/10.2522/ptj.20090160</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.2522/ptj.20090160</pub-id>
<pub-id pub-id-type="pmid">20185616</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<name>
<surname>Rosenstein</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ridgel</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Thota</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Samame</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Alberts</surname>
<given-names>JL</given-names>
</name>
<article-title>
<bold>Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke</bold>
</article-title>
<source>Am J Occup Ther</source>
<year>2008</year>
<volume>62</volume>
<fpage>28</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.5014/ajot.62.1.28</pub-id>
<pub-id pub-id-type="pmid">18254428</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<name>
<surname>Frick</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Alberts</surname>
<given-names>JL</given-names>
</name>
<article-title>
<bold>Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke</bold>
</article-title>
<source>Phys Ther</source>
<year>2006</year>
<volume>86</volume>
<issue>10</issue>
<fpage>1378</fpage>
<lpage>1386</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.2522/ptj.20050149">http://dx.doi.org/10.2522/ptj.20050149</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.2522/ptj.20050149</pub-id>
<pub-id pub-id-type="pmid">17012642</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="book">
<name>
<surname>Johnson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wisneski</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nathan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Development of ADLER: The activities of daily living exercise robot</bold>
</article-title>
<source>1st IEEE/RAS-EMBS Int. Conf. Biomedical Robotics and Biomechatronics, BioRob</source>
<year>2006</year>
<publisher-name>Pisa, Italy</publisher-name>
<fpage>881</fpage>
<lpage>886</lpage>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="journal">
<name>
<surname>Wisneski</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>MJ</given-names>
</name>
<article-title>
<bold>Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2007</year>
<volume>4</volume>
<fpage>7</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-4-7">http://dx.doi.org/10.1186/1743-0003-4-7</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17381842</pub-id>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="book">
<name>
<surname>Pignolo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dolce</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Basta</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lucca</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Serra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sannita</surname>
<given-names>WG</given-names>
</name>
<article-title>
<bold>Upper limb rehabilitation after stroke: ARAMIS a “robo-mechatronic” innovative approach and prototype</bold>
</article-title>
<source>4th IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2012</year>
<publisher-name>Rome, Italy</publisher-name>
<fpage>1410</fpage>
<lpage>1414</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6290868">http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6290868</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="journal">
<name>
<surname>Coote</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Stokes</surname>
<given-names>E</given-names>
</name>
<article-title>
<bold>The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke</bold>
</article-title>
<source>Clin Rehabil</source>
<year>2008</year>
<volume>22</volume>
<issue>5</issue>
<fpage>395</fpage>
<lpage>405</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/0269215507085060">http://dx.doi.org/10.1177/0269215507085060</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1177/0269215507085060</pub-id>
<pub-id pub-id-type="pmid">18441036</pub-id>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<name>
<surname>Culmer</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Makower</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Cozens</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Levesley</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Mon-Williams</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bhakta</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke</bold>
</article-title>
<source>J Neurosci Methods</source>
<year>2011</year>
<volume>197</volume>
<issue>2</issue>
<fpage>259</fpage>
<lpage>269</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jneumeth.2011.03.004">http://dx.doi.org/10.1016/j.jneumeth.2011.03.004</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.jneumeth.2011.03.004</pub-id>
<pub-id pub-id-type="pmid">21414360</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="book">
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kose</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hayashi</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>Task-oriented perception-assist for an upper-limb powerassist exoskeleton robot</bold>
</article-title>
<source>Proc. World Automation Congress (WAC)</source>
<year>2010</year>
<publisher-name>Kobe, Japan</publisher-name>
<fpage>1</fpage>
<lpage>6</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665314">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5665314</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="book">
<name>
<surname>Frisoli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bergamasco</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Borelli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Montagner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Procopio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Carboncini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>Robotic assisted rehabilitation in virtual reality with the L-EXOS</bold>
</article-title>
<source>Proc. of 7th ICDVRAT with ArtAbilitation</source>
<year>2008</year>
<publisher-name>Maia, Portugal</publisher-name>
<fpage>253</fpage>
<lpage>260</lpage>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="book">
<name>
<surname>Carignan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Roderick</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Naylor</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>179</fpage>
<lpage>187</lpage>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="book">
<name>
<surname>Fluet</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Saleh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ramirez</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Adamovich</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Parikh</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with upper extremity hemiplegia</bold>
</article-title>
<source>Virtual Rehabilitation International Conference</source>
<year>2009</year>
<publisher-name>Haifa, Israel</publisher-name>
<fpage>189</fpage>
<lpage>192</lpage>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<name>
<surname>Wolbrecht</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>JE</given-names>
</name>
<article-title>
<bold>Optimizing compliant, model-based robotic assistance to promote neurorehabilitation</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2008</year>
<volume>16</volume>
<issue>3</issue>
<fpage>286</fpage>
<lpage>297</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2008.918389">http://dx.doi.org/10.1109/TNSRE.2008.918389</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18586608</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="book">
<name>
<surname>Housman</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>Arm-Training with T-WREX After Chronic Stroke: Preliminary Results of a Randomized Controlled Trial</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics ICORR</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>562</fpage>
<lpage>568</lpage>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<name>
<surname>Housman</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis</bold>
</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2009</year>
<volume>23</volume>
<issue>5</issue>
<fpage>505</fpage>
<lpage>514</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/1545968308331148">http://dx.doi.org/10.1177/1545968308331148</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1177/1545968308331148</pub-id>
<pub-id pub-id-type="pmid">19237734</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<name>
<surname>Sanchez</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Cramer</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2006</year>
<volume>14</volume>
<issue>3</issue>
<fpage>378</fpage>
<lpage>389</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2006.881553">http://dx.doi.org/10.1109/TNSRE.2006.881553</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17009498</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="journal">
<name>
<surname>Gupta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>O’Malley</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Design of a haptic arm exoskeleton for training and rehabilitation</bold>
</article-title>
<source>IEEE ASME Trans Mechatronics</source>
<year>2006</year>
<volume>11</volume>
<issue>3</issue>
<fpage>280</fpage>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<name>
<surname>Lambercy</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Dovat</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gassert</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Burdet</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Teo</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>A haptic knob for rehabilitation of hand function</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2007</year>
<volume>15</volume>
<issue>3</issue>
<fpage>356</fpage>
<lpage>366</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2007.903913">http://dx.doi.org/10.1109/TNSRE.2007.903913</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17894268</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<name>
<surname>Casadio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Giannoni</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sanguineti</surname>
<given-names>V</given-names>
</name>
<article-title>
<bold>A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients</bold>
</article-title>
<source>Clin Rehabil</source>
<year>2009</year>
<volume>23</volume>
<issue>3</issue>
<fpage>217</fpage>
<lpage>228</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1177/0269215508096759">http://dx.doi.org/10.1177/0269215508096759</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1177/0269215508096759</pub-id>
<pub-id pub-id-type="pmid">19218297</pub-id>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<name>
<surname>Carpinella</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Cattaneo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Abuarqub</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferrarin</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results</bold>
</article-title>
<source>J Rehabil Med</source>
<year>2009</year>
<volume>41</volume>
<issue>12</issue>
<fpage>966</fpage>
<lpage>970</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.ingentaconnect.com/content/mjl/sreh/2009/00000041/00000012/art00004">http://www.ingentaconnect.com/content/mjl/sreh/2009/00000041/00000012/art00004</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.2340/16501977-0401</pub-id>
<pub-id pub-id-type="pmid">19841825</pub-id>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<name>
<surname>Casadio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sanguineti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Solaro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>PG</given-names>
</name>
<article-title>
<bold>A Haptic Robot Reveals the Adaptation Capability of Individuals with Multiple Sclerosis</bold>
</article-title>
<source>Int J Rob Res</source>
<year>2007</year>
<volume>26</volume>
<issue>11-12</issue>
<fpage>1225</fpage>
<lpage>1233</lpage>
<pub-id pub-id-type="doi">10.1177/0278364907084981</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<name>
<surname>Vergaro</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Squeri</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Brichetto</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Casadio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Solaro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sanguineti</surname>
<given-names>V</given-names>
</name>
<article-title>
<bold>Adaptive robot training for the treatment of incoordination in Multiple Sclerosis</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2010</year>
<volume>7</volume>
<fpage>37</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-7-37">http://dx.doi.org/10.1186/1743-0003-7-37</ext-link>
]</comment>
<pub-id pub-id-type="pmid">20670420</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<name>
<surname>Denève</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Moughamir</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Afilal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zaytoon</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Control system design of a 3-DOF upper limbs rehabilitation robot</bold>
</article-title>
<source>Comput Methods Programs Biomed</source>
<year>2008</year>
<volume>89</volume>
<issue>2</issue>
<fpage>202</fpage>
<lpage>214</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.cmpb.2007.07.006">http://dx.doi.org/10.1016/j.cmpb.2007.07.006</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.cmpb.2007.07.006</pub-id>
<pub-id pub-id-type="pmid">17881080</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="book">
<name>
<surname>Furuhashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nagasaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ukai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Development of rehabilitation support robot for personalized rehabilitation of upper limbs</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>787</fpage>
<lpage>792</lpage>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="other">
<name>
<surname>Mathai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</name>
<source>Incorporating Haptic Effects Into Three-Dimensional Virtual Environments to Train the Hemiparetic Upper Extremity</source>
<year>2009</year>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2009.2028830">http://dx.doi.org/10.1109/TNSRE.2009.2028830</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="book">
<name>
<surname>Ozawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Akai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanida</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fujikawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kano</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Initial clinical tests for assessment models of synergy movements of stroke patients using PLEMO system with sensor grip device</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>873</fpage>
<lpage>878</lpage>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Austin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Buchanan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Herman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>RUPERT closed loop control design</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc</source>
<year>2010</year>
<volume>2010</volume>
<fpage>3686</fpage>
<lpage>3689</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2010.5627647">http://dx.doi.org/10.1109/IEMBS.2010.5627647</ext-link>
]</comment>
<pub-id pub-id-type="pmid">21097049</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="book">
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zanotto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Secoli</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Design and control of two planar cable-driven robots for upper-limb neurorehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>560</fpage>
<lpage>565</lpage>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ishii</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Imamura</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Modeling and evaluation of human motor skills in a virtual tennis task</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc; Vancouver, Canada</source>
<year>2008</year>
<volume>2008</volume>
<fpage>4190</fpage>
<lpage>4193</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2008.4650133">http://dx.doi.org/10.1109/IEMBS.2008.4650133</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<name>
<surname>Xiu-Feng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Lin-Hong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li-Yun</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>A novel robot neurorehabilitation for upper limb motion</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc; Shanghai, China</source>
<year>2005</year>
<volume>5</volume>
<fpage>5040</fpage>
<lpage>5043</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2005.1615608">http://dx.doi.org/10.1109/IEMBS.2005.1615608</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="book">
<name>
<surname>Nef</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Guidali</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klamroth-Marganska</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Riener</surname>
<given-names>R</given-names>
</name>
<person-group person-group-type="editor">Dössel O, Schlegel WC</person-group>
<article-title>
<bold>ARMin - Exoskeleton Robot for Stroke Rehabilitation</bold>
</article-title>
<source>World Congress on Medical Physics and Biomedical Engineering, September 7 - 12</source>
<year>2009</year>
<publisher-name>Munich, Germany: Springer</publisher-name>
<fpage>127</fpage>
<lpage>130</lpage>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<name>
<surname>Nef</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Quinter</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Riener</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Effects of arm training with the robotic device ARMin I in chronic stroke: three single cases</bold>
</article-title>
<source>Neurodegener Dis</source>
<year>2009</year>
<volume>6</volume>
<issue>5-6</issue>
<fpage>240</fpage>
<lpage>251</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1159/000262444">http://dx.doi.org/10.1159/000262444</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1159/000262444</pub-id>
<pub-id pub-id-type="pmid">19940461</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<name>
<surname>Staubli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nef</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Klamroth-Marganska</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Riener</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2009</year>
<volume>6</volume>
<fpage>46</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-6-46">http://dx.doi.org/10.1186/1743-0003-6-46</ext-link>
]</comment>
<pub-id pub-id-type="pmid">20017939</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<name>
<surname>Gijbels</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lamers</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Kerkhofs</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Alders</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Knippenberg</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feys</surname>
<given-names>P</given-names>
</name>
<article-title>
<bold>The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2011</year>
<volume>8</volume>
<fpage>5</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-8-5">http://dx.doi.org/10.1186/1743-0003-8-5</ext-link>
]</comment>
<pub-id pub-id-type="pmid">21261965</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="book">
<name>
<surname>Loureiro</surname>
<given-names>RCV</given-names>
</name>
<name>
<surname>Lamperd</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Collin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>WS</given-names>
</name>
<article-title>
<bold>Reach & grasp therapy: Effects of the Gentle/G System assessing sub-acute stroke whole-arm rehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics ICORR</source>
<year>2009</year>
<publisher-name>Kyoto</publisher-name>
<fpage>755</fpage>
<lpage>760</lpage>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<name>
<surname>Bovolenta</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sale</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dall’Armi</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Clerici</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Franceschini</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Robot-aided therapy for upper limbs in patients with stroke-related lesions. Brief report of a clinical experience</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2011</year>
<volume>8</volume>
<fpage>18</fpage>
<pub-id pub-id-type="pmid">21477331</pub-id>
</mixed-citation>
</ref>
<ref id="B96">
<mixed-citation publication-type="journal">
<name>
<surname>Treger</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Faran</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ring</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Robot-assisted therapy for neuromuscular training of sub-acute stroke patients. A feasibility study</bold>
</article-title>
<source>Eur J Phys Rehabil Med</source>
<year>2008</year>
<volume>44</volume>
<issue>4</issue>
<fpage>431</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="pmid">19002092</pub-id>
</mixed-citation>
</ref>
<ref id="B97">
<mixed-citation publication-type="journal">
<name>
<surname>Perry</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Rosen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>S</given-names>
</name>
<article-title>
<bold>Upper-limb powered exoskeleton design</bold>
</article-title>
<source>Mechatronics, IEEE/ASME Trans</source>
<year>2007</year>
<volume>12</volume>
<issue>4</issue>
<fpage>408</fpage>
<lpage>417</lpage>
</mixed-citation>
</ref>
<ref id="B98">
<mixed-citation publication-type="book">
<name>
<surname>Hasegawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mikami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Sankai</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>Five-fingered assistive hand with mechanical compliance of human finger</bold>
</article-title>
<source>IEEE Int. Conf. Robotics and Automation (ICRA)</source>
<year>2008</year>
<publisher-name>Pasadena, CA</publisher-name>
<fpage>718</fpage>
<lpage>724</lpage>
</mixed-citation>
</ref>
<ref id="B99">
<mixed-citation publication-type="journal">
<name>
<surname>Rocon</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Belda-Lois</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ruiz</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Manto</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moreno</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Pons</surname>
<given-names>JL</given-names>
</name>
<article-title>
<bold>Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2007</year>
<volume>15</volume>
<issue>3</issue>
<fpage>367</fpage>
<lpage>378</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2007.903917">http://dx.doi.org/10.1109/TNSRE.2007.903917</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17894269</pub-id>
</mixed-citation>
</ref>
<ref id="B100">
<mixed-citation publication-type="book">
<name>
<surname>Loureiro</surname>
<given-names>RCV</given-names>
</name>
<name>
<surname>Belda-Lois</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Pons</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Sanchez-Lacuesta</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>WS</given-names>
</name>
<article-title>
<bold>Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator</bold>
</article-title>
<source>Proc. 9th Int. Conf. on Rehabilitation Robotics ICORR</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>119</fpage>
<lpage>122</lpage>
</mixed-citation>
</ref>
<ref id="B101">
<mixed-citation publication-type="journal">
<name>
<surname>Pedrocchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ferrante</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ambrosini</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gandolla</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Casellato</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Schauer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Klauer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pascual</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vidaurre</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gfoehler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reichenfelser</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Karner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Crema</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Molteni</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rossini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Palumbo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Guanziroli</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Jedlitschka</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hack</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bulgheroni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>D Amico</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Schenk</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zwicker</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Duschau-Wicke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Miseikis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Graber</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ferrigno</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>MUNDUS project: MUltimodal Neuroprosthesis for daily upper limb support</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2013</year>
<volume>10</volume>
<fpage>66</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-10-66">http://dx.doi.org/10.1186/1743-0003-10-66</ext-link>
]</comment>
<pub-id pub-id-type="pmid">23822118</pub-id>
</mixed-citation>
</ref>
<ref id="B102">
<mixed-citation publication-type="journal">
<name>
<surname>Dijkers</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>deBear</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Erlandson</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Kristy</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Geer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Nichols</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Patient and staff acceptance of robotic technology in occupational therapy: a pilot study</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>1991</year>
<volume>28</volume>
<issue>2</issue>
<fpage>33</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1682/JRRD.1991.04.0033</pub-id>
<pub-id pub-id-type="pmid">2066869</pub-id>
</mixed-citation>
</ref>
<ref id="B103">
<mixed-citation publication-type="journal">
<name>
<surname>Donnan</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Macleod</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>SM</given-names>
</name>
<article-title>
<bold>Stroke</bold>
</article-title>
<source>Lancet</source>
<year>2008</year>
<volume>371</volume>
<issue>9624</issue>
<fpage>1612</fpage>
<lpage>1623</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0140-6736(08)60694">http://dx.doi.org/10.1016/S0140-6736(08)60694</ext-link>
-7]</comment>
<pub-id pub-id-type="doi">10.1016/S0140-6736(08)60694-7</pub-id>
<pub-id pub-id-type="pmid">18468545</pub-id>
</mixed-citation>
</ref>
<ref id="B104">
<mixed-citation publication-type="book">
<name>
<surname>Oda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Isozumi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ohyama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tamida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Development of isokinetic and iso-contractile exercise machine MEM-MRB using MR brake</bold>
</article-title>
<source>Proc. IEEE Int. Conf. on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>6</fpage>
<lpage>11</lpage>
</mixed-citation>
</ref>
<ref id="B105">
<mixed-citation publication-type="book">
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Xinghao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fukushima</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Quasi-3-DOF rehabilitation system for upper limbs: its force-feedback mechanism and software for rehabilitation</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>24</fpage>
<lpage>27</lpage>
</mixed-citation>
</ref>
<ref id="B106">
<mixed-citation publication-type="journal">
<name>
<surname>Sanchez</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cramer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rahman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Monitoring functional arm movement for home-based therapy after stroke</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc; San Francisco, CA</source>
<year>2004</year>
<volume>7</volume>
<fpage>4787</fpage>
<lpage>4790</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2004.1404325">http://dx.doi.org/10.1109/IEMBS.2004.1404325</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B107">
<mixed-citation publication-type="journal">
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Aisen</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>BT</given-names>
</name>
<article-title>
<bold>Robot-aided neurorehabilitation</bold>
</article-title>
<source>IEEE Trans Rehabil Eng</source>
<year>1998</year>
<volume>6</volume>
<fpage>75</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1109/86.662623</pub-id>
<pub-id pub-id-type="pmid">9535526</pub-id>
</mixed-citation>
</ref>
<ref id="B108">
<mixed-citation publication-type="book">
<name>
<surname>Schoone</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van Os</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Campagne</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>Robot-mediated Active Rehabilitation (ACRE) A user trial</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>477</fpage>
<lpage>481</lpage>
</mixed-citation>
</ref>
<ref id="B109">
<mixed-citation publication-type="book">
<name>
<surname>Spencer</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Minakata</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>869</fpage>
<lpage>874</lpage>
</mixed-citation>
</ref>
<ref id="B110">
<mixed-citation publication-type="book">
<name>
<surname>Takaiwa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Noritsugu</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>Development of Wrist Rehabilitation Equipment Using Pneumatic Parallel Manipulator</bold>
</article-title>
<source>Proc. IEEE International Conference on Robotics and Automation (ICRA)</source>
<year>2005</year>
<publisher-name>Barcelona, Spain</publisher-name>
<fpage>2302</fpage>
<lpage>2307</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/ROBOT.2005.1570456">http://dx.doi.org/10.1109/ROBOT.2005.1570456</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B111">
<mixed-citation publication-type="journal">
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gallina</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Masiero</surname>
<given-names>S</given-names>
</name>
<article-title>
<bold>Design, implementation and clinical tests of a wire-based robot for neurorehabilitation</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2007</year>
<volume>15</volume>
<issue>4</issue>
<fpage>560</fpage>
<lpage>569</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2007.908560">http://dx.doi.org/10.1109/TNSRE.2007.908560</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18198714</pub-id>
</mixed-citation>
</ref>
<ref id="B112">
<mixed-citation publication-type="book">
<name>
<surname>Beer</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Naujokas</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bachrach</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mayhew</surname>
<given-names>D</given-names>
</name>
<article-title>
<bold>Development and evaluation of a gravity compensated training environment for robotic rehabilitation of post-stroke reaching</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>205</fpage>
<lpage>210</lpage>
</mixed-citation>
</ref>
<ref id="B113">
<mixed-citation publication-type="journal">
<name>
<surname>Dovat</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lambercy</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Gassert</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Maeder</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Milner</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Leong</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Burdet</surname>
<given-names>E</given-names>
</name>
<article-title>
<bold>HandCARE: a cable-actuated rehabilitation system to train hand function after stroke</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2008</year>
<volume>16</volume>
<issue>6</issue>
<fpage>582</fpage>
<lpage>591</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2008.2010347">http://dx.doi.org/10.1109/TNSRE.2008.2010347</ext-link>
]</comment>
<pub-id pub-id-type="pmid">19144590</pub-id>
</mixed-citation>
</ref>
<ref id="B114">
<mixed-citation publication-type="journal">
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iwami</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>An exoskeletal robot for human shoulder joint motion assist</bold>
</article-title>
<source>Mechatronics, IEEE/ASME Transactions on</source>
<year>2003</year>
<volume>8</volume>
<fpage>125</fpage>
<lpage>135</lpage>
<pub-id pub-id-type="doi">10.1109/TMECH.2003.809168</pub-id>
</mixed-citation>
</ref>
<ref id="B115">
<mixed-citation publication-type="journal">
<name>
<surname>Schiele</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van der Helm</surname>
<given-names>FCT</given-names>
</name>
<article-title>
<bold>Kinematic design to improve ergonomics in human machine interaction</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2006</year>
<volume>14</volume>
<issue>4</issue>
<fpage>456</fpage>
<lpage>469</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2006.881565">http://dx.doi.org/10.1109/TNSRE.2006.881565</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17190037</pub-id>
</mixed-citation>
</ref>
<ref id="B116">
<mixed-citation publication-type="book">
<name>
<surname>Ren</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>LQ</given-names>
</name>
<article-title>
<bold>Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>761</fpage>
<lpage>765</lpage>
</mixed-citation>
</ref>
<ref id="B117">
<mixed-citation publication-type="book">
<name>
<surname>Fleischer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kondak</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wege</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kossyk</surname>
<given-names>I</given-names>
</name>
<article-title>
<bold>Research on Exoskeletons at the TU Berlin</bold>
</article-title>
<source>Proceedings of German Workshop on Robotics, June 9-10</source>
<year>2009</year>
<publisher-name>Braunschweig, Germany</publisher-name>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.gwr09.org/download/paper/gwr09_0043.pdf">http://www.gwr09.org/download/paper/gwr09_0043.pdf</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B118">
<mixed-citation publication-type="journal">
<name>
<surname>Klein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Allington</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton</bold>
</article-title>
<source>Robotics, IEEE Trans</source>
<year>2010</year>
<volume>26</volume>
<issue>4</issue>
<fpage>710</fpage>
<lpage>715</lpage>
</mixed-citation>
</ref>
<ref id="B119">
<mixed-citation publication-type="journal">
<name>
<surname>Gupta</surname>
<given-names>A</given-names>
</name>
<name>
<surname>O’Malley</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Patoglu</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Burgar</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training</bold>
</article-title>
<source>Int J Robot Res</source>
<year>2008</year>
<volume>27</volume>
<issue>2</issue>
<fpage>233</fpage>
<pub-id pub-id-type="doi">10.1177/0278364907084261</pub-id>
</mixed-citation>
</ref>
<ref id="B120">
<mixed-citation publication-type="journal">
<name>
<surname>Burgar</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Lum</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Shor</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>der Loos</surname>
<given-names>HFMV</given-names>
</name>
<article-title>
<bold>Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>2000</year>
<volume>37</volume>
<issue>6</issue>
<fpage>663</fpage>
<lpage>673</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://www.rehab.research.va.gov/jour/00/37/6/pdf/burgar.pdf">http://www.rehab.research.va.gov/jour/00/37/6/pdf/burgar.pdf</ext-link>
]</comment>
<pub-id pub-id-type="pmid">11321002</pub-id>
</mixed-citation>
</ref>
<ref id="B121">
<mixed-citation publication-type="journal">
<name>
<surname>Amirabdollahian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Loureiro</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gradwell</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Collin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2007</year>
<volume>4</volume>
<fpage>4</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-4-4">http://dx.doi.org/10.1186/1743-0003-4-4</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17309791</pub-id>
</mixed-citation>
</ref>
<ref id="B122">
<mixed-citation publication-type="journal">
<name>
<surname>Van Der Linde</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lammertse</surname>
<given-names>P</given-names>
</name>
<article-title>
<bold>HapticMaster–a generic force controlled robot for human interaction</bold>
</article-title>
<source>Industrial Robot: Int J</source>
<year>2003</year>
<volume>30</volume>
<issue>6</issue>
<fpage>515</fpage>
<lpage>524</lpage>
<pub-id pub-id-type="doi">10.1108/01439910310506783</pub-id>
</mixed-citation>
</ref>
<ref id="B123">
<mixed-citation publication-type="book">
<name>
<surname>Loureiro</surname>
<given-names>RCV</given-names>
</name>
<name>
<surname>Harwin</surname>
<given-names>WS</given-names>
</name>
<article-title>
<bold>Reach & Grasp Therapy: Design and Control of a 9-DOF Robotic Neuro-rehabilitation System</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>757</fpage>
<lpage>763</lpage>
</mixed-citation>
</ref>
<ref id="B124">
<mixed-citation publication-type="book">
<name>
<surname>Mihelj</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Podobnik</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Munih</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>HEnRiE - Haptic environment for reaching and grasping exercise</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>907</fpage>
<lpage>912</lpage>
</mixed-citation>
</ref>
<ref id="B125">
<mixed-citation publication-type="book">
<name>
<surname>Toth</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fazekas</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Arz</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jurak</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Passive robotic movement therapy of the spastic hemiparetic arm with</surname>
<given-names>REHAROB</given-names>
</name>
<article-title>
<bold>report of the first clinical test and the follow-up system improvement</bold>
</article-title>
<source>Proc. 9th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>127</fpage>
<lpage>130</lpage>
</mixed-citation>
</ref>
<ref id="B126">
<mixed-citation publication-type="journal">
<name>
<surname>Culmer</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Makower</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cozens</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Levesley</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Bhakta</surname>
<given-names>BB</given-names>
</name>
<article-title>
<bold>A Control Strategy for Upper Limb Robotic Rehabilitation With a Dual Robot System</bold>
</article-title>
<source>Mechatronics, IEEE/ASME Trans</source>
<year>2009</year>
<volume>PP</volume>
<issue>99</issue>
<fpage>1</fpage>
<lpage>11</lpage>
</mixed-citation>
</ref>
<ref id="B127">
<mixed-citation publication-type="journal">
<name>
<surname>Morales</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Badesa</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>García-Aracil</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sabater</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Pėrez-Vidal</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>Pneumatic robotic systems for upper limb rehabilitation</bold>
</article-title>
<source>Med Biol Eng Comput</source>
<year>2011</year>
<volume>49</volume>
<issue>10</issue>
<fpage>1145</fpage>
<lpage>1156</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s11517-011-0814-3">http://dx.doi.org/10.1007/s11517-011-0814-3</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1007/s11517-011-0814-3</pub-id>
<pub-id pub-id-type="pmid">21822631</pub-id>
</mixed-citation>
</ref>
<ref id="B128">
<mixed-citation publication-type="journal">
<name>
<surname>Houtsma</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Houten</surname>
<given-names>FJAMV</given-names>
</name>
<article-title>
<bold>Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation</bold>
</article-title>
<source>Proc Inst Mech Eng H</source>
<year>2006</year>
<volume>220</volume>
<issue>6</issue>
<fpage>715</fpage>
<lpage>718</lpage>
<pub-id pub-id-type="doi">10.1243/09544119H06104</pub-id>
<pub-id pub-id-type="pmid">16961191</pub-id>
</mixed-citation>
</ref>
<ref id="B129">
<mixed-citation publication-type="book">
<person-group person-group-type="editor">Selzer M, Clarke S, Cohen L, Duncan P, Gage F</person-group>
<source>Rehabilitation robotics, orthotics and prosthetics. In Textbook of Neural Repair and Rehabilitation</source>
<year>2006</year>
<publisher-name>Cambridge Univ Press</publisher-name>
</mixed-citation>
</ref>
<ref id="B130">
<mixed-citation publication-type="journal">
<name>
<surname>Takahashi</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Der-Yeghiaian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Motiwala</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Cramer</surname>
<given-names>SC</given-names>
</name>
<article-title>
<bold>Robot-based hand motor therapy after stroke</bold>
</article-title>
<source>Brain</source>
<year>2008</year>
<volume>131</volume>
<issue>Pt 2</issue>
<fpage>425</fpage>
<lpage>437</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/brain/awm311">http://dx.doi.org/10.1093/brain/awm311</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18156154</pub-id>
</mixed-citation>
</ref>
<ref id="B131">
<mixed-citation publication-type="book">
<name>
<surname>Vertechy</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Frisoli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dettori</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Solazzi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bergamasco</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Development of a new exoskeleton for upper limb rehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>188</fpage>
<lpage>193</lpage>
</mixed-citation>
</ref>
<ref id="B132">
<mixed-citation publication-type="journal">
<name>
<surname>Micera</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Carrozza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Guglielmelli</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Cappiello</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zaccone</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Freschi</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mazzone</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Delconte</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pisano</surname>
<given-names>F</given-names>
</name>
<etal></etal>
<article-title>
<bold>A simple robotic system for neurorehabilitation</bold>
</article-title>
<source>Autonomous Robots</source>
<year>2005</year>
<volume>19</volume>
<issue>3</issue>
<fpage>271</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.1007/s10514-005-4749-0</pub-id>
</mixed-citation>
</ref>
<ref id="B133">
<mixed-citation publication-type="journal">
<name>
<surname>Krebs</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ferraro</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Buerger</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Newbery</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Makiyama</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sandmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2004</year>
<volume>1</volume>
<fpage>5</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-1-5">http://dx.doi.org/10.1186/1743-0003-1-5</ext-link>
]</comment>
<pub-id pub-id-type="pmid">15679916</pub-id>
</mixed-citation>
</ref>
<ref id="B134">
<mixed-citation publication-type="journal">
<name>
<surname>Casadio</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sanguineti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Morasso</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Arrichiello</surname>
<given-names>V</given-names>
</name>
<article-title>
<bold>Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation</bold>
</article-title>
<source>Technol Health Care</source>
<year>2006</year>
<volume>14</volume>
<issue>3</issue>
<fpage>123</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="pmid">16971753</pub-id>
</mixed-citation>
</ref>
<ref id="B135">
<mixed-citation publication-type="book">
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ozawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akai</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>“Hybrid-PLEMO”, rehabilitation system for upper limbs with active / passive force feedback, and its application for facilitation techniques</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>781</fpage>
<lpage>786</lpage>
</mixed-citation>
</ref>
<ref id="B136">
<mixed-citation publication-type="journal">
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Kahn</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Averbuch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McKenna-Cole</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schmit</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Rymer</surname>
<given-names>WZ</given-names>
</name>
<article-title>
<bold>Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide</bold>
</article-title>
<source>J Rehabil Res Dev</source>
<year>2000</year>
<volume>37</volume>
<issue>6</issue>
<fpage>653</fpage>
<lpage>662</lpage>
<pub-id pub-id-type="pmid">11321001</pub-id>
</mixed-citation>
</ref>
<ref id="B137">
<mixed-citation publication-type="journal">
<name>
<surname>Lum</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mahoney</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rymer</surname>
<given-names>WZ</given-names>
</name>
<name>
<surname>Burgar</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance</bold>
</article-title>
<source>Top Stroke Rehabil</source>
<year>2002</year>
<volume>8</volume>
<issue>4</issue>
<fpage>40</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1310/9KFM-KF81-P9A4-5WW0</pub-id>
<pub-id pub-id-type="pmid">14523729</pub-id>
</mixed-citation>
</ref>
<ref id="B138">
<mixed-citation publication-type="journal">
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Celestino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Charles</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Robot-aided neurorehabilitation: a robot for wrist rehabilitation</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2007</year>
<volume>15</volume>
<issue>3</issue>
<fpage>327</fpage>
<lpage>335</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2007.903899">http://dx.doi.org/10.1109/TNSRE.2007.903899</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17894265</pub-id>
</mixed-citation>
</ref>
<ref id="B139">
<mixed-citation publication-type="other">
<name>
<surname>Oblak</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Cikajlo</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Matjacic</surname>
<given-names>Z</given-names>
</name>
<article-title>
<bold>Universal Haptic Drive: A Robot for Arm and Wrist Rehabilitation</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2009</year>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2009.2034162">http://dx.doi.org/10.1109/TNSRE.2009.2034162</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B140">
<mixed-citation publication-type="journal">
<name>
<surname>Caldwell</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Tsagarakis</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>“Soft” Exoskeletons for Upper and Lower Body Rehabilitation - Design, Control and Testing</bold>
</article-title>
<source>Int J Humanoid Robot</source>
<year>2007</year>
<volume>4</volume>
<fpage>1</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1142/S0219843607000947</pub-id>
</mixed-citation>
</ref>
<ref id="B141">
<mixed-citation publication-type="book">
<name>
<surname>Pratt</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Williamson</surname>
<given-names>MM</given-names>
</name>
<article-title>
<bold>Series elastic actuators</bold>
</article-title>
<source>Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on</source>
<year>1995</year>
<publisher-name>Pittsburgh, PA</publisher-name>
<fpage>399</fpage>
<lpage>406</lpage>
</mixed-citation>
</ref>
<ref id="B142">
<mixed-citation publication-type="book">
<name>
<surname>Sulzer</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Peshkin</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Patton</surname>
<given-names>JL</given-names>
</name>
<article-title>
<bold>Design of a Mobile, Inexpensive Device for Upper Extremity Rehabilitation at Home</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>933</fpage>
<lpage>937</lpage>
</mixed-citation>
</ref>
<ref id="B143">
<mixed-citation publication-type="book">
<name>
<surname>Vanderniepen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Van Ham</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Van Damme</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Versluys</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lefeber</surname>
<given-names>D</given-names>
</name>
<article-title>
<bold>Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>172</fpage>
<lpage>177</lpage>
</mixed-citation>
</ref>
<ref id="B144">
<mixed-citation publication-type="book">
<name>
<surname>Rosati</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Cenci</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Boschetti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Zanotto</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Masiero</surname>
<given-names>S</given-names>
</name>
<article-title>
<bold>Design of a single-dof active hand orthosis for neurorehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>161</fpage>
<lpage>166</lpage>
</mixed-citation>
</ref>
<ref id="B145">
<mixed-citation publication-type="journal">
<name>
<surname>Wolbrecht</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Leavitt</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Bobrow</surname>
<given-names>JE</given-names>
</name>
<article-title>
<bold>Control of a pneumatic orthosis for upper extremity stroke rehabilitation</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc; New York, NY</source>
<year>2006</year>
<volume>1</volume>
<fpage>2687</fpage>
<lpage>2693</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2006.259941">http://dx.doi.org/10.1109/IEMBS.2006.259941</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B146">
<mixed-citation publication-type="book">
<name>
<surname>Sasaki</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Noritsugu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takaiwa</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Development of Active Support Splint driven by Pneumatic Soft Actuator (ASSIST)</bold>
</article-title>
<source>Proc. IEEE International Conference on Robotics and Automation (ICRA)</source>
<year>2005</year>
<publisher-name>Barcelona, Spain</publisher-name>
<fpage>520</fpage>
<lpage>525</lpage>
</mixed-citation>
</ref>
<ref id="B147">
<mixed-citation publication-type="journal">
<name>
<surname>Lucas</surname>
<given-names>L</given-names>
</name>
<name>
<surname>DiCicco</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>An EMG-controlled hand exoskeleton for natural pinching</bold>
</article-title>
<source>J Robot Mechatronics</source>
<year>2004</year>
<volume>16</volume>
<fpage>482</fpage>
<lpage>488</lpage>
</mixed-citation>
</ref>
<ref id="B148">
<mixed-citation publication-type="journal">
<name>
<surname>Tsagarakis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Caldwell</surname>
<given-names>D</given-names>
</name>
<article-title>
<bold>Development and control of a "soft-actuated" exoskeleton for use in physiotherapy and training</bold>
</article-title>
<source>Autonomous Robots</source>
<year>2003</year>
<volume>15</volume>
<fpage>21</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1023/A:1024484615192</pub-id>
</mixed-citation>
</ref>
<ref id="B149">
<mixed-citation publication-type="book">
<name>
<surname>Kobayashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nozaki</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Development of muscle suit for supporting manual worker</bold>
</article-title>
<source>IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</source>
<year>2007</year>
<publisher-name>San Diego, CA</publisher-name>
<fpage>1769</fpage>
<lpage>1774</lpage>
</mixed-citation>
</ref>
<ref id="B150">
<mixed-citation publication-type="journal">
<name>
<surname>Chou</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Hannaford</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>Measurement and modeling of McKibben pneumatic artificial muscles</bold>
</article-title>
<source>IEEE Trans Robot Automation</source>
<year>1996</year>
<volume>12</volume>
<fpage>90</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1109/70.481753</pub-id>
</mixed-citation>
</ref>
<ref id="B151">
<mixed-citation publication-type="book">
<name>
<surname>Balasubramanian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Shepard</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Koeneman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Koeneman</surname>
<given-names>J</given-names>
</name>
<name>
<surname>He</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions</bold>
</article-title>
<source>Proc. Virtual Rehabilitation</source>
<year>2008</year>
<publisher-name>Vancouver, Canada</publisher-name>
<fpage>163</fpage>
<lpage>167</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/ICVR.2008.4625154">http://dx.doi.org/10.1109/ICVR.2008.4625154</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B152">
<mixed-citation publication-type="book">
<name>
<surname>Umemura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fujisaki</surname>
<given-names>K</given-names>
</name>
<article-title>
<bold>A study on power-assisted rehabilitation robot arms operated by patient with upper limb disabilities</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>451</fpage>
<lpage>456</lpage>
</mixed-citation>
</ref>
<ref id="B153">
<mixed-citation publication-type="book">
<name>
<surname>Pylatiuk</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kargov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gaiser</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Schulz</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bretthauer</surname>
<given-names>G</given-names>
</name>
<article-title>
<bold>Design of a flexible fluidic actuation system for a hybrid elbow orthosis</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>167</fpage>
<lpage>171</lpage>
</mixed-citation>
</ref>
<ref id="B154">
<mixed-citation publication-type="journal">
<name>
<surname>Stienen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hekman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Prange</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jannink</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aalsma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van der Helm</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van der Kooij</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation</bold>
</article-title>
<source>J Med Devices</source>
<year>2009</year>
<volume>3</volume>
<fpage>031003</fpage>
<pub-id pub-id-type="doi">10.1115/1.3191727</pub-id>
</mixed-citation>
</ref>
<ref id="B155">
<mixed-citation publication-type="book">
<name>
<surname>Stienen</surname>
<given-names>AHA</given-names>
</name>
<name>
<surname>Hekman</surname>
<given-names>EEG</given-names>
</name>
<name>
<surname>ter Braak</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Aalsma</surname>
<given-names>AMM</given-names>
</name>
<name>
<surname>van der Helm</surname>
<given-names>FCT</given-names>
</name>
<name>
<surname>van der Kooij</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Design of a rotational hydro-elastic actuator for an active upper-extremity rehabilitation exoskeleton</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>881</fpage>
<lpage>888</lpage>
</mixed-citation>
</ref>
<ref id="B156">
<mixed-citation publication-type="book">
<name>
<surname>Scherer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pradhan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dellon</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Klatzky</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>Characterization of multi-finger twist motion toward robotic rehabilitation</bold>
</article-title>
<source>Proc. IEEE International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2009</year>
<publisher-name>Kyoto, Japan</publisher-name>
<fpage>812</fpage>
<lpage>817</lpage>
</mixed-citation>
</ref>
<ref id="B157">
<mixed-citation publication-type="journal">
<name>
<surname>Winter</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Bouzit</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Use of Magnetorheological fluid in a force feedback glove</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2007</year>
<volume>15</volume>
<fpage>2</fpage>
<lpage>8</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2007.891401">http://dx.doi.org/10.1109/TNSRE.2007.891401</ext-link>
]</comment>
<pub-id pub-id-type="pmid">17436869</pub-id>
</mixed-citation>
</ref>
<ref id="B158">
<mixed-citation publication-type="journal">
<name>
<surname>Khanicheh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mintzopoulos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Tzika</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Mavroidis</surname>
<given-names>C</given-names>
</name>
<article-title>
<bold>MR_CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging</bold>
</article-title>
<source>Neural Syst Rehabil Eng IEEE Trans</source>
<year>2008</year>
<volume>16</volume>
<fpage>91</fpage>
<lpage>98</lpage>
</mixed-citation>
</ref>
<ref id="B159">
<mixed-citation publication-type="book">
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Koyanagi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Imada</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakanishi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Domen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Miyakoshi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Takenaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>A</given-names>
</name>
<source>
<bold>A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing</bold>
</source>
<year>2005</year>
<publisher-name>Chicago, IL</publisher-name>
<fpage>53</fpage>
<lpage>56</lpage>
</mixed-citation>
</ref>
<ref id="B160">
<mixed-citation publication-type="book">
<name>
<surname>Furusho</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ohyama</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Morita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shichi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>A 6-DOF Rehabilitation Support System for Upper Limbs including Wrists “Robotherapist” with Physical Therapy</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>304</fpage>
<lpage>309</lpage>
</mixed-citation>
</ref>
<ref id="B161">
<mixed-citation publication-type="journal">
<name>
<surname>Hamid</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hayek</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview</bold>
</article-title>
<source>Eur Spine J</source>
<year>2008</year>
<volume>17</volume>
<issue>9</issue>
<fpage>1256</fpage>
<lpage>1269</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00586-008-0729-3">http://dx.doi.org/10.1007/s00586-008-0729-3</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1007/s00586-008-0729-3</pub-id>
<pub-id pub-id-type="pmid">18677518</pub-id>
</mixed-citation>
</ref>
<ref id="B162">
<mixed-citation publication-type="journal">
<name>
<surname>Takano</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Haneda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maeda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Matsuse</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawaguchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shiba</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Increasing muscle strength and mass of thigh in elderly people with the hybrid-training method of electrical stimulation and volitional contraction</bold>
</article-title>
<source>Tohoku J Exp Med</source>
<year>2010</year>
<volume>221</volume>
<fpage>77</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1620/tjem.221.77</pub-id>
<pub-id pub-id-type="pmid">20453461</pub-id>
</mixed-citation>
</ref>
<ref id="B163">
<mixed-citation publication-type="journal">
<name>
<surname>Freeman</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Burridge</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Chappell</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Lewin</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Rogers</surname>
<given-names>E</given-names>
</name>
<article-title>
<bold>A robotic workstation for stroke rehabilitation of the upper extremity using FES</bold>
</article-title>
<source>Med Eng Phys</source>
<year>2009</year>
<volume>31</volume>
<issue>3</issue>
<fpage>364</fpage>
<lpage>373</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.medengphy.2008.05.008">http://dx.doi.org/10.1016/j.medengphy.2008.05.008</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.medengphy.2008.05.008</pub-id>
<pub-id pub-id-type="pmid">18640865</pub-id>
</mixed-citation>
</ref>
<ref id="B164">
<mixed-citation publication-type="book">
<name>
<surname>Li</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<article-title>
<bold>Combined Electromyography(EMG)-driven system with functional electrical stimulation (FES) for poststroke rehabilitation</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>642</fpage>
<lpage>646</lpage>
</mixed-citation>
</ref>
<ref id="B165">
<mixed-citation publication-type="book">
<name>
<surname>Masia</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Cappa</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Design, Characterization, and Impedance Limits of a Hand Robot</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>1085</fpage>
<lpage>1089</lpage>
</mixed-citation>
</ref>
<ref id="B166">
<mixed-citation publication-type="book">
<name>
<surname>Gopura</surname>
<given-names>RARC</given-names>
</name>
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control</bold>
</article-title>
<source>IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)</source>
<year>2009</year>
<publisher-name>St. Louis, MO</publisher-name>
<fpage>1126</fpage>
<lpage>1131</lpage>
</mixed-citation>
</ref>
<ref id="B167">
<mixed-citation publication-type="book">
<name>
<surname>Nathan</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>McGuire</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>Feasibility of integrating FES grasp assistance with a task-oriented robot-assisted therapy environment: A case study</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>807</fpage>
<lpage>812</lpage>
</mixed-citation>
</ref>
<ref id="B168">
<mixed-citation publication-type="journal">
<name>
<surname>Johnson</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Carus</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Parrini</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marchese</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Valeggi</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>The design of a five-degree-of-freedom powered orthosis for the upper limb</bold>
</article-title>
<source>Proc Inst Mech Eng H</source>
<year>2001</year>
<volume>215</volume>
<issue>3</issue>
<fpage>275</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="doi">10.1243/0954411011535867</pub-id>
<pub-id pub-id-type="pmid">11436270</pub-id>
</mixed-citation>
</ref>
<ref id="B169">
<mixed-citation publication-type="journal">
<name>
<surname>Rosen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Brand</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fuchs</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Arcan</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>A myosignal-based powered exoskeleton system</bold>
</article-title>
<source>IEEE Trans Syst, Man and Cybernet, Part A</source>
<year>2001</year>
<volume>31</volume>
<issue>3</issue>
<fpage>210</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1109/3468.925661</pub-id>
</mixed-citation>
</ref>
<ref id="B170">
<mixed-citation publication-type="book">
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Esaki</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tsuruta</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fukuda</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>An exoskeleton system for elbow joint motion rehabilitation</bold>
</article-title>
<source>Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)</source>
<year>2003</year>
<publisher-name>Port Island, Japan</publisher-name>
<fpage>1228</fpage>
<lpage>1233. vol.2</lpage>
</mixed-citation>
</ref>
<ref id="B171">
<mixed-citation publication-type="journal">
<name>
<surname>Ögce</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Özyalçin</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Case study: A myoelectrically controlled shoulder-elbow orthosis for unrecovered brachial plexus injury</bold>
</article-title>
<source>Prosthet Orthot Int</source>
<year>2000</year>
<volume>24</volume>
<issue>3</issue>
<fpage>252</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1080/03093640008726557</pub-id>
<pub-id pub-id-type="pmid">11195363</pub-id>
</mixed-citation>
</ref>
<ref id="B172">
<mixed-citation publication-type="journal">
<name>
<surname>Stein</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Narendran</surname>
<given-names>K</given-names>
</name>
<name>
<surname>McBean</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke</bold>
</article-title>
<source>Am J Phys Med Rehabil</source>
<year>2007</year>
<volume>86</volume>
<issue>4</issue>
<fpage>255</fpage>
<lpage>261</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1097/PHM.0b013e3180383cc5">http://dx.doi.org/10.1097/PHM.0b013e3180383cc5</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1097/PHM.0b013e3180383cc5</pub-id>
<pub-id pub-id-type="pmid">17413538</pub-id>
</mixed-citation>
</ref>
<ref id="B173">
<mixed-citation publication-type="journal">
<name>
<surname>Stein</surname>
<given-names>J</given-names>
</name>
<article-title>
<bold>e100 NeuroRobotic system</bold>
</article-title>
<source>Expert Rev Med Devices</source>
<year>2009</year>
<volume>6</volume>
<fpage>15</fpage>
<lpage>19</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1586/17434440.6.1.15">http://dx.doi.org/10.1586/17434440.6.1.15</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1586/17434440.6.1.15</pub-id>
<pub-id pub-id-type="pmid">19105775</pub-id>
</mixed-citation>
</ref>
<ref id="B174">
<mixed-citation publication-type="book">
<name>
<surname>Gopura</surname>
<given-names>RAR</given-names>
</name>
<name>
<surname>Kiguchi</surname>
<given-names>K</given-names>
</name>
<article-title>
<bold>A human forearm and wrist motion assist exoskeleton robot with EMG-based Fuzzy-neuro control</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>550</fpage>
<lpage>555</lpage>
</mixed-citation>
</ref>
<ref id="B175">
<mixed-citation publication-type="book">
<name>
<surname>Song</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>XL</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>XJ</given-names>
</name>
<article-title>
<bold>Myoelectrically Controlled Robotic System That Provide Voluntary Mechanical Help for Persons after Stroke</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>246</fpage>
<lpage>249</lpage>
</mixed-citation>
</ref>
<ref id="B176">
<mixed-citation publication-type="book">
<name>
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>L</given-names>
</name>
<article-title>
<bold>sEMG Based Control for 5 DOF Upper Limb Rehabilitation Robot System</bold>
</article-title>
<source>Proc. IEEE International Conference on Robotics and Biomimetics (ROBIO)</source>
<year>2006</year>
<publisher-name>Kunming, China</publisher-name>
<fpage>1305</fpage>
<lpage>1310</lpage>
</mixed-citation>
</ref>
<ref id="B177">
<mixed-citation publication-type="journal">
<name>
<surname>Mayr</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kofler</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Saltuari</surname>
<given-names>L</given-names>
</name>
<article-title>
<bold>[ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study]</bold>
</article-title>
<source>Handchir Mikrochir Plast Chir</source>
<year>2008</year>
<volume>40</volume>
<fpage>66</fpage>
<lpage>73</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1055/s-2007-989425">http://dx.doi.org/10.1055/s-2007-989425</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1055/s-2007-989425</pub-id>
<pub-id pub-id-type="pmid">18322901</pub-id>
</mixed-citation>
</ref>
<ref id="B178">
<mixed-citation publication-type="book">
<name>
<surname>Kawasaki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ishigure</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nishimoto</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mouri</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sakaeda</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Development of a Hand Motion Assist Robot for Rehabilitation Therapy by Patient Self-Motion Control</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>234</fpage>
<lpage>240</lpage>
</mixed-citation>
</ref>
<ref id="B179">
<mixed-citation publication-type="book">
<name>
<surname>Ding</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ogasawara</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>Pinpointed muscle force control using a power-assisting device: System configuration and experiment</bold>
</article-title>
<source>Proc. 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)</source>
<year>2008</year>
<publisher-name>Scottsdale, AZ</publisher-name>
<fpage>181</fpage>
<lpage>186</lpage>
</mixed-citation>
</ref>
<ref id="B180">
<mixed-citation publication-type="journal">
<name>
<surname>Lam</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hebert</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lacheray</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Apkarian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mihailidis</surname>
<given-names>A</given-names>
</name>
<article-title>
<bold>A haptic-robotic platform for upper-limb reaching stroke therapy: preliminary design and evaluation results</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2008</year>
<volume>5</volume>
<fpage>15</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-5-15">http://dx.doi.org/10.1186/1743-0003-5-15</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18498641</pub-id>
</mixed-citation>
</ref>
<ref id="B181">
<mixed-citation publication-type="journal">
<name>
<surname>Casellato</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pedrocchi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zorzi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Vernisse</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ferrigno</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nardocci</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>EMG-based visual-haptic biofeedback: a tool to improve motor control in children with primary dystonia</bold>
</article-title>
<source>IEEE Trans Neural Syst Rehabil Eng</source>
<year>2013</year>
<volume>21</volume>
<issue>3</issue>
<fpage>474</fpage>
<lpage>480</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/TNSRE.2012.2222445">http://dx.doi.org/10.1109/TNSRE.2012.2222445</ext-link>
]</comment>
<pub-id pub-id-type="pmid">23060345</pub-id>
</mixed-citation>
</ref>
<ref id="B182">
<mixed-citation publication-type="book">
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Terada</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Komeda</surname>
<given-names>T</given-names>
</name>
<article-title>
<bold>Haptic Device System for Upper Limb Motor and Cognitive Function Rehabilitation: Grip Movement Comparison between Normal Subjects and Stroke Patients</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>736</fpage>
<lpage>741</lpage>
</mixed-citation>
</ref>
<ref id="B183">
<mixed-citation publication-type="journal">
<name>
<surname>Mali</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Munih</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>HIFE-haptic interface for finger exercise</bold>
</article-title>
<source>Mechatronics, IEEE/ASME Trans</source>
<year>2006</year>
<volume>11</volume>
<fpage>93</fpage>
<lpage>102</lpage>
</mixed-citation>
</ref>
<ref id="B184">
<mixed-citation publication-type="journal">
<name>
<surname>Bouzit</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Burdea</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Popescu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Boian</surname>
<given-names>R</given-names>
</name>
<article-title>
<bold>The Rutgers Master II-new design force-feedback glove</bold>
</article-title>
<source>Mechatronics, IEEE/ASME Trans</source>
<year>2002</year>
<volume>7</volume>
<issue>2</issue>
<fpage>256</fpage>
<lpage>263</lpage>
<pub-id pub-id-type="doi">10.1109/TMECH.2002.1011262</pub-id>
</mixed-citation>
</ref>
<ref id="B185">
<mixed-citation publication-type="journal">
<name>
<surname>Popescu</surname>
<given-names>VG</given-names>
</name>
<name>
<surname>Burdea</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Bouzit</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hentz</surname>
<given-names>VR</given-names>
</name>
<article-title>
<bold>A virtual-reality-based telerehabilitation system with force feedback</bold>
</article-title>
<source>IEEE Trans Inf Technol Biomed</source>
<year>2000</year>
<volume>4</volume>
<fpage>45</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1109/4233.826858</pub-id>
<pub-id pub-id-type="pmid">10761773</pub-id>
</mixed-citation>
</ref>
<ref id="B186">
<mixed-citation publication-type="journal">
<name>
<surname>Jack</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boian</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Merians</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Tremaine</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Burdea</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Adamovich</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Recce</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poizner</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Virtual reality-enhanced stroke rehabilitation</bold>
</article-title>
<source>Neural Syst Rehabil Eng, IEEE Trans</source>
<year>2001</year>
<volume>9</volume>
<issue>3</issue>
<fpage>308</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="doi">10.1109/7333.948460</pub-id>
</mixed-citation>
</ref>
<ref id="B187">
<mixed-citation publication-type="journal">
<name>
<surname>Adamovich</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Merians</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Boian</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tremaine</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Burdea</surname>
<given-names>GS</given-names>
</name>
<name>
<surname>Recce</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Poizner</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>A virtual reality-based exercise system for hand rehabilitation post-stroke</bold>
</article-title>
<source>Presence: Teleoperators & Virtual Environ</source>
<year>2005</year>
<volume>14</volume>
<issue>2</issue>
<fpage>161</fpage>
<lpage>174</lpage>
</mixed-citation>
</ref>
<ref id="B188">
<mixed-citation publication-type="journal">
<name>
<surname>Brewer</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Klatzky</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Matsuoka</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>Visual feedback distortion in a robotic environment for hand rehabilitation</bold>
</article-title>
<source>Brain Res Bull</source>
<year>2008</year>
<volume>75</volume>
<issue>6</issue>
<fpage>804</fpage>
<lpage>813</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.brainresbull.2008.01.006">http://dx.doi.org/10.1016/j.brainresbull.2008.01.006</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1016/j.brainresbull.2008.01.006</pub-id>
<pub-id pub-id-type="pmid">18394527</pub-id>
</mixed-citation>
</ref>
<ref id="B189">
<mixed-citation publication-type="book">
<name>
<surname>Xydas</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Louca</surname>
<given-names>LS</given-names>
</name>
<article-title>
<bold>Design and Development of a Haptic Peg-Board Exercise for the Rehabilitation of People with Multiple Sclerosis</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>906</fpage>
<lpage>916</lpage>
</mixed-citation>
</ref>
<ref id="B190">
<mixed-citation publication-type="journal">
<name>
<surname>Palsbo</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Hood-Szivek</surname>
<given-names>P</given-names>
</name>
<article-title>
<bold>Effect of robotic-assisted three-dimensional repetitive motion to improve hand motor function and control in children with handwriting deficits: a nonrandomized phase 2 device trial</bold>
</article-title>
<source>Am J Occup Ther</source>
<year>2012</year>
<volume>66</volume>
<issue>6</issue>
<fpage>682</fpage>
<lpage>690</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.5014/ajot.2012.004556">http://dx.doi.org/10.5014/ajot.2012.004556</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.5014/ajot.2012.004556</pub-id>
<pub-id pub-id-type="pmid">23106988</pub-id>
</mixed-citation>
</ref>
<ref id="B191">
<mixed-citation publication-type="journal">
<name>
<surname>Adamovich</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fluet</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Merians</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Mathai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</name>
<article-title>
<bold>Recovery of hand function in virtual reality: Training hemiparetic hand and arm together or separately</bold>
</article-title>
<source>Conf Proc IEEE Eng Med Biol Soc; Vancouver, Canada</source>
<year>2008</year>
<volume>2008</volume>
<fpage>3475</fpage>
<lpage>3478</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1109/IEMBS.2008.4649954">http://dx.doi.org/10.1109/IEMBS.2008.4649954</ext-link>
]</comment>
</mixed-citation>
</ref>
<ref id="B192">
<mixed-citation publication-type="journal">
<name>
<surname>Adamovich</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Fluet</surname>
<given-names>GG</given-names>
</name>
<name>
<surname>Mathai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Merians</surname>
<given-names>AS</given-names>
</name>
<article-title>
<bold>Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2009</year>
<volume>6</volume>
<fpage>28</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-6-28">http://dx.doi.org/10.1186/1743-0003-6-28</ext-link>
]</comment>
<pub-id pub-id-type="pmid">19615045</pub-id>
</mixed-citation>
</ref>
<ref id="B193">
<mixed-citation publication-type="journal">
<name>
<surname>Marchal-Crespo</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<article-title>
<bold>Review of control strategies for robotic movement training after neurologic injury</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2009</year>
<volume>6</volume>
<fpage>20</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-6-20">http://dx.doi.org/10.1186/1743-0003-6-20</ext-link>
]</comment>
<pub-id pub-id-type="pmid">19531254</pub-id>
</mixed-citation>
</ref>
<ref id="B194">
<mixed-citation publication-type="journal">
<name>
<surname>Patton</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Stoykov</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Kovic</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mussa-Ivaldi</surname>
<given-names>FA</given-names>
</name>
<article-title>
<bold>Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors</bold>
</article-title>
<source>Exp Brain Res</source>
<year>2006</year>
<volume>168</volume>
<issue>3</issue>
<fpage>368</fpage>
<lpage>383</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00221-005-0097-8">http://dx.doi.org/10.1007/s00221-005-0097-8</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1007/s00221-005-0097-8</pub-id>
<pub-id pub-id-type="pmid">16249912</pub-id>
</mixed-citation>
</ref>
<ref id="B195">
<mixed-citation publication-type="journal">
<name>
<surname>Hogan</surname>
<given-names>N</given-names>
</name>
<article-title>
<bold>Impedance control: an approach to manipulation. Part 1 - Theory</bold>
</article-title>
<source>J Dynamic Syst, Meas Control</source>
<year>1985</year>
<volume>107</volume>
<fpage>1</fpage>
<lpage>7</lpage>
</mixed-citation>
</ref>
<ref id="B196">
<mixed-citation publication-type="book">
<name>
<surname>Ott</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mukherjee</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>Y</given-names>
</name>
<article-title>
<bold>Unified Impedance and Admittance Control</bold>
</article-title>
<source>Proc. IEEE Int Conf Robotics and Automation (ICRA)</source>
<year>2010</year>
<publisher-name>Anchorage, AK</publisher-name>
<fpage>554</fpage>
<lpage>561</lpage>
</mixed-citation>
</ref>
<ref id="B197">
<mixed-citation publication-type="book">
<name>
<surname>Frisoli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Borelli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Montagner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Marcheschi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Procopio</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Salsedo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bergamasco</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Carboncini</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Tolaini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rossi</surname>
<given-names>B</given-names>
</name>
<article-title>
<bold>Arm rehabilitation with a robotic exoskeleleton in Virtual Reality</bold>
</article-title>
<source>Proc. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)</source>
<year>2007</year>
<publisher-name>Noordwijk, Netherlands</publisher-name>
<fpage>631</fpage>
<lpage>642</lpage>
</mixed-citation>
</ref>
<ref id="B198">
<mixed-citation publication-type="journal">
<name>
<surname>Lo</surname>
<given-names>AC</given-names>
</name>
<article-title>
<bold>Clinical designs of recent robot rehabilitation trials</bold>
</article-title>
<source>Am J Phys Med Rehabil</source>
<year>2012</year>
<volume>91</volume>
<issue>11 Suppl 3</issue>
<fpage>S204</fpage>
<lpage>S216</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1097/PHM.0b013e31826bcfa3">http://dx.doi.org/10.1097/PHM.0b013e31826bcfa3</ext-link>
]</comment>
<pub-id pub-id-type="pmid">23080037</pub-id>
</mixed-citation>
</ref>
<ref id="B199">
<mixed-citation publication-type="journal">
<name>
<surname>Kwakkel</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kollen</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<article-title>
<bold>Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review</bold>
</article-title>
<source>Neurorehabil Neural Repair</source>
<year>2008</year>
<volume>22</volume>
<issue>2</issue>
<fpage>111</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="pmid">17876068</pub-id>
</mixed-citation>
</ref>
<ref id="B200">
<mixed-citation publication-type="journal">
<name>
<surname>Mehrholz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Platz</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kugler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pohl</surname>
<given-names>M</given-names>
</name>
<article-title>
<bold>Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke</bold>
</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2008</year>
<volume>4</volume>
<fpage>CD006876</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD006876.pub2/full">http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD006876.pub2/full</ext-link>
]</comment>
<pub-id pub-id-type="pmid">18843735</pub-id>
</mixed-citation>
</ref>
<ref id="B201">
<mixed-citation publication-type="journal">
<name>
<surname>Timmermans</surname>
<given-names>AAA</given-names>
</name>
<name>
<surname>Seelen</surname>
<given-names>HAM</given-names>
</name>
<name>
<surname>Willmann</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Kingma</surname>
<given-names>H</given-names>
</name>
<article-title>
<bold>Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2009</year>
<volume>6</volume>
<fpage>1</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-6-1">http://dx.doi.org/10.1186/1743-0003-6-1</ext-link>
]</comment>
<pub-id pub-id-type="pmid">19154570</pub-id>
</mixed-citation>
</ref>
<ref id="B202">
<mixed-citation publication-type="journal">
<name>
<surname>Waldner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tomelleri</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hesse</surname>
<given-names>S</given-names>
</name>
<article-title>
<bold>Transfer of scientific concepts to clinical practice: recent robot-assisted training studies</bold>
</article-title>
<source>Funct Neurol</source>
<year>2009</year>
<volume>24</volume>
<issue>4</issue>
<fpage>173</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="pmid">20412721</pub-id>
</mixed-citation>
</ref>
<ref id="B203">
<mixed-citation publication-type="journal">
<name>
<surname>Lo</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Guarino</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Haselkorn</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Wittenberg</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Federman</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Ringer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Krebs</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Volpe</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Bever Jr</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Bravata</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>PW</given-names>
</name>
<name>
<surname>Corn</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Maffucci</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Nadeau</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Conroy</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>GD</given-names>
</name>
<name>
<surname>Peduzzi</surname>
<given-names>P</given-names>
</name>
<article-title>
<bold>Robot-assisted therapy for long-term upper-limb impairment after stroke</bold>
</article-title>
<source>N Engl J Med</source>
<year>2010</year>
<volume>362</volume>
<issue>19</issue>
<fpage>1772</fpage>
<lpage>1783</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1056/NEJMoa0911341">http://dx.doi.org/10.1056/NEJMoa0911341</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1056/NEJMoa0911341</pub-id>
<pub-id pub-id-type="pmid">20400552</pub-id>
</mixed-citation>
</ref>
<ref id="B204">
<mixed-citation publication-type="journal">
<name>
<surname>Brochard</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Médée</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rémy-Néris</surname>
<given-names>O</given-names>
</name>
<article-title>
<bold>What’s new in new technologies for upper extremity rehabilitation?</bold>
</article-title>
<source>Curr Opin Neurol</source>
<year>2010</year>
<volume>23</volume>
<issue>6</issue>
<fpage>683</fpage>
<lpage>687</lpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1097/WCO.0b013e32833f61ce">http://dx.doi.org/10.1097/WCO.0b013e32833f61ce</ext-link>
]</comment>
<pub-id pub-id-type="doi">10.1097/WCO.0b013e32833f61ce</pub-id>
<pub-id pub-id-type="pmid">20852420</pub-id>
</mixed-citation>
</ref>
<ref id="B205">
<mixed-citation publication-type="journal">
<name>
<surname>Reinkensmeyer</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Boninger</surname>
<given-names>ML</given-names>
</name>
<article-title>
<bold>Technologies and combination therapies for enhancing movement training for people with a disability</bold>
</article-title>
<source>J Neuroeng Rehabil</source>
<year>2012</year>
<volume>9</volume>
<fpage>17</fpage>
<comment>[
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-0003-9-17">http://dx.doi.org/10.1186/1743-0003-9-17</ext-link>
]</comment>
<pub-id pub-id-type="pmid">22463132</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>France</li>
<li>Pologne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Languedoc-Roussillon</li>
<li>Languedoc-Roussillon-Midi-Pyrénées</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Aix-la-Chapelle</li>
<li>Montpellier</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Languedoc-Roussillon-Midi-Pyrénées">
<name sortKey="Maciejasz, Pawel" sort="Maciejasz, Pawel" uniqKey="Maciejasz P" first="Paweł" last="Maciejasz">Paweł Maciejasz</name>
</region>
</country>
<country name="Pologne">
<noRegion>
<name sortKey="Maciejasz, Pawel" sort="Maciejasz, Pawel" uniqKey="Maciejasz P" first="Paweł" last="Maciejasz">Paweł Maciejasz</name>
</noRegion>
</country>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Maciejasz, Pawel" sort="Maciejasz, Pawel" uniqKey="Maciejasz P" first="Paweł" last="Maciejasz">Paweł Maciejasz</name>
</region>
<name sortKey="Eschweiler, Jorg" sort="Eschweiler, Jorg" uniqKey="Eschweiler J" first="Jörg" last="Eschweiler">Jörg Eschweiler</name>
<name sortKey="Gerlach Hahn, Kurt" sort="Gerlach Hahn, Kurt" uniqKey="Gerlach Hahn K" first="Kurt" last="Gerlach-Hahn">Kurt Gerlach-Hahn</name>
<name sortKey="Jansen Troy, Arne" sort="Jansen Troy, Arne" uniqKey="Jansen Troy A" first="Arne" last="Jansen-Troy">Arne Jansen-Troy</name>
<name sortKey="Leonhardt, Steffen" sort="Leonhardt, Steffen" uniqKey="Leonhardt S" first="Steffen" last="Leonhardt">Steffen Leonhardt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002C13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4029785
   |texte=   A survey on robotic devices for upper limb rehabilitation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24401110" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024