Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.

Identifieur interne : 000732 ( Main/Merge ); précédent : 000731; suivant : 000733

Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.

Auteurs : Zhenglong Sun [Singapour] ; Zheng Wang [République populaire de Chine] ; Soo Jay Phee [Singapour]

Source :

RBID : pubmed:25819033

English descriptors

Abstract

Recent study shows that tendon-sheath system (TSS) has great potential in the development of surgical robots for endoscopic surgery. It is able to deliver adequate power in a light-weight and compact package. And the flexibility and compliance of the tendon-sheath system make it capable of adapting to the long and winding path in the flexible endoscope. However, the main difficulties in precise control of such system fall on the nonlinearities of the system behavior and absence of necessary sensory feedback at the surgical end-effectors. Since accurate position control of the tool is a prerequisite for efficacy, safety and intuitive user-experience in robotic surgery, in this paper we propose a system modeling approach for motion compensation. Based on a bidirectional actuated system using two separate tendon-sheaths, motion transmission is firstly characterized. Two types of positional errors due to system backlash and environment loading are defined and modeled. Then a model-based feedforward compensation method is proposed for open-loop control, giving the system abilities to adjust according to changes in the transmission route configuration without any information feedback from the distal end. A dedicated experimental platform emulating a bidirectional TSS robotic system for endoscopic surgery is built for testing. Proposed positional errors are identified and verified. The performance of the proposed motion compensation is evaluated by trajectory tracking under different environment loading conditions. And the results demonstrate that accurate position control can be achieved even if the transmission route configuration is updated.

DOI: 10.1016/j.cmpb.2015.03.001
PubMed: 25819033

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25819033

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.</title>
<author>
<name sortKey="Sun, Zhenglong" sort="Sun, Zhenglong" uniqKey="Sun Z" first="Zhenglong" last="Sun">Zhenglong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>SUTD-MIT International Design Center, Singapore University of Technology and Design, Singapore. Electronic address: sunkurt@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>SUTD-MIT International Design Center, Singapore University of Technology and Design</wicri:regionArea>
<wicri:noRegion>Singapore University of Technology and Design</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zheng" sort="Wang, Zheng" uniqKey="Wang Z" first="Zheng" last="Wang">Zheng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phee, Soo Jay" sort="Phee, Soo Jay" uniqKey="Phee S" first="Soo Jay" last="Phee">Soo Jay Phee</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>School of Mechanical and Aerospace Engineering, Nanyang Technological University</wicri:regionArea>
<wicri:noRegion>Nanyang Technological University</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25819033</idno>
<idno type="pmid">25819033</idno>
<idno type="doi">10.1016/j.cmpb.2015.03.001</idno>
<idno type="wicri:Area/PubMed/Corpus">000384</idno>
<idno type="wicri:Area/PubMed/Curation">000384</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000297</idno>
<idno type="wicri:Area/Ncbi/Merge">003802</idno>
<idno type="wicri:Area/Ncbi/Curation">003802</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">003802</idno>
<idno type="wicri:Area/Main/Merge">000732</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.</title>
<author>
<name sortKey="Sun, Zhenglong" sort="Sun, Zhenglong" uniqKey="Sun Z" first="Zhenglong" last="Sun">Zhenglong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>SUTD-MIT International Design Center, Singapore University of Technology and Design, Singapore. Electronic address: sunkurt@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>SUTD-MIT International Design Center, Singapore University of Technology and Design</wicri:regionArea>
<wicri:noRegion>Singapore University of Technology and Design</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Zheng" sort="Wang, Zheng" uniqKey="Wang Z" first="Zheng" last="Wang">Zheng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Phee, Soo Jay" sort="Phee, Soo Jay" uniqKey="Phee S" first="Soo Jay" last="Phee">Soo Jay Phee</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>School of Mechanical and Aerospace Engineering, Nanyang Technological University</wicri:regionArea>
<wicri:noRegion>Nanyang Technological University</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computer methods and programs in biomedicine</title>
<idno type="eISSN">1872-7565</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Endoscopy (instrumentation)</term>
<term>Models, Theoretical</term>
<term>Robotics</term>
<term>Tendons (surgery)</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Endoscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Tendons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Theoretical</term>
<term>Robotics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent study shows that tendon-sheath system (TSS) has great potential in the development of surgical robots for endoscopic surgery. It is able to deliver adequate power in a light-weight and compact package. And the flexibility and compliance of the tendon-sheath system make it capable of adapting to the long and winding path in the flexible endoscope. However, the main difficulties in precise control of such system fall on the nonlinearities of the system behavior and absence of necessary sensory feedback at the surgical end-effectors. Since accurate position control of the tool is a prerequisite for efficacy, safety and intuitive user-experience in robotic surgery, in this paper we propose a system modeling approach for motion compensation. Based on a bidirectional actuated system using two separate tendon-sheaths, motion transmission is firstly characterized. Two types of positional errors due to system backlash and environment loading are defined and modeled. Then a model-based feedforward compensation method is proposed for open-loop control, giving the system abilities to adjust according to changes in the transmission route configuration without any information feedback from the distal end. A dedicated experimental platform emulating a bidirectional TSS robotic system for endoscopic surgery is built for testing. Proposed positional errors are identified and verified. The performance of the proposed motion compensation is evaluated by trajectory tracking under different environment loading conditions. And the results demonstrate that accurate position control can be achieved even if the transmission route configuration is updated.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000732 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 000732 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:25819033
   |texte=   Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:25819033" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024