Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000169 ( Pmc/Corpus ); précédent : 0001689; suivant : 0001700 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut</title>
<author>
<name sortKey="Shelomi, Matan" sort="Shelomi, Matan" uniqKey="Shelomi M" first="Matan" last="Shelomi">Matan Shelomi</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jasper, W Cameron" sort="Jasper, W Cameron" uniqKey="Jasper W" first="W Cameron" last="Jasper">W Cameron Jasper</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Atallah, Joel" sort="Atallah, Joel" uniqKey="Atallah J" first="Joel" last="Atallah">Joel Atallah</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kimsey, Lynn S" sort="Kimsey, Lynn S" uniqKey="Kimsey L" first="Lynn S" last="Kimsey">Lynn S. Kimsey</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Brian R" sort="Johnson, Brian R" uniqKey="Johnson B" first="Brian R" last="Johnson">Brian R. Johnson</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25331961</idno>
<idno type="pmc">4221708</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221708</idno>
<idno type="RBID">PMC:4221708</idno>
<idno type="doi">10.1186/1471-2164-15-917</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut</title>
<author>
<name sortKey="Shelomi, Matan" sort="Shelomi, Matan" uniqKey="Shelomi M" first="Matan" last="Shelomi">Matan Shelomi</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jasper, W Cameron" sort="Jasper, W Cameron" uniqKey="Jasper W" first="W Cameron" last="Jasper">W Cameron Jasper</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Atallah, Joel" sort="Atallah, Joel" uniqKey="Atallah J" first="Joel" last="Atallah">Joel Atallah</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kimsey, Lynn S" sort="Kimsey, Lynn S" uniqKey="Kimsey L" first="Lynn S" last="Kimsey">Lynn S. Kimsey</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Brian R" sort="Johnson, Brian R" uniqKey="Johnson B" first="Brian R" last="Johnson">Brian R. Johnson</name>
<affiliation>
<nlm:aff id="Aff1">Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Stick and leaf insects (Phasmatodea) are an exclusively leaf-feeding order of insects with no record of omnivory, unlike other “herbivorous” Polyneoptera. They represent an ideal system for investigating the adaptations necessary for obligate folivory, including plant cell wall degrading enzymes (PCWDEs). However, their physiology and internal anatomy is poorly understood, with limited genomic resources available.</p>
</sec>
<sec>
<title>Results</title>
<p>We
<italic>de novo</italic>
assembled transcriptomes for the anterior and posterior midguts of six diverse Phasmatodea species, with RNA-Seq on one exemplar species,
<italic>Peruphasma schultei</italic>
. The latter’s assembly yielded >100,000 transcripts, with over 4000 transcripts uniquely or more highly expressed in specific midgut sections. Two to three dozen PCWDE encoding gene families, including cellulases and pectinases, were differentially expressed in the anterior midgut. These genes were also found in genomic DNA from phasmid brain tissue, suggesting endogenous production. Sequence alignments revealed catalytic sites on most PCWDE transcripts. While most phasmid PCWDE genes showed homology with those of other insects, the pectinases were homologous to bacterial genes.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>We identified a large and diverse PCWDE repertoire endogenous to the phasmids. If these expressed genes are translated into active enzymes, then phasmids can theoretically break plant cell walls into their monomer components independently of microbial symbionts. The differential gene expression between the two midgut sections provides the first molecular hints as to their function in living phasmids. Our work expands the resources available for industrial applications of animal-derived PCWDEs, and facilitates evolutionary analysis of lower Polyneopteran digestive enzymes, including the pectinases whose origin in Phasmatodea may have been a horizontal transfer event from bacteria.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/1471-2164-15-917) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ekblom, R" uniqKey="Ekblom R">R Ekblom</name>
</author>
<author>
<name sortKey="Galindo, J" uniqKey="Galindo J">J Galindo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Metzker, Ml" uniqKey="Metzker M">ML Metzker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grabherr, Mg" uniqKey="Grabherr M">MG Grabherr</name>
</author>
<author>
<name sortKey="Haas, Bj" uniqKey="Haas B">BJ Haas</name>
</author>
<author>
<name sortKey="Yassour, M" uniqKey="Yassour M">M Yassour</name>
</author>
<author>
<name sortKey="Levin, Jz" uniqKey="Levin J">JZ Levin</name>
</author>
<author>
<name sortKey="Thompson, Da" uniqKey="Thompson D">DA Thompson</name>
</author>
<author>
<name sortKey="Amit, I" uniqKey="Amit I">I Amit</name>
</author>
<author>
<name sortKey="Adiconis, X" uniqKey="Adiconis X">X Adiconis</name>
</author>
<author>
<name sortKey="Fan, L" uniqKey="Fan L">L Fan</name>
</author>
<author>
<name sortKey="Raychowdhury, R" uniqKey="Raychowdhury R">R Raychowdhury</name>
</author>
<author>
<name sortKey="Zeng, Q" uniqKey="Zeng Q">Q Zeng</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
<author>
<name sortKey="Mauceli, E" uniqKey="Mauceli E">E Mauceli</name>
</author>
<author>
<name sortKey="Hacohen, N" uniqKey="Hacohen N">N Hacohen</name>
</author>
<author>
<name sortKey="Gnirke, A" uniqKey="Gnirke A">A Gnirke</name>
</author>
<author>
<name sortKey="Rhind, N" uniqKey="Rhind N">N Rhind</name>
</author>
<author>
<name sortKey="Di Palma, F" uniqKey="Di Palma F">F di Palma</name>
</author>
<author>
<name sortKey="Birren, Bw" uniqKey="Birren B">BW Birren</name>
</author>
<author>
<name sortKey="Nusbaum, C" uniqKey="Nusbaum C">C Nusbaum</name>
</author>
<author>
<name sortKey="Lindblad Toh, K" uniqKey="Lindblad Toh K">K Lindblad-Toh</name>
</author>
<author>
<name sortKey="Friedman, N" uniqKey="Friedman N">N Friedman</name>
</author>
<author>
<name sortKey="Regev, A" uniqKey="Regev A">A Regev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, Z" uniqKey="Xia Z">Z Xia</name>
</author>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H Xu</name>
</author>
<author>
<name sortKey="Zhai, J" uniqKey="Zhai J">J Zhai</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Luo, H" uniqKey="Luo H">H Luo</name>
</author>
<author>
<name sortKey="He, C" uniqKey="He C">C He</name>
</author>
<author>
<name sortKey="Huang, X" uniqKey="Huang X">X Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Francis, Wr" uniqKey="Francis W">WR Francis</name>
</author>
<author>
<name sortKey="Christianson, Lm" uniqKey="Christianson L">LM Christianson</name>
</author>
<author>
<name sortKey="Kiko, R" uniqKey="Kiko R">R Kiko</name>
</author>
<author>
<name sortKey="Powers, Ml" uniqKey="Powers M">ML Powers</name>
</author>
<author>
<name sortKey="Shaner, Nc" uniqKey="Shaner N">NC Shaner</name>
</author>
<author>
<name sortKey="Haddock Sh, D" uniqKey="Haddock Sh D">D Haddock SH</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poelchau, Mf" uniqKey="Poelchau M">MF Poelchau</name>
</author>
<author>
<name sortKey="Reynolds, Ja" uniqKey="Reynolds J">JA Reynolds</name>
</author>
<author>
<name sortKey="Denlinger, Dl" uniqKey="Denlinger D">DL Denlinger</name>
</author>
<author>
<name sortKey="Elsik, Cg" uniqKey="Elsik C">CG Elsik</name>
</author>
<author>
<name sortKey="Armbruster, Pa" uniqKey="Armbruster P">PA Armbruster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hull, Jj" uniqKey="Hull J">JJ Hull</name>
</author>
<author>
<name sortKey="Geib, Sm" uniqKey="Geib S">SM Geib</name>
</author>
<author>
<name sortKey="Fabrick, Ja" uniqKey="Fabrick J">JA Fabrick</name>
</author>
<author>
<name sortKey="Brent, Cs" uniqKey="Brent C">CS Brent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, Cb" uniqKey="Mccarthy C">CB McCarthy</name>
</author>
<author>
<name sortKey="Santini, Ms" uniqKey="Santini M">MS Santini</name>
</author>
<author>
<name sortKey="Pimenta, Pf" uniqKey="Pimenta P">PF Pimenta</name>
</author>
<author>
<name sortKey="Diambra, La" uniqKey="Diambra L">LA Diambra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yazawa, T" uniqKey="Yazawa T">T Yazawa</name>
</author>
<author>
<name sortKey="Kawahigashi, H" uniqKey="Kawahigashi H">H Kawahigashi</name>
</author>
<author>
<name sortKey="Matsumoto, T" uniqKey="Matsumoto T">T Matsumoto</name>
</author>
<author>
<name sortKey="Mizuno, H" uniqKey="Mizuno H">H Mizuno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lehnert, Em" uniqKey="Lehnert E">EM Lehnert</name>
</author>
<author>
<name sortKey="Mouchka, Me" uniqKey="Mouchka M">ME Mouchka</name>
</author>
<author>
<name sortKey="Burriesci, Ms" uniqKey="Burriesci M">MS Burriesci</name>
</author>
<author>
<name sortKey="Gallo, Nd" uniqKey="Gallo N">ND Gallo</name>
</author>
<author>
<name sortKey="Schwarz, Ja" uniqKey="Schwarz J">JA Schwarz</name>
</author>
<author>
<name sortKey="Pringle, Jr" uniqKey="Pringle J">JR Pringle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bedford, Go" uniqKey="Bedford G">GO Bedford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasenene, Jm" uniqKey="Kasenene J">JM Kasenene</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Readshaw, Jl" uniqKey="Readshaw J">JL Readshaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurskis, V" uniqKey="Jurskis V">V Jurskis</name>
</author>
<author>
<name sortKey="Turner, J" uniqKey="Turner J">J Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Headrick, D" uniqKey="Headrick D">D Headrick</name>
</author>
<author>
<name sortKey="Wilen, Ca" uniqKey="Wilen C">CA Wilen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borges, Pa" uniqKey="Borges P">PA Borges</name>
</author>
<author>
<name sortKey="Reut, M" uniqKey="Reut M">M Reut</name>
</author>
<author>
<name sortKey="Ponte, Nb" uniqKey="Ponte N">NB Ponte</name>
</author>
<author>
<name sortKey="Quartau, Ja" uniqKey="Quartau J">JA Quartau</name>
</author>
<author>
<name sortKey="Fletcher, M" uniqKey="Fletcher M">M Fletcher</name>
</author>
<author>
<name sortKey="Sousa, Ab" uniqKey="Sousa A">AB Sousa</name>
</author>
<author>
<name sortKey="Pollet, M" uniqKey="Pollet M">M Pollet</name>
</author>
<author>
<name sortKey="Soares, Ao" uniqKey="Soares A">AO Soares</name>
</author>
<author>
<name sortKey="Marcelino, J" uniqKey="Marcelino J">J Marcelino</name>
</author>
<author>
<name sortKey="Rego, C" uniqKey="Rego C">C Rego</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calder N Cortes, N" uniqKey="Calder N Cortes N">N Calderón-Cortés</name>
</author>
<author>
<name sortKey="Quesada, M" uniqKey="Quesada M">M Quesada</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Cano Camacho, H" uniqKey="Cano Camacho H">H Cano-Camacho</name>
</author>
<author>
<name sortKey="Oyama, K" uniqKey="Oyama K">K Oyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitman, Dw" uniqKey="Whitman D">DW Whitman</name>
</author>
<author>
<name sortKey="Blum, Ms" uniqKey="Blum M">MS Blum</name>
</author>
<author>
<name sortKey="Slansky, F" uniqKey="Slansky F">F Slansky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitman, Dw" uniqKey="Whitman D">DW Whitman</name>
</author>
<author>
<name sortKey="Richardson, Ml" uniqKey="Richardson M">ML Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lo, N" uniqKey="Lo N">N Lo</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Sugimura, M" uniqKey="Sugimura M">M Sugimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davison, A" uniqKey="Davison A">A Davison</name>
</author>
<author>
<name sortKey="Blaxter, M" uniqKey="Blaxter M">M Blaxter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calder N Cortes, N" uniqKey="Calder N Cortes N">N Calderón-Cortés</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Cano Camacho, H" uniqKey="Cano Camacho H">H Cano-Camacho</name>
</author>
<author>
<name sortKey="Zavala Paramo, G" uniqKey="Zavala Paramo G">G Zavala-Páramo</name>
</author>
<author>
<name sortKey="Quesada, M" uniqKey="Quesada M">M Quesada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eyun, Si" uniqKey="Eyun S">SI Eyun</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Ffrench Constant, Rh" uniqKey="Ffrench Constant R">RH Ffrench-Constant</name>
</author>
<author>
<name sortKey="Benson, Ak" uniqKey="Benson A">AK Benson</name>
</author>
<author>
<name sortKey="Valencia Jimenez, A" uniqKey="Valencia Jimenez A">A Valencia-Jimenez</name>
</author>
<author>
<name sortKey="Moriyama, En" uniqKey="Moriyama E">EN Moriyama</name>
</author>
<author>
<name sortKey="Siegfried, Bd" uniqKey="Siegfried B">BD Siegfried</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, R" uniqKey="Fischer R">R Fischer</name>
</author>
<author>
<name sortKey="Ostafe, R" uniqKey="Ostafe R">R Ostafe</name>
</author>
<author>
<name sortKey="Twyman, Rm" uniqKey="Twyman R">RM Twyman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Treves, Ds" uniqKey="Treves D">DS Treves</name>
</author>
<author>
<name sortKey="Martin, Mm" uniqKey="Martin M">MM Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hong, Sm" uniqKey="Hong S">SM Hong</name>
</author>
<author>
<name sortKey="Sung, Hs" uniqKey="Sung H">HS Sung</name>
</author>
<author>
<name sortKey="Kang, Mh" uniqKey="Kang M">MH Kang</name>
</author>
<author>
<name sortKey="Kim, C G" uniqKey="Kim C">C-G Kim</name>
</author>
<author>
<name sortKey="Lee, Y H" uniqKey="Lee Y">Y-H Lee</name>
</author>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D-J Kim</name>
</author>
<author>
<name sortKey="Lee, Jm" uniqKey="Lee J">JM Lee</name>
</author>
<author>
<name sortKey="Kusakabe, T" uniqKey="Kusakabe T">T Kusakabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shelomi, M" uniqKey="Shelomi M">M Shelomi</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Arakawa, G" uniqKey="Arakawa G">G Arakawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Tokuda, G" uniqKey="Tokuda G">G Tokuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Willis, Jd" uniqKey="Willis J">JD Willis</name>
</author>
<author>
<name sortKey="Oppert, C" uniqKey="Oppert C">C Oppert</name>
</author>
<author>
<name sortKey="Jurat Fuentes, Jl" uniqKey="Jurat Fuentes J">JL Jurat-Fuentes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirsch, R" uniqKey="Kirsch R">R Kirsch</name>
</author>
<author>
<name sortKey="Gramzow, L" uniqKey="Gramzow L">L Gramzow</name>
</author>
<author>
<name sortKey="Theissen, G" uniqKey="Theissen G">G Theissen</name>
</author>
<author>
<name sortKey="Siegfried, Bd" uniqKey="Siegfried B">BD Siegfried</name>
</author>
<author>
<name sortKey="Ffrench Constant, Rh" uniqKey="Ffrench Constant R">RH Ffrench-Constant</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trautwein, Md" uniqKey="Trautwein M">MD Trautwein</name>
</author>
<author>
<name sortKey="Wiegmann, Bm" uniqKey="Wiegmann B">BM Wiegmann</name>
</author>
<author>
<name sortKey="Beutel, R" uniqKey="Beutel R">R Beutel</name>
</author>
<author>
<name sortKey="Kjer, Km" uniqKey="Kjer K">KM Kjer</name>
</author>
<author>
<name sortKey="Yeates, Dk" uniqKey="Yeates D">DK Yeates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Letsch, H" uniqKey="Letsch H">H Letsch</name>
</author>
<author>
<name sortKey="Simon, S" uniqKey="Simon S">S Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shelomi, M" uniqKey="Shelomi M">M Shelomi</name>
</author>
<author>
<name sortKey="Lo, Ws" uniqKey="Lo W">WS Lo</name>
</author>
<author>
<name sortKey="Kimsey, Ls" uniqKey="Kimsey L">LS Kimsey</name>
</author>
<author>
<name sortKey="Kuo, Ch" uniqKey="Kuo C">CH Kuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terry, Md" uniqKey="Terry M">MD Terry</name>
</author>
<author>
<name sortKey="Whiting, Mf" uniqKey="Whiting M">MF Whiting</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Letsch, Ho" uniqKey="Letsch H">HO Letsch</name>
</author>
<author>
<name sortKey="Meusemann, K" uniqKey="Meusemann K">K Meusemann</name>
</author>
<author>
<name sortKey="Wipfler, B" uniqKey="Wipfler B">B Wipfler</name>
</author>
<author>
<name sortKey="Schutte, K" uniqKey="Schutte K">K Schutte</name>
</author>
<author>
<name sortKey="Beutel, R" uniqKey="Beutel R">R Beutel</name>
</author>
<author>
<name sortKey="Misof, B" uniqKey="Misof B">B Misof</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plazzi, F" uniqKey="Plazzi F">F Plazzi</name>
</author>
<author>
<name sortKey="Ricci, A" uniqKey="Ricci A">A Ricci</name>
</author>
<author>
<name sortKey="Passamonti, M" uniqKey="Passamonti M">M Passamonti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shelomi, M" uniqKey="Shelomi M">M Shelomi</name>
</author>
<author>
<name sortKey="Kimsey, Ls" uniqKey="Kimsey L">LS Kimsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monteiro, Ec" uniqKey="Monteiro E">EC Monteiro</name>
</author>
<author>
<name sortKey="Tamaki, Fk" uniqKey="Tamaki F">FK Tamaki</name>
</author>
<author>
<name sortKey="Terra, Wr" uniqKey="Terra W">WR Terra</name>
</author>
<author>
<name sortKey="Ribeiro, Af" uniqKey="Ribeiro A">AF Ribeiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geddes, Cc" uniqKey="Geddes C">CC Geddes</name>
</author>
<author>
<name sortKey="Nieves, Iu" uniqKey="Nieves I">IU Nieves</name>
</author>
<author>
<name sortKey="Ingram, Lo" uniqKey="Ingram L">LO Ingram</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jurat Fuentes, Jl" uniqKey="Jurat Fuentes J">JL Jurat-Fuentes</name>
</author>
<author>
<name sortKey="Oppert, C" uniqKey="Oppert C">C Oppert</name>
</author>
<author>
<name sortKey="Klingeman, W" uniqKey="Klingeman W">W Klingeman</name>
</author>
<author>
<name sortKey="Oppert, B" uniqKey="Oppert B">B Oppert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hannon, G" uniqKey="Hannon G">G Hannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martin, M" uniqKey="Martin M">M Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrews, S" uniqKey="Andrews S">S Andrews</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trapnell, C" uniqKey="Trapnell C">C Trapnell</name>
</author>
<author>
<name sortKey="Pachter, L" uniqKey="Pachter L">L Pachter</name>
</author>
<author>
<name sortKey="Salzberg, Sl" uniqKey="Salzberg S">SL Salzberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anders, S" uniqKey="Anders S">S Anders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, B" uniqKey="Li B">B Li</name>
</author>
<author>
<name sortKey="Dewey, Cn" uniqKey="Dewey C">CN Dewey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leng, N" uniqKey="Leng N">N Leng</name>
</author>
<author>
<name sortKey="Dawson, Ja" uniqKey="Dawson J">JA Dawson</name>
</author>
<author>
<name sortKey="Thomson, Ja" uniqKey="Thomson J">JA Thomson</name>
</author>
<author>
<name sortKey="Ruotti, V" uniqKey="Ruotti V">V Ruotti</name>
</author>
<author>
<name sortKey="Rissman, Ai" uniqKey="Rissman A">AI Rissman</name>
</author>
<author>
<name sortKey="Smits, Bmg" uniqKey="Smits B">BMG Smits</name>
</author>
<author>
<name sortKey="Haag, Jd" uniqKey="Haag J">JD Haag</name>
</author>
<author>
<name sortKey="Gould, Mn" uniqKey="Gould M">MN Gould</name>
</author>
<author>
<name sortKey="Stewart, Rm" uniqKey="Stewart R">RM Stewart</name>
</author>
<author>
<name sortKey="Kendziorski, C" uniqKey="Kendziorski C">C Kendziorski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conesa, A" uniqKey="Conesa A">A Conesa</name>
</author>
<author>
<name sortKey="Gotz, S" uniqKey="Gotz S">S Gotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Altschul, Sf" uniqKey="Altschul S">SF Altschul</name>
</author>
<author>
<name sortKey="Gish, W" uniqKey="Gish W">W Gish</name>
</author>
<author>
<name sortKey="Miller, W" uniqKey="Miller W">W Miller</name>
</author>
<author>
<name sortKey="Myers, Ew" uniqKey="Myers E">EW Myers</name>
</author>
<author>
<name sortKey="Lipman, Dj" uniqKey="Lipman D">DJ Lipman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanehisa, M" uniqKey="Kanehisa M">M Kanehisa</name>
</author>
<author>
<name sortKey="Araki, M" uniqKey="Araki M">M Araki</name>
</author>
<author>
<name sortKey="Goto, S" uniqKey="Goto S">S Goto</name>
</author>
<author>
<name sortKey="Hattori, M" uniqKey="Hattori M">M Hattori</name>
</author>
<author>
<name sortKey="Hirakawa, M" uniqKey="Hirakawa M">M Hirakawa</name>
</author>
<author>
<name sortKey="Itoh, M" uniqKey="Itoh M">M Itoh</name>
</author>
<author>
<name sortKey="Katayama, T" uniqKey="Katayama T">T Katayama</name>
</author>
<author>
<name sortKey="Kawashima, S" uniqKey="Kawashima S">S Kawashima</name>
</author>
<author>
<name sortKey="Okuda, S" uniqKey="Okuda S">S Okuda</name>
</author>
<author>
<name sortKey="Tokimatsu, T" uniqKey="Tokimatsu T">T Tokimatsu</name>
</author>
<author>
<name sortKey="Yamanishi, Y" uniqKey="Yamanishi Y">Y Yamanishi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Artimo, P" uniqKey="Artimo P">P Artimo</name>
</author>
<author>
<name sortKey="Jonnalagedda, M" uniqKey="Jonnalagedda M">M Jonnalagedda</name>
</author>
<author>
<name sortKey="Arnold, K" uniqKey="Arnold K">K Arnold</name>
</author>
<author>
<name sortKey="Baratin, D" uniqKey="Baratin D">D Baratin</name>
</author>
<author>
<name sortKey="Csardi, G" uniqKey="Csardi G">G Csardi</name>
</author>
<author>
<name sortKey="De Castro, E" uniqKey="De Castro E">E de Castro</name>
</author>
<author>
<name sortKey="Duvaud, S" uniqKey="Duvaud S">S Duvaud</name>
</author>
<author>
<name sortKey="Flegel, V" uniqKey="Flegel V">V Flegel</name>
</author>
<author>
<name sortKey="Fortier, A" uniqKey="Fortier A">A Fortier</name>
</author>
<author>
<name sortKey="Gasteiger, E" uniqKey="Gasteiger E">E Gasteiger</name>
</author>
<author>
<name sortKey="Grosdidier, A" uniqKey="Grosdidier A">A Grosdidier</name>
</author>
<author>
<name sortKey="Hernandez, C" uniqKey="Hernandez C">C Hernandez</name>
</author>
<author>
<name sortKey="Ioannidis, V" uniqKey="Ioannidis V">V Ioannidis</name>
</author>
<author>
<name sortKey="Kuznetsov, D" uniqKey="Kuznetsov D">D Kuznetsov</name>
</author>
<author>
<name sortKey="Liechti, R" uniqKey="Liechti R">R Liechti</name>
</author>
<author>
<name sortKey="Moretti, S" uniqKey="Moretti S">S Moretti</name>
</author>
<author>
<name sortKey="Mostaguir, K" uniqKey="Mostaguir K">K Mostaguir</name>
</author>
<author>
<name sortKey="Redaschi, N" uniqKey="Redaschi N">N Redaschi</name>
</author>
<author>
<name sortKey="Rossier, G" uniqKey="Rossier G">G Rossier</name>
</author>
<author>
<name sortKey="Xenarios, I" uniqKey="Xenarios I">I Xenarios</name>
</author>
<author>
<name sortKey="Stockinger, H" uniqKey="Stockinger H">H Stockinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maddison, Wp" uniqKey="Maddison W">WP Maddison</name>
</author>
<author>
<name sortKey="Maddison, Dr" uniqKey="Maddison D">DR Maddison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waterhouse, Am" uniqKey="Waterhouse A">AM Waterhouse</name>
</author>
<author>
<name sortKey="Procter, Jb" uniqKey="Procter J">JB Procter</name>
</author>
<author>
<name sortKey="Martin, Dm" uniqKey="Martin D">DM Martin</name>
</author>
<author>
<name sortKey="Clamp, M" uniqKey="Clamp M">M Clamp</name>
</author>
<author>
<name sortKey="Barton, Gj" uniqKey="Barton G">GJ Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furnham, N" uniqKey="Furnham N">N Furnham</name>
</author>
<author>
<name sortKey="Holliday, Gl" uniqKey="Holliday G">GL Holliday</name>
</author>
<author>
<name sortKey="De Beer, Ta" uniqKey="De Beer T">TA de Beer</name>
</author>
<author>
<name sortKey="Jacobsen, Jo" uniqKey="Jacobsen J">JO Jacobsen</name>
</author>
<author>
<name sortKey="Pearson, Wr" uniqKey="Pearson W">WR Pearson</name>
</author>
<author>
<name sortKey="Thornton, Jm" uniqKey="Thornton J">JM Thornton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Felsenstein, J" uniqKey="Felsenstein J">J Felsenstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Ma" uniqKey="Miller M">MA Miller</name>
</author>
<author>
<name sortKey="Pfeiffer, W" uniqKey="Pfeiffer W">W Pfeiffer</name>
</author>
<author>
<name sortKey="Schwartz, T" uniqKey="Schwartz T">T Schwartz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Teslenko, M" uniqKey="Teslenko M">M Teslenko</name>
</author>
<author>
<name sortKey="Van Der Mark, P" uniqKey="Van Der Mark P">P van der Mark</name>
</author>
<author>
<name sortKey="Ayres, Dl" uniqKey="Ayres D">DL Ayres</name>
</author>
<author>
<name sortKey="Darling, A" uniqKey="Darling A">A Darling</name>
</author>
<author>
<name sortKey="Hohna, S" uniqKey="Hohna S">S Höhna</name>
</author>
<author>
<name sortKey="Larget, B" uniqKey="Larget B">B Larget</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Suchard, Ma" uniqKey="Suchard M">MA Suchard</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perl, A" uniqKey="Perl A">A Perl</name>
</author>
<author>
<name sortKey="Rosenblatt, Jd" uniqKey="Rosenblatt J">JD Rosenblatt</name>
</author>
<author>
<name sortKey="Chen, Is" uniqKey="Chen I">IS Chen</name>
</author>
<author>
<name sortKey="Divincenzo, Jp" uniqKey="Divincenzo J">JP DiVincenzo</name>
</author>
<author>
<name sortKey="Bever, R" uniqKey="Bever R">R Bever</name>
</author>
<author>
<name sortKey="Poiesz, J" uniqKey="Poiesz J">J Poiesz</name>
</author>
<author>
<name sortKey="Abraham, Gn" uniqKey="Abraham G">GN Abraham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edmonds, M" uniqKey="Edmonds M">M Edmonds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davis, R" uniqKey="Davis R">R Davis</name>
</author>
<author>
<name sortKey="Shi, Y" uniqKey="Shi Y">Y Shi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, Tn" uniqKey="Petersen T">TN Petersen</name>
</author>
<author>
<name sortKey="Brunak, S" uniqKey="Brunak S">S Brunak</name>
</author>
<author>
<name sortKey="Von Heijne, G" uniqKey="Von Heijne G">G von Heijne</name>
</author>
<author>
<name sortKey="Nielsen, H" uniqKey="Nielsen H">H Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z Shen</name>
</author>
<author>
<name sortKey="Denton, M" uniqKey="Denton M">M Denton</name>
</author>
<author>
<name sortKey="Mutti, N" uniqKey="Mutti N">N Mutti</name>
</author>
<author>
<name sortKey="Pappan, K" uniqKey="Pappan K">K Pappan</name>
</author>
<author>
<name sortKey="Kanost, Mr" uniqKey="Kanost M">MR Kanost</name>
</author>
<author>
<name sortKey="Reese, Jc" uniqKey="Reese J">JC Reese</name>
</author>
<author>
<name sortKey="Reeck, Gr" uniqKey="Reeck G">GR Reeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, N" uniqKey="Kim N">N Kim</name>
</author>
<author>
<name sortKey="Choo, Ym" uniqKey="Choo Y">YM Choo</name>
</author>
<author>
<name sortKey="Lee, Ks" uniqKey="Lee K">KS Lee</name>
</author>
<author>
<name sortKey="Hong, Sj" uniqKey="Hong S">SJ Hong</name>
</author>
<author>
<name sortKey="Seol, Ky" uniqKey="Seol K">KY Seol</name>
</author>
<author>
<name sortKey="Je, Yh" uniqKey="Je Y">YH Je</name>
</author>
<author>
<name sortKey="Sohn, Hd" uniqKey="Sohn H">HD Sohn</name>
</author>
<author>
<name sortKey="Jin, Br" uniqKey="Jin B">BR Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Saski, Ca" uniqKey="Saski C">CA Saski</name>
</author>
<author>
<name sortKey="Feltus, Fa" uniqKey="Feltus F">FA Feltus</name>
</author>
<author>
<name sortKey="Luyten, I" uniqKey="Luyten I">I Luyten</name>
</author>
<author>
<name sortKey="Quesneville, H" uniqKey="Quesneville H">H Quesneville</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chauhan, R" uniqKey="Chauhan R">R Chauhan</name>
</author>
<author>
<name sortKey="Jones, R" uniqKey="Jones R">R Jones</name>
</author>
<author>
<name sortKey="Wilkinson, P" uniqKey="Wilkinson P">P Wilkinson</name>
</author>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Busconi, M" uniqKey="Busconi M">M Busconi</name>
</author>
<author>
<name sortKey="Berzolla, A" uniqKey="Berzolla A">A Berzolla</name>
</author>
<author>
<name sortKey="Chiappini, E" uniqKey="Chiappini E">E Chiappini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirsch, R" uniqKey="Kirsch R">R Kirsch</name>
</author>
<author>
<name sortKey="Wielsch, N" uniqKey="Wielsch N">N Wielsch</name>
</author>
<author>
<name sortKey="Vogel, H" uniqKey="Vogel H">H Vogel</name>
</author>
<author>
<name sortKey="Svatos, A" uniqKey="Svatos A">A Svatoš</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Tokuda, G" uniqKey="Tokuda G">G Tokuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ortego, F" uniqKey="Ortego F">F Ortego</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Freitak, D" uniqKey="Freitak D">D Freitak</name>
</author>
<author>
<name sortKey="Heidel Fischer, Hm" uniqKey="Heidel Fischer H">HM Heidel-Fischer</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
<author>
<name sortKey="Vogel, H" uniqKey="Vogel H">H Vogel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakon, J" uniqKey="Sakon J">J Sakon</name>
</author>
<author>
<name sortKey="Irwin, D" uniqKey="Irwin D">D Irwin</name>
</author>
<author>
<name sortKey="Wilson, Db" uniqKey="Wilson D">DB Wilson</name>
</author>
<author>
<name sortKey="Karplus, Pa" uniqKey="Karplus P">PA Karplus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, W" uniqKey="Zhou W">W Zhou</name>
</author>
<author>
<name sortKey="Irwin, Dc" uniqKey="Irwin D">DC Irwin</name>
</author>
<author>
<name sortKey="Escovar Kousen, J" uniqKey="Escovar Kousen J">J Escovar-Kousen</name>
</author>
<author>
<name sortKey="Wilson, Db" uniqKey="Wilson D">DB Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pickersgill, R" uniqKey="Pickersgill R">R Pickersgill</name>
</author>
<author>
<name sortKey="Smith, D" uniqKey="Smith D">D Smith</name>
</author>
<author>
<name sortKey="Worboys, K" uniqKey="Worboys K">K Worboys</name>
</author>
<author>
<name sortKey="Jenkins, J" uniqKey="Jenkins J">J Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrett, T" uniqKey="Barrett T">T Barrett</name>
</author>
<author>
<name sortKey="Suresh, Cg" uniqKey="Suresh C">CG Suresh</name>
</author>
<author>
<name sortKey="Tolley, Sp" uniqKey="Tolley S">SP Tolley</name>
</author>
<author>
<name sortKey="Dodson, Ej" uniqKey="Dodson E">EJ Dodson</name>
</author>
<author>
<name sortKey="Hughes, Ma" uniqKey="Hughes M">MA Hughes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Juncosa, M" uniqKey="Juncosa M">M Juncosa</name>
</author>
<author>
<name sortKey="Pons, J" uniqKey="Pons J">J Pons</name>
</author>
<author>
<name sortKey="Dot, T" uniqKey="Dot T">T Dot</name>
</author>
<author>
<name sortKey="Querol, E" uniqKey="Querol E">E Querol</name>
</author>
<author>
<name sortKey="Planas, A" uniqKey="Planas A">A Planas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scully, Ed" uniqKey="Scully E">ED Scully</name>
</author>
<author>
<name sortKey="Hoover, K" uniqKey="Hoover K">K Hoover</name>
</author>
<author>
<name sortKey="Carlson, Je" uniqKey="Carlson J">JE Carlson</name>
</author>
<author>
<name sortKey="Tien, M" uniqKey="Tien M">M Tien</name>
</author>
<author>
<name sortKey="Geib, Sm" uniqKey="Geib S">SM Geib</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Neil, St" uniqKey="O Neil S">ST O'Neil</name>
</author>
<author>
<name sortKey="Emrich, Sj" uniqKey="Emrich S">SJ Emrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, H" uniqKey="Jiang H">H Jiang</name>
</author>
<author>
<name sortKey="Wong, Wh" uniqKey="Wong W">WH Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijay, N" uniqKey="Vijay N">N Vijay</name>
</author>
<author>
<name sortKey="Poelstra, Jw" uniqKey="Poelstra J">JW Poelstra</name>
</author>
<author>
<name sortKey="Kunstner, A" uniqKey="Kunstner A">A Kunstner</name>
</author>
<author>
<name sortKey="Wolf, Jb" uniqKey="Wolf J">JB Wolf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scharf, Me" uniqKey="Scharf M">ME Scharf</name>
</author>
<author>
<name sortKey="Karl, Zj" uniqKey="Karl Z">ZJ Karl</name>
</author>
<author>
<name sortKey="Sethi, A" uniqKey="Sethi A">A Sethi</name>
</author>
<author>
<name sortKey="Sen, R" uniqKey="Sen R">R Sen</name>
</author>
<author>
<name sortKey="Raychoudhury, R" uniqKey="Raychoudhury R">R Raychoudhury</name>
</author>
<author>
<name sortKey="Boucias, Dg" uniqKey="Boucias D">DG Boucias</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Kirsch, R" uniqKey="Kirsch R">R Kirsch</name>
</author>
<author>
<name sortKey="Giraud, S" uniqKey="Giraud S">S Giraud</name>
</author>
<author>
<name sortKey="Vogel, H" uniqKey="Vogel H">H Vogel</name>
</author>
<author>
<name sortKey="Heckel, Dg" uniqKey="Heckel D">DG Heckel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauchet, Y" uniqKey="Pauchet Y">Y Pauchet</name>
</author>
<author>
<name sortKey="Wilkinson, P" uniqKey="Wilkinson P">P Wilkinson</name>
</author>
<author>
<name sortKey="Chauhan, R" uniqKey="Chauhan R">R Chauhan</name>
</author>
<author>
<name sortKey="Ffrench Constant, Rh" uniqKey="Ffrench Constant R">RH Ffrench-Constant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tokuda, G" uniqKey="Tokuda G">G Tokuda</name>
</author>
<author>
<name sortKey="Watanabe, H" uniqKey="Watanabe H">H Watanabe</name>
</author>
<author>
<name sortKey="Hojo, M" uniqKey="Hojo M">M Hojo</name>
</author>
<author>
<name sortKey="Fujita, A" uniqKey="Fujita A">A Fujita</name>
</author>
<author>
<name sortKey="Makiya, H" uniqKey="Makiya H">H Makiya</name>
</author>
<author>
<name sortKey="Miyagi, M" uniqKey="Miyagi M">M Miyagi</name>
</author>
<author>
<name sortKey="Arakawa, G" uniqKey="Arakawa G">G Arakawa</name>
</author>
<author>
<name sortKey="Arioka, M" uniqKey="Arioka M">M Arioka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kashyap, Dr" uniqKey="Kashyap D">DR Kashyap</name>
</author>
<author>
<name sortKey="Vohra, Pk" uniqKey="Vohra P">PK Vohra</name>
</author>
<author>
<name sortKey="Chopra, S" uniqKey="Chopra S">S Chopra</name>
</author>
<author>
<name sortKey="Tewari, R" uniqKey="Tewari R">R Tewari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dashtban, M" uniqKey="Dashtban M">M Dashtban</name>
</author>
<author>
<name sortKey="Schraft, H" uniqKey="Schraft H">H Schraft</name>
</author>
<author>
<name sortKey="Qin, W" uniqKey="Qin W">W Qin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Ll" uniqKey="Li L">LL Li</name>
</author>
<author>
<name sortKey="Mccorkle, Sr" uniqKey="Mccorkle S">SR McCorkle</name>
</author>
<author>
<name sortKey="Monchy, S" uniqKey="Monchy S">S Monchy</name>
</author>
<author>
<name sortKey="Taghavi, S" uniqKey="Taghavi S">S Taghavi</name>
</author>
<author>
<name sortKey="Van Der Lelie, D" uniqKey="Van Der Lelie D">D van der Lelie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oppert, C" uniqKey="Oppert C">C Oppert</name>
</author>
<author>
<name sortKey="Klingeman, We" uniqKey="Klingeman W">WE Klingeman</name>
</author>
<author>
<name sortKey="Willis, Jd" uniqKey="Willis J">JD Willis</name>
</author>
<author>
<name sortKey="Oppert, B" uniqKey="Oppert B">B Oppert</name>
</author>
<author>
<name sortKey="Jurat Fuentes, Jl" uniqKey="Jurat Fuentes J">JL Jurat-Fuentes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="G Ngora Castillo, E" uniqKey="G Ngora Castillo E">E Góngora-Castillo</name>
</author>
<author>
<name sortKey="Buell, Cr" uniqKey="Buell C">CR Buell</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Genomics</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Genomics</journal-id>
<journal-title-group>
<journal-title>BMC Genomics</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2164</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25331961</article-id>
<article-id pub-id-type="pmc">4221708</article-id>
<article-id pub-id-type="publisher-id">6620</article-id>
<article-id pub-id-type="doi">10.1186/1471-2164-15-917</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Shelomi</surname>
<given-names>Matan</given-names>
</name>
<address>
<email>mshelomi@ice.mpg.de</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jasper</surname>
<given-names>W Cameron</given-names>
</name>
<address>
<email>wcjasper@ucdavis.edu</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Atallah</surname>
<given-names>Joel</given-names>
</name>
<address>
<email>joel.atallah@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kimsey</surname>
<given-names>Lynn S</given-names>
</name>
<address>
<email>lskimsey@ucdavis.edu</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Johnson</surname>
<given-names>Brian R</given-names>
</name>
<address>
<email>brnjohnson@ucdavis.edu</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Department of Entomology and Nematology, University of California-Davis, Davis, CA 95616 USA</aff>
<aff id="Aff2">
<label></label>
Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>21</day>
<month>10</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>21</day>
<month>10</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<volume>15</volume>
<issue>1</issue>
<elocation-id>917</elocation-id>
<history>
<date date-type="received">
<day>8</day>
<month>8</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>1</day>
<month>10</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© Shelomi et al.; licensee BioMed Central Ltd. 2014</copyright-statement>
<license license-type="open-access">
<license-p>This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Stick and leaf insects (Phasmatodea) are an exclusively leaf-feeding order of insects with no record of omnivory, unlike other “herbivorous” Polyneoptera. They represent an ideal system for investigating the adaptations necessary for obligate folivory, including plant cell wall degrading enzymes (PCWDEs). However, their physiology and internal anatomy is poorly understood, with limited genomic resources available.</p>
</sec>
<sec>
<title>Results</title>
<p>We
<italic>de novo</italic>
assembled transcriptomes for the anterior and posterior midguts of six diverse Phasmatodea species, with RNA-Seq on one exemplar species,
<italic>Peruphasma schultei</italic>
. The latter’s assembly yielded >100,000 transcripts, with over 4000 transcripts uniquely or more highly expressed in specific midgut sections. Two to three dozen PCWDE encoding gene families, including cellulases and pectinases, were differentially expressed in the anterior midgut. These genes were also found in genomic DNA from phasmid brain tissue, suggesting endogenous production. Sequence alignments revealed catalytic sites on most PCWDE transcripts. While most phasmid PCWDE genes showed homology with those of other insects, the pectinases were homologous to bacterial genes.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>We identified a large and diverse PCWDE repertoire endogenous to the phasmids. If these expressed genes are translated into active enzymes, then phasmids can theoretically break plant cell walls into their monomer components independently of microbial symbionts. The differential gene expression between the two midgut sections provides the first molecular hints as to their function in living phasmids. Our work expands the resources available for industrial applications of animal-derived PCWDEs, and facilitates evolutionary analysis of lower Polyneopteran digestive enzymes, including the pectinases whose origin in Phasmatodea may have been a horizontal transfer event from bacteria.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/1471-2164-15-917) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2014</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>Whole transcriptome shotgun sequencing, or RNA-Seq, is a high-throughput, next-generation sequencing tool that can efficiently identify tens of thousands of functional genes in an organism or specific tissue at a given time [
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
]. This deep sequencing makes it a more attractive tool than microarrays for organisms lacking reference genomes, facilitating
<italic>de novo</italic>
transcriptome assembly [
<xref ref-type="bibr" rid="CR3">3</xref>
<xref ref-type="bibr" rid="CR5">5</xref>
]. Its high coverage is desirable when profiling transcripts in tissues of unknown function, enabling researchers to generate and/or test multiple hypotheses at once (eg: [
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
]), and in organisms potentially harboring symbiotic organisms that may or may not produce the transcripts of interest (eg: [
<xref ref-type="bibr" rid="CR8">8</xref>
<xref ref-type="bibr" rid="CR10">10</xref>
]), as RNA-Seq can simultaneously identify genes from microbes and their vectors/hosts.</p>
<p>Such a combination of low genome resource availability and enigmatic physiology exists in the stick and leaf insects (order Phasmatodea), or phasmids. Though common in the pre-molecular biology era through the Laboratory Stick Insect,
<italic>Carausius morosus</italic>
[
<xref ref-type="bibr" rid="CR11">11</xref>
], phasmid research today is relatively limited. Few phasmids are pests of agricultural crops [
<xref ref-type="bibr" rid="CR11">11</xref>
,
<xref ref-type="bibr" rid="CR12">12</xref>
], though they reach plague-like abundances in temperate forests [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
] and
<italic>C. morosus</italic>
is an invasive pest in several countries [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
]. All life stages of all species within the order feed exclusively on leaves [
<xref ref-type="bibr" rid="CR17">17</xref>
]. This obligate folivory is relatively rare: Among insects it is known only from leaf beetles (Coleoptera: Chrysomelidae), while more basal “herbivores” such as grasshoppers and crickets (Orthoptera) will quite readily scavenge vertebrate meat, engage in cannibalism, and even hunt and kill other insects [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
]. Thus phasmids are an ideal system for studying the evolution of herbivory in the lower Polyneoptera.</p>
<p>Folivorous organisms benefit greatly from plant cell wall degrading enzymes (PCWDEs), a group that includes cellulases, hemicellulases, lignases, pectinases, and xylanases [
<xref ref-type="bibr" rid="CR17">17</xref>
]. Once thought to be limited to microbes, endogenous (symbiont-independent) PCWDE production has since been found throughout the Animalia. In particular, cellulase (beta-1,4-endoglucanase; Enzyme Commission: 3.2.1.4) genes from the Glycoside Hydrolase family 9 (GH9) are now believed to have existed in the ancestor of all Metazoan life [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
] as opposed to having been repeatedly acquired from microbes via horizontal gene transfer, as is thought to be origin of GH45 and GH48 cellulases in beetles [
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
]. Among insects, endogenous cellulases have been found in lower and higher termites, cockroaches, crickets, beetles [
<xref ref-type="bibr" rid="CR21">21</xref>
<xref ref-type="bibr" rid="CR24">24</xref>
], a firebrat [
<xref ref-type="bibr" rid="CR25">25</xref>
], a springtail [
<xref ref-type="bibr" rid="CR26">26</xref>
], and, recently, the phasmids. High cellulase activity in the anterior midguts of two phasmid species,
<italic>Eurycantha calcarata</italic>
and
<italic>Entoria okinawaensis</italic>
, was detected, the responsible proteins isolated, and the genes encoding them sequenced. Sequence homology and antigency against an insect cellulase anti-serum supported an endogenous, Insectan origin for the enzymes [
<xref ref-type="bibr" rid="CR27">27</xref>
]. Such a process is slow and predicated on the translation of PCWDE genes into enzymes active against laboratory substrates like carboxymethylcellulose or crystalline cellulose, whose specificity and selectivity are imperfect [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
].</p>
<p>Whether or not phasmids contain other PCWDEs, such as the cellobiases (a type of beta-glucosidase; EC:3.2.1.21) that convert the products of cellulase into glucose monomers [
<xref ref-type="bibr" rid="CR24">24</xref>
] or the pectinases (polygalacturonases; EC:3.2.1.15) that hydrolyze pectin into galacturonic acid monomers [
<xref ref-type="bibr" rid="CR17">17</xref>
], was unknown. Presence of such active enzymes could explain the obligate folivory of the Phasmatodea and be a key factor in the order’s evolution [
<xref ref-type="bibr" rid="CR30">30</xref>
], which is itself a puzzle as the sister order to the Phasmatodea is highly debated [
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
]. Microbiological assays of the phasmid gut suggest digestion in the order is symbiont-independent [
<xref ref-type="bibr" rid="CR33">33</xref>
], so any phasmid PCWDE genes are likely endogenous, yet whether the genes show homology to insect or microbe genes depends on their own evolutionary origin [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
]. Complicating the issue is the relative lack of genetic resources for phasmids or their most closely-related orders: Orthoptera [
<xref ref-type="bibr" rid="CR34">34</xref>
], Embioptera [
<xref ref-type="bibr" rid="CR35">35</xref>
], and Notoptera/Xenonomia [
<xref ref-type="bibr" rid="CR36">36</xref>
]. Lastly, even if phasmids have PCWDE genes, their expression is not a guarantee, nor are they necessarily expressed in the gut region where they are most active. The phasmid midgut is physically differentiated into two sections: an anterior midgut (AMG) marked by circular pleating and folding, and a posterior midgut (PMG) studded irregularly by hollow bulbs with filamentous tubules called the “appendices of the midgut” that open into the midgut lumen [
<xref ref-type="bibr" rid="CR37">37</xref>
]. The appendices may have an excretory or secretory function, and the possibility exists that they produce digestive enzymes that are carried forward into the AMG via countercurrent flow [
<xref ref-type="bibr" rid="CR38">38</xref>
]. In the face of all these unknowns, next-generation sequencing is the best resource for answering questions of phasmid digestive physiology efficiently and effectively.</p>
<p>Here we used
<italic>de novo</italic>
transcriptome assembly to identify the genes expressed in the midguts of six species of Phasmatodea from four families, while greatly increasing the publicly available genetic resources for the order. We also used RNA-Seq on one exemplar species,
<italic>Peruphasma schultei</italic>
(Pseudophasmatidae) to quantitatively compare transcript expression between the AMG and PMG, and produced a genomic DNA library from the symbiont-free phasmid brain to confirm that identified transcripts were encoded by the insect itself. Our main goal was to identify the production organ of the Phasmatodea endogenous cellulase, while simultaneously creating an inventory of expressed PCWDE and other digestive genes in phasmids and generating hypotheses on their evolutionary origins and the putative functions of the midgut sections. This study serves as a necessary preliminary for more targeted molecular work. More broadly, our transcriptomes are useful for evolutionary analyses of non-cellulase PCWDEs in insects and identifying potential genes with biotechnological applications such as in processing biofuel feedstock or improving its rheology [
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
].</p>
</sec>
<sec id="Sec2" sec-type="methods">
<title>Methods</title>
<sec id="Sec3">
<title>Insects and microscopy</title>
<p>Insects used were
<italic>Peruphasma schultei</italic>
(Pseudophasmatidae),
<italic>Sipyloidea sipylus</italic>
(Diapheromeridae),
<italic>Aretaon asperrimus</italic>
(Heteropterygidae), and
<italic>Extatosoma tiaratum, Medauroidea extradentata</italic>
, and
<italic>Ramulus artemis</italic>
(Phasmatidae) cultured at room temperature in the Bohart Museum of Entomology, University of California, Davis. Phasmids were fed an
<italic>ad libitum</italic>
diet of privet (
<italic>Ligustrum</italic>
sp
<italic>.</italic>
) for
<italic>Peruphasma</italic>
,
<italic>Eucalyptus</italic>
for
<italic>Extatosoma</italic>
, and
<italic>Rosa</italic>
sp. for the others.</p>
</sec>
<sec id="Sec4">
<title>Library prep and sequencing</title>
<p>The RNA-Seq study of
<italic>Peruphasma schultei</italic>
made use of three biological replicates for both the anterior and the posterior midguts (AMG and PMG respectively). For each replicate, the guts of five fed, surface-sterilized, adult, male and female phasmids were removed under sterile conditions and emptied of their contents in several washes of 70% ethanol. Then the anterior and posterior sections were separately pooled and homogenized in TRIzol® Reagent. RNA was extracted according the Trizol-Plus protocol, which includes an on-column DNAase digestion step. Total RNA quality (and subsequent library quality) was checked with the Bioanalyzer 2100. Libraries were made using the Illumina TruSeq v2 kit according to the manufacturer’s instructions.</p>
<p>Hundred base pair paired-end sequencing was performed on the HiSeq 2000 and the raw data uploaded to the NCBI SRA Database [GenBank:SRP030474]. For quality control, low quality bases and adapter contamination were removed with the fastx toolkit [
<xref ref-type="bibr" rid="CR41">41</xref>
] and the cutadapt software packages [
<xref ref-type="bibr" rid="CR42">42</xref>
]. FastQC [
<xref ref-type="bibr" rid="CR43">43</xref>
] was used to check the final quality of reads prior to
<italic>de novo</italic>
assembly. The number of reads generated for each biological replicate is shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>
<bold>Total reads and trinity results for each transcriptomic or genomic library</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>
<bold>
<italic>de novo</italic>
</bold>
stick insect transcriptome assemblies</th>
<th>Reads</th>
<th>Total trinity transcripts (isotigs)</th>
<th>Total trinity components (isogroups)</th>
<th>Contig N50</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>Peruphasma schultei</italic>
</td>
<td align="center"></td>
<td align="center">135622</td>
<td align="center">99469</td>
<td align="center">1669</td>
</tr>
<tr>
<td>  Anterior midgut 1</td>
<td align="center">15,578,606</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Anterior midgut 2</td>
<td align="center">17,004,583</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Anterior midgut 3</td>
<td align="center">20,651,269</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="right">Total:</td>
<td align="center">53,234,458</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut 1</td>
<td align="center">17,664,733</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut 2</td>
<td align="center">22,326,598</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut 3</td>
<td align="center">21,932,697</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="right">Total:</td>
<td align="center">61,924,028</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<italic>Aretaon asperrimus</italic>
</td>
<td align="center"></td>
<td align="center">142181</td>
<td align="center">110688</td>
<td align="center">3188</td>
</tr>
<tr>
<td>  Anterior midgut</td>
<td align="center">57,859,873</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut</td>
<td align="center">41,709,281</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<italic>Extatosoma tiaratum</italic>
</td>
<td align="center"></td>
<td align="center">163928</td>
<td align="center">117927</td>
<td align="center">1878</td>
</tr>
<tr>
<td>  Anterior midgut</td>
<td align="center">67,177,740</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut</td>
<td align="center">59,190,949</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<italic>Medauroidea extradentata</italic>
</td>
<td align="center"></td>
<td align="center">130080</td>
<td align="center">99465</td>
<td align="center">2246</td>
</tr>
<tr>
<td>  Anterior midgut</td>
<td align="center">54,198,129</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut</td>
<td align="center">49,043,590</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<italic>Ramulus artemis</italic>
</td>
<td align="center"></td>
<td align="center">169555</td>
<td align="center">92260</td>
<td align="center">2007</td>
</tr>
<tr>
<td>  Anterior midgut</td>
<td align="center">55,689,810</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>  Posterior midgut</td>
<td align="center">59,684,645</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<italic>Sipyloidea sipylus</italic>
</td>
<td align="center"></td>
<td align="center">114125</td>
<td align="center">72103</td>
<td align="center">1257</td>
</tr>
<tr>
<td>  Anterior midgut</td>
<td align="center">47,511,044</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td>
<bold>Genomic</bold>
<bold>
<italic>P. schultei</italic>
</bold>
<bold>reads (brain tissue)</bold>
</td>
<td align="center">46,868,237</td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Total number of transcripts and components based on results of the Trinity assembler [
<xref ref-type="bibr" rid="CR3">3</xref>
] with default parameters. N50 statistic is a nucleotide length.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>For gut transcriptomes of the other five species, the same method was used as for
<italic>P. schultei</italic>
with a few changes. For each species, only one biological replicate was produced for both the anterior and the posterior midgut. This library was made of pooled midguts (all females for
<italic>E. tiaratum, M. extradentata, R. artemis,</italic>
and
<italic>S. sipylus</italic>
, and a mixture of males and females for
<italic>A. asperrimus</italic>
). RNA was successfully extracted for all tissues with the exception of the
<italic>S. sipylus</italic>
PMG, for which the extraction failed and for which no additional specimens could be obtained. RNA-extraction and quality control were as for
<italic>Peruphasma</italic>
, but libraries were made using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina kit according to the manufacturer’s instructions. Sequencing was on an Illumina HiSeq 2000, and the data uploaded to the NCBI SRA Database [GenBank:SRP038202]. The numbers of reads produced for each sample are shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
.</p>
</sec>
<sec id="Sec5">
<title>
<italic>de novo</italic>
transcriptome assembly</title>
<p>The Trinity assembler with the default parameters was used to generate
<italic>de novo</italic>
transcriptomes for all species using quality controlled reads [
<xref ref-type="bibr" rid="CR3">3</xref>
]. TopHat (v2.04) was used for aligning reads to the transcriptome [
<xref ref-type="bibr" rid="CR44">44</xref>
]. HTSeq [
<xref ref-type="bibr" rid="CR45">45</xref>
] was used to quantify the number of reads aligning to each transcript. Gene and isoform abundances and expression levels from the
<italic>P. schultei</italic>
RNA-Seq data were quantified using RSEM (RNA-Seq by Expectation Maximization) [
<xref ref-type="bibr" rid="CR46">46</xref>
]. This program was chosen over other programs as it does not rely on reference genomes, of which there are none for the Phasmatodea. For the
<italic>P.</italic>
schultei RNA-Seq, Trinity assembly yielded 135,622 transcripts (N50 contig length=1669). Differentially expressed genes were identified using EBSeq, an R package that compares isoform expression across two or more biological conditions, in this case AMG and PMG, using a Bayesian heirarchical model [
<xref ref-type="bibr" rid="CR47">47</xref>
]. Differentially expressed genes (DEGs) were those with an adjusted p-value <0.05.</p>
</sec>
<sec id="Sec6">
<title>Transcriptome annotation and PCWDE identification</title>
<p>Due to the lack of closely related species with well-annotated genomes, or even consensus as to what is the most closely related order to the Phasmatodea, we used several methods to annotate the assembled transcripts. For all
<italic>P. schultei</italic>
transcripts and the top 500 most highly expressed transcripts for the other species, we used Blast2GO’s [
<xref ref-type="bibr" rid="CR48">48</xref>
] tblastx program to compare each sequence to the NCBI translated nucleotide collection (nr) database, with an expect value threshold of e
<sup>-6</sup>
. Contigs with highly significant BLAST [
<xref ref-type="bibr" rid="CR49">49</xref>
] hits were mapped to the Gene Ontology (GO) database and annotated using Blast2GO with an expect value threshold of e
<sup>-6</sup>
. InterPro annotations were performed using the Blast2GO remote connection to the InterProEBI server [
<xref ref-type="bibr" rid="CR48">48</xref>
]. GO terms were modulated using ANNEX and GOSlim, using the “generic” mapping (goslim_generic.obo) available in Blast2GO (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
). Potential metabolic pathways represented in the transcriptome were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [
<xref ref-type="bibr" rid="CR50">50</xref>
] database via Blast2GO (Additional files
<xref rid="MOESM1" ref-type="media">1</xref>
,
<xref rid="MOESM2" ref-type="media">2</xref>
,
<xref rid="MOESM3" ref-type="media">3</xref>
,
<xref rid="MOESM4" ref-type="media">4</xref>
,
<xref rid="MOESM5" ref-type="media">5</xref>
and
<xref rid="MOESM6" ref-type="media">6</xref>
). Enrichment analysis (Fisher’ s Exact Test via Blast2GO) was used to find enriched GO terms, with term filter value below 0.05, term filter mode “FDR,” and two-tailed test options selected (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
). Annotations were added to those provided by RSEM.
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>
<bold>Comparisons of the GO terms expressed in the anterior and posterior midguts of the Phasmatodea.</bold>
The top 500 most expressed transcripts are seen for each of the anterior (left) and posterior (right) midguts.
<bold>A)</bold>
Aretaon asperrimus.
<bold>B)</bold>
Extatosoma tiaratum.
<bold>C)</bold>
Medauroidea extradentata.
<bold>D)</bold>
Peruphasma schultei.
<bold>E)</bold>
Ramulus artemis.</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig1_HTML" id="d30e1082"></graphic>
</fig>
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>
<bold>GO categories enriched for the most differentially expressed genes in each</bold>
<bold>
<italic>Peruphasma schultei</italic>
</bold>
<bold>midgut segment.</bold>
Values are relative to the overall transcriptome as per Fisher’s exact test.
<bold>A)</bold>
Anterior midgut (posterior midgut values in red).
<bold>B)</bold>
Posterior midgut (anterior midgut values in red).</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig2_HTML" id="d30e1106"></graphic>
</fig>
</p>
<p>To specifically identify PCWDE-encoding transcripts, we downloaded nucleotide sequences for representative PCWDEs from the NCBI database, selecting known, endogenous insect proteins as well as fungal, bacterial, and protozoan proteins. The query sequences from NCBI were blast-ed against the full transcriptomes after removing low-quality reads, with an expect value threshold of e
<sup>-10</sup>
. Only transcriptome isoforms that aligned to at least 75% of the representative gene downloaded from NCBI were included in later transcript number analyses.</p>
</sec>
<sec id="Sec7">
<title>Amino acid alignment and phylogenetic analysis</title>
<p>For the putative PCWDEs, the transcript sequences from the phasmids were converted to amino acid sequences using the ExPASy online translation tool [
<xref ref-type="bibr" rid="CR51">51</xref>
]. A representative sequence from each isogroup (comp#_c#) was selected based on E-value and Sim mean when compared to known enzymes in the NCBI database. The number of isogroups and isotigs (sequences) within each group is listed in Table 
<xref rid="Tab2" ref-type="table">2</xref>
, and Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
: Table S7 shows these sequence names. Other known protein sequences for these enzymes were collected from the NCBI database from a diversity of organisms including bacteria, fungi, plants, other insects, nematodes, and, when available, protists, chordates, and other invertebrates (Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
: Tables S8, S9, S10 and S11). The amino acid sequences were aligned using MUSCLE [
<xref ref-type="bibr" rid="CR52">52</xref>
] and manually curated using Mesquite [
<xref ref-type="bibr" rid="CR53">53</xref>
]. Further alignment and production of consensus sequences for clades were done using JalView [
<xref ref-type="bibr" rid="CR54">54</xref>
]. These alignments were then searched for the known conserved regions for the active/catalytic sites for each enzyme type, identified using the Catalytic Site Atlas [
<xref ref-type="bibr" rid="CR55">55</xref>
], with Blast alignment to confirm their presence in the phasmid transcripts.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>
<bold>Number of PCWDE isogroups and isotigs in the phasmid midgut</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th colspan="4"># isogroups (total # isotigs)</th>
</tr>
<tr>
<th>Species</th>
<th>Cellulase</th>
<th>Pectinase</th>
<th>Cellobiase</th>
<th>Beta-1,3-glucanase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aretaon asperrimus</td>
<td align="center">5 (16)</td>
<td align="center">11 (44)</td>
<td align="center">7 (14)</td>
<td align="center">3 (9)</td>
</tr>
<tr>
<td>Extatosoma tiaratum</td>
<td align="center">4 (14)</td>
<td align="center">18 (30)</td>
<td align="center">16 (27)</td>
<td align="center">3 (3)</td>
</tr>
<tr>
<td>Medauroidea extradentata</td>
<td align="center">7 (13)</td>
<td align="center">21 (52)</td>
<td align="center">12 (28)</td>
<td align="center">3 (3)</td>
</tr>
<tr>
<td>Peruphasma schultei</td>
<td align="center">6 (8)</td>
<td align="center">7 (14)</td>
<td align="center">4 (22)</td>
<td align="center">3 (3)</td>
</tr>
<tr>
<td>Ramulus artemis</td>
<td align="center">5 (26)</td>
<td align="center">17 (70)</td>
<td align="center">17 (45)</td>
<td align="center">3 (6)</td>
</tr>
<tr>
<td>Sipyloidea sipylus</td>
<td align="center">7 (11)</td>
<td align="center">11 (36)</td>
<td align="center">10 (22)</td>
<td align="center">2 (4)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Data from the full midgut transcriptomes with short sequences removed. Transcripts were identified as PCWDEs based on amino acid alignment to known proteins.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>MUSCLE-aligned sequences curated on Mesquite were converted to Phylip format [
<xref ref-type="bibr" rid="CR56">56</xref>
]. For neighbor-joining trees, the Phylip program “seqboot” was run to make multiple datasets for bootstrapping, and the results run through “protdist” and “neighbor”, then the trees combined with “consense”. For parsimony trees, the “seqboot” datasets were run through “protpars” and “consense”. For maximum likelihood trees, the MUSCLE-alignment file as uploaded to the CIPRES portal (
<ext-link ext-link-type="uri" xlink:href="http://www.phylo.org">http://www.phylo.org</ext-link>
) [
<xref ref-type="bibr" rid="CR57">57</xref>
] and run on RAxML-HPC2 on XSEDE for 1000 bootstrapping runs [
<xref ref-type="bibr" rid="CR58">58</xref>
]. For Bayesian analysis, Mr.Bayes 3.2.2 [
<xref ref-type="bibr" rid="CR59">59</xref>
] was run with the CIPRES datasets with 500000 generations for bootstrapping. Consensus trees were viewed and prepared for figures using FigTree 1.4.2 [
<xref ref-type="bibr" rid="CR60">60</xref>
]. The Maximum Likelihood tables were chosen as the figures for this manuscript.</p>
</sec>
<sec id="Sec8">
<title>Testing for endogenous production of PCWDEs</title>
<p>The possibility existed that some transcripts came from microbial symbionts or contaminants. Table S7 shows which PCWDE encoding isogroups contained poly-adenylation signals, a feature predominantly of eukaryotic mRNA that that, unlike bacterial RNA, will pass in large amount through our cDNA synthesis method, and whose presence is used to suggest endogenicity [
<xref ref-type="bibr" rid="CR61">61</xref>
<xref ref-type="bibr" rid="CR63">63</xref>
]. We also tested the translated transcripts for the presence of eukaryote-specific signal peptides using SignalP 4.1 (
<ext-link ext-link-type="uri" xlink:href="http://www.cbs.dtu.dk/services/SignalP/">http://www.cbs.dtu.dk/services/SignalP/</ext-link>
) [
<xref ref-type="bibr" rid="CR64">64</xref>
], which is also evidence against bacterial origins for the transcripts. Such methods however cannot differentiate between enzymes produced by protozoan or fungal symbionts and those produced by insects, including insect-produced proteins whose genes were acquired from a eukaryote via horizontal gene transfer as has happened in beetles [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
].</p>
<p>To further show that particular PCWDE genes are endogenous to the phasmid genome and not produced by gut symbionts or contaminants, we extracted DNA from non-gut tissue for next generation sequencing. Finding a gene encoding a transcript protein in the genome is a strong and frequently used indicator of endogenicity [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
<xref ref-type="bibr" rid="CR68">68</xref>
]. By using non-alimentary tissue we avoided aspecific amplication of microbial genes and recovered insect DNA alone, as has been done in other insects to show microbe-like genes are endogenously produced [
<xref ref-type="bibr" rid="CR69">69</xref>
<xref ref-type="bibr" rid="CR71">71</xref>
], including the first discovery of endogenously produced cellulase in an insect [
<xref ref-type="bibr" rid="CR72">72</xref>
]. We dissected out the brain under sterile conditions from one
<italic>P. schultei</italic>
individual and extracted DNA using the ChargeSwitch® gDNA Mini Tissue Kit (including the RNAase digestion step). Genomic Illumina libraries for paired-end 100 bp sequencing were then produced using the Illumina Truseq kit and validated using the bioanalyzer 2100. Sequencing was conducted on the Illumina HiSeq 2000, and the data uploaded to the NCBI SRA Database [GenBank:SRP030474]. The numbers of reads generated for the sample are shown in Table 
<xref rid="Tab1" ref-type="table">1</xref>
. We tested if the
<italic>P. schultei</italic>
cellulase and pectinase genes were endogenous in origin by mapping all genomic reads from the brain tissue back to our
<italic>de novo</italic>
midgut transcriptome assembly. We then took all the genomic reads that mapped to each PCWDE gut transcriptome gene and blasted them to the entire gut transcriptome to narrow the list of reads down to those that uniquely map to a single PCWDE gene (Table 
<xref rid="Tab3" ref-type="table">3</xref>
).
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>
<bold>
<italic>Peruphasma schultei</italic>
</bold>
<bold>pectinase and cellulase genomic reads uniquely aligned to transcriptome isotigs</bold>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Pectinases</th>
<th>Genomic reads</th>
<th>Cellulases</th>
<th>Genomic reads</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">Comp40495_c0_seq1</td>
<td align="center">16</td>
<td align="center">comp22363_c1_seq1</td>
<td align="center">21</td>
</tr>
<tr>
<td align="center">Comp54109_c1_seq1</td>
<td align="center">21</td>
<td align="center">comp22404_c0_seq1</td>
<td align="center">23</td>
</tr>
<tr>
<td align="center">Comp55819_c1_seq1</td>
<td align="center">40</td>
<td align="center">comp22464_c0_seq1</td>
<td align="center">12</td>
</tr>
<tr>
<td align="center">comp55819_c1_seq2</td>
<td align="center">40</td>
<td align="center">comp39876_c0_seq1</td>
<td align="center">20</td>
</tr>
<tr>
<td align="center">comp55819_c1_seq3</td>
<td align="center">40</td>
<td align="center">comp55831_c0_seq1</td>
<td align="center">34</td>
</tr>
<tr>
<td align="center">comp56173_c8_seq1</td>
<td align="center">40</td>
<td align="center">comp55831_c0_seq2</td>
<td align="center">33</td>
</tr>
<tr>
<td align="center">comp56173_c8_seq2</td>
<td align="center">40</td>
<td align="center">comp55831_c0_seq3</td>
<td align="center">40</td>
</tr>
<tr>
<td align="center">comp56173_c8_seq3</td>
<td align="center">30</td>
<td align="center">comp57191_c0_seq1</td>
<td align="center">39</td>
</tr>
<tr>
<td align="center">comp56173_c8_seq4</td>
<td align="center">39</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">comp56691_c1_seq1</td>
<td align="center">41</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">comp56691_c1_seq2</td>
<td align="center">20</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">comp56826_c1_seq1</td>
<td align="center">40</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">comp56826_c2_seq1</td>
<td align="center">40</td>
<td align="center"></td>
<td align="center"></td>
</tr>
<tr>
<td align="center">comp56826_c2_seq3</td>
<td align="center">40</td>
<td align="center"></td>
<td align="center"></td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>These reads are therefore of endogenous genes. Counts to 40 max.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>As a final test, we blasted all PCWDE transcripts to the draft genome for
<italic>Timema cristinae</italic>
(Phasmatodea: Timematidae), which was under development but available at the webpage of the Nosil Lab of Evolutionary Biology at the university of Sheffield, UK (
<ext-link ext-link-type="uri" xlink:href="http://nosil-lab.group.shef.ac.uk/?page_id=25">http://nosil-lab.group.shef.ac.uk/?page_id=25</ext-link>
). The Timematidae are considered the sister group to all other Phasmatodea [
<xref ref-type="bibr" rid="CR36">36</xref>
]. While the
<italic>Timema</italic>
genome is not guaranteed to have the same genes as the species we examined, finding our transcripts within the
<italic>Timema</italic>
genome would be strong evidence that the gene is both endogenous in and ancestral to Phasmatodea.</p>
</sec>
</sec>
<sec id="Sec9" sec-type="results">
<title>Results</title>
<sec id="Sec10">
<title>Phasmid midgut
<italic>de novo</italic>
transcriptome assemblies</title>
<p>From the extracted RNA libraries of the pooled AMGs or PMGs of each phasmid species we generated approx 54 million high quality, 100 bp, paired-end sequence reads (Table 
<xref rid="Tab1" ref-type="table">1</xref>
), with the exception of
<italic>Sipyloidea sipylus</italic>
(Diapheromeridae), from which we were only able to successfully extract RNA from the anterior midguts.
<italic>de novo</italic>
assembly of each midgut section’s library with Trinity [
<xref ref-type="bibr" rid="CR3">3</xref>
] produced ~114-170 thousand transcript contigs per species (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). All reads and the final transcriptome for
<italic>Peruphasma schultei</italic>
are available under BioProject accession PRJNA221630, and for all other phasmids under PRJNA238833.</p>
</sec>
<sec id="Sec11">
<title>Annotation of the
<italic>P. schultei</italic>
transcriptomes</title>
<p>Approximately 30323 (22%) of the 135622 transcriptomic sequences had BLAST hits (Additional file
<xref rid="MOESM9" ref-type="media">9</xref>
: Table S9), most of which were homologous to sequences from other insects and arthropods (Additional file
<xref rid="MOESM10" ref-type="media">10</xref>
: Figure S1). More genes were homologous to the red flour beetle
<italic>Tribolium castaneum</italic>
than to insects from more closely related orders, reflecting the relative dearth of available genetic information from insects in the Polyneoptera clade and the relatively recent sequencing of
<italic>Tribolium</italic>
. The high percentage of sequences with no blast hits (orthologs) is unsurprising given the lack of an annotated, sequenced Phasmatodea genome. The sequences may have represented noncoding regions, wrongly-assembled contigs, or novel genes whose significance is unknown.</p>
</sec>
<sec id="Sec12">
<title>Differential gene expression across the phasmid midgut</title>
<p>RNA-Seq analysis of
<italic>P. schultei</italic>
suggested compartmentalization of gut function (Figure 
<xref rid="Fig2" ref-type="fig">2</xref>
), as found in other insects [
<xref ref-type="bibr" rid="CR24">24</xref>
] and plant cell wall consuming organisms. Additional files
<xref rid="MOESM11" ref-type="media">11</xref>
and
<xref rid="MOESM12" ref-type="media">12</xref>
list all differentially expressed genes (DEGs) between the
<italic>P. schultei</italic>
midgut sections, defined as genes with a Posterior Probability of Differential Expression (PPDE) >0.95 [
<xref ref-type="bibr" rid="CR47">47</xref>
]. We also defined genes as being highly expressed if their expression levels were 10× higher than the mean for that midgut segment. Over 4000 genes were differentially expressed in each gut section, with 2318 genes expressed only in the AMG and 1309 expressed only in the PMG. We found 318 highly expressed genes for the AMG and 648 for the PMG (Additional files
<xref rid="MOESM13" ref-type="media">13</xref>
and
<xref rid="MOESM14" ref-type="media">14</xref>
).</p>
<p>Analysis of the most highly expressed sequences in each midgut section for all species further suggested compartmentalization of digestion, or at least enzyme gene expression. All species showed similar GO category profiles for each midgut section (Figure 
<xref rid="Fig1" ref-type="fig">1</xref>
), with nearly 50% reduction in hydrolase gene expression in the PMG relative to the AMG. Enzyme-encoding transcripts that break down polymers at internal sites, such as serine proteases, lipases, and PCWDEs [
<xref ref-type="bibr" rid="CR73">73</xref>
] were more abundant in the AMG, as were carboxylesterases transcripts and sugar hydrolases. Transcripts abundant in the PMG encoded enzymes that break down dimers and monomers, such as dipeptidases, phospholipases, and trehalase, as well as some cell membrane receptor proteins and cytochrome P450s.</p>
</sec>
<sec id="Sec13">
<title>Phasmatodea midgut PCWDEs</title>
<p>Among the sugar hydrolases were several isogroups of PCWDEs including cellulases in the GH9 family and cellobiase, which together can digest cellulose polymers completely into sugar, and the pectinase endopolygalacturonase. We also found transcripts encoding beta-1,3-glucanase (EC:3.2.1.39), a polysaccharide-degrading enzyme family known mostly from Lepidoptera larval midguts and expressed in response to feeding on a diet containing bacteria [
<xref ref-type="bibr" rid="CR74">74</xref>
]. These four enzymes (cellulases, cellobiases, pectinases, and beta-1,3-glucanases) were used in the manual annotations.</p>
</sec>
<sec id="Sec14">
<title>Amino acid alignment and phylogenetic analysis</title>
<p>The phasmid cellulases aligned most closely with other Polyneopteran cellulases — including the known, active, endogenous cellulases isolated from the phasmids
<italic>Eurycantha calcarata</italic>
and
<italic>Entoria okinawaensis</italic>
[
<xref ref-type="bibr" rid="CR27">27</xref>
] — as well as those of other invertebrates, tunicates, plants, and actinomycete bacteria, but not with nematode or beetle cellulases. Phasmid endoglucanases are of the GH9 family thought to be ancestral to all animal life [
<xref ref-type="bibr" rid="CR21">21</xref>
], as opposed to the GH5, 45, or 48 cellulases found in nematodes and beetles [
<xref ref-type="bibr" rid="CR23">23</xref>
]. The phasmid transcripts either themselves included or were homologous to transcripts including the known active sites invariant in GH9 cellulases, based on work on
<italic>Thermobifida/Thermomonospora fusca</italic>
(PDB: 1js4) [
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
]: namely two conserved Asp’s (D55, D58) functioning in catalytic base activity and a Glu residue (E461) that functions as the catalytic acid (Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
). Phylogenetic analysis could not resolve domain or phylum-level relationships among the sequences tested (bootstrap values <10). Every cellulase transcript we isolated was homologous to two sequences from the
<italic>Timema</italic>
genome.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>
<bold>Sections of cellulase amino acid sequence alignments containing conserved/active site residues.</bold>
Catalytic sites are identified by the grey arrows [
<xref ref-type="bibr" rid="CR75">75</xref>
,
<xref ref-type="bibr" rid="CR76">76</xref>
]. List of Phasmatodea sequences in Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
, and all others in Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
. Similar sequences from groups of related species were combined into consensus sequences. Red letters show identity with the overall consensus sequence based on conservation of physiochemical properties. Quality is the inverse likelihood of observing mutations based on the BLOSUM62 matrix [
<xref ref-type="bibr" rid="CR54">54</xref>
].
<italic>Strongylocentrotus purpuratus</italic>
and
<italic>Flavobacterium branchiophilum</italic>
are abbreviated.</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig3_HTML" id="d30e1751"></graphic>
</fig>
</p>
<p>The phasmid pectinase sequences aligned most closely with those of gamma proteobacteria, rather than other insects or eukaryotes. The alignment also showed Hemipteran and beetle pectinases as most similar to fungal pectinases, the latter homology already noted in the literature [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
]. Nearly all phasmid pectinase enzymes contained the four conserved regions of the catalytic sites, based on work on
<italic>Erwinia carotovora</italic>
(PDB: 1bhe) [
<xref ref-type="bibr" rid="CR77">77</xref>
]: Asn226-Thr227-Asp228, Gly248-Asp249-Asp250, Gly274-His275-Gly276, and Arg305-Ile306-Lys307 (Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
). An exception is the transcripts from
<italic>A. asperrimus</italic>
, whose Arg residue is replaced with a Tyrosine (Y305). Phylogenetic analysis suggested the phasmid polygalacturonases are a monophyletic group within those of the gamma proteobacteria (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
).
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>
<bold>Section of pectinase amino acid sequence alignments containing conserved/active site residues.</bold>
See caption to Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
. Catalytic residues identified with grey bars [
<xref ref-type="bibr" rid="CR77">77</xref>
].
<italic>Thermoanaerobacterium thermosaccharolyticum</italic>
is abbreviated
<italic>.</italic>
</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig4_HTML" id="d30e1799"></graphic>
</fig>
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>
<bold>Maximum likelihood tree for the pectinases.</bold>
Phylogenetic analysis of amino acid sequences made with RAxML-HPC2 on the XSEDE system [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Numbers are bootstrap values (1000 runs). Branch widths based on bootstrap value, branch colors based on clade. Branch lengths based on the mean number of nucleotide substitutions per site (Scale Bar =0.9). All Phasmatodea sequences (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
) were a monophyletic group among the gamma proteobacteria.
<italic>Thermoanaerobacterium thermosaccharolyticum</italic>
is abbreviated
<italic>.</italic>
</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig5_HTML" id="d30e1823"></graphic>
</fig>
</p>
<p>The possibility exists that the pectinase transcripts came from gut bacteria or contaminants rather than phasmid genes. However, many of the pectinase transcripts had poly-A tails, as did those of other PCWDEs (†in Table S7), and all the PCWDE transcripts that were not truncated at the 5’ end had eukaryotic-specific signal peptides. This includes transcripts that contained complete open reading frames (*in Table S7) as well as those that were 3’ truncated. Each pectinase-encoding contig also had multiple (in most cases very many) matching genomic reads from brain tissue that uniquely aligned to them (Table 
<xref rid="Tab3" ref-type="table">3</xref>
). The same matching genomic reads could be found for cellulases, which have been demonstrated to be endogenously produced in phasmids [
<xref ref-type="bibr" rid="CR27">27</xref>
] and are endogenously produced in many other insects [
<xref ref-type="bibr" rid="CR17">17</xref>
] and metazoans [
<xref ref-type="bibr" rid="CR21">21</xref>
]. However, none of the pectinase transcripts had homologues in the
<italic>Timema</italic>
genome.</p>
<p>The phasmid beta-glucosidases/cellobiases were in the GH1 family and aligned most with those of other insects. The phasmid transcripts mostly had the conserved residues of beta-glucosidases, including the catalytic sites, based on work with white clover,
<italic>Trifolium repens</italic>
(PDB: 1cbg) [
<xref ref-type="bibr" rid="CR78">78</xref>
]: Arg75, His119, Asn163, Glu164, Asn306, Tyr308, Glu378, and Trp420 (Figure 
<xref rid="Fig6" ref-type="fig">6</xref>
). Phylogenetic analysis suggested the phasmid cellobiases are nearly all monophyletic, except a strongly-supported clade consisting of one isogroup from each species but
<italic>S. sipylus</italic>
(Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
). Analysis could not determine interclass relationships among insect beta-glucosidases, but suggested the enzyme existed in the common ancestor of the Insecta. Every beta-glucosidase transcript we isolated was homologous to four sequences from the
<italic>Timema</italic>
genome.
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<p>
<bold>Sections of cellobiase amino acid sequence alignments containing conserved/active site residues.</bold>
See caption to Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
. Catalytic and conserved residues identified with grey arrows [
<xref ref-type="bibr" rid="CR78">78</xref>
].</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig6_HTML" id="d30e1879"></graphic>
</fig>
<fig id="Fig7">
<label>Figure 7</label>
<caption>
<p>
<bold>Maximum likelihood tree for the beta-glucosidases.</bold>
Phylogenetic analysis of amino acid sequences made with RAxML-HPC2 on the XSEDE system [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Numbers are bootstrap values (1000 runs). Branch widths based on bootstrap value, branch colors based on clade. Branch lengths based on the mean number of nucleotide substitutions per site (Scale Bar =0.7). The Phasmatodea sequences (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
) formed two strongly supported monophyletic group with weak relationships to other insect groups.</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig7_HTML" id="d30e1897"></graphic>
</fig>
</p>
<p>The phasmid beta-1,3-glucanases were in the GH16 family and aligned most closely with other insect enzymes (Figure 
<xref rid="Fig8" ref-type="fig">8</xref>
), however this is a relatively recently described enzyme with few recorded sequences in the literature or NCBI database. This is the first known record of endogenous beta-1,3-glucanase in the Polyneoptera. The phasmid beta-1,3-glucanases could be divided into four clear, monophyletic groups (Figure 
<xref rid="Fig9" ref-type="fig">9</xref>
) with no more than one representative isogroup per each of the six phasmid species. Each group differed in their homology with the known consensus pattern for catalytically active beta-1,3-glucanases based on work on
<italic>Bacillus licheniformis</italic>
[
<xref ref-type="bibr" rid="CR79">79</xref>
]: E-[LIV]-D-[LIVF]-x(0,1)-E-x(2)-[GQ]-[KRNF]-x-[PSTA] (Figure 
<xref rid="Fig8" ref-type="fig">8</xref>
: 342–353). One group of six sequences had 11/12 amino acids conserved, a group of four had 10/12, another group of six had 8/12, and the final group consisting of one
<italic>A. asperrimus</italic>
sequence had 6/12. The last amino acid in the
<italic>Bacillus</italic>
region was not conserved among any phasmids, nor is it conserved among the Lepidoptera sequences, which were also 11/12, or many other organism sequences sampled. Every beta-1,3-glucanase transcript we isolated had six to eight homologues in the
<italic>Timema</italic>
genome.
<fig id="Fig8">
<label>Figure 8</label>
<caption>
<p>
<bold>Sections of beta-1,3-glucanase amino acid sequence alignments containing conserved/active site residues.</bold>
See caption to Figure 
<xref rid="Fig3" ref-type="fig">3</xref>
. Conserved, twelve amino acid region identified with grey bar [
<xref ref-type="bibr" rid="CR79">79</xref>
]. The four groups of Phasmatodea gene are separated by black lines.</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig8_HTML" id="d30e1942"></graphic>
</fig>
<fig id="Fig9">
<label>Figure 9</label>
<caption>
<p>
<bold>Maximum likelihood tree for the beta-1,3-glucanases.</bold>
Phylogenetic analysis of amino acid sequences made with RAxML-HPC2 on the XSEDE system [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Numbers are bootstrap values (1000 runs). Branch widths based on bootstrap value, branch colors based on clade. Branch lengths based on the mean number of nucleotide substitutions per site (Scale Bar =0.7). The Phasmatodea sequences formed four strongly supported groups.</p>
</caption>
<graphic xlink:href="12864_2014_6620_Fig9_HTML" id="d30e1957"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec15" sec-type="discussion">
<title>Discussion</title>
<p>Using high coverage sequencing of RNA expressed in their midguts, we were able to produce high quality transcriptomes of several Phasmatodea species. This new data doubles the genera of phasmids with publicly available genetic resources on the NCBI databases, increasing the amount of annotated genes available for future work not only on Phasmatodea, but also on the Polyneoptera in general. Covering six species in four families, while drawing from the draft genome of a seventh species in a fifth family, the data suggests the differential expression and enzyme gene diversity of the phasmid midgut sections is mostly conserved throughout the order. Our findings will serve as a reference set for studying phasmid digestion and a jumping point for future proteomic and biochemical assays. The abundance of PCWDE isogroups in phasmids is relatively high, and the diversity of PCWDE types is comparable to those in certain leaf beetles (Chrysomelidae) like
<italic>Phaedon cochleariae</italic>
[
<xref ref-type="bibr" rid="CR69">69</xref>
,
<xref ref-type="bibr" rid="CR71">71</xref>
] or wood-boring beetles (Cerambycidae) like
<italic>Anoplophora glabripennis</italic>
[
<xref ref-type="bibr" rid="CR80">80</xref>
]. The current record is likely
<italic>Diabrotica virgifera virgifera</italic>
(Chrysomelidae) with seventy-eight genes putatively encoding proteins from the same four enzyme classes studied here [
<xref ref-type="bibr" rid="CR55">55</xref>
]. As Phasmatodea and Chrysomelidae are among the few insect groups to be exclusively folivorous, a possible correlation exists between that dietary niche and a diverse PCWDE complement.</p>
<p>For
<italic>de novo</italic>
transcriptomes, assemblers such as Trinity often cannot differentiate between homologous genes and isoforms or allelic variants of the same gene. They can potentially overestimate the number of isotigs (single or groups of contigs that should each constitute one splice variant) within an isogroup (all isotigs for one gene, identified by Trinity’s output as comp#_c#) [
<xref ref-type="bibr" rid="CR81">81</xref>
]. Combined with relatively low genetic resource availability for closely related insects and relatively high representation of species like the aforementioned beetles, we cannot be certain whether phasmids express more or fewer PCWDEs than the average herbivorous insect. In addition to using programs like RSEM designed to reduce such errors [
<xref ref-type="bibr" rid="CR46">46</xref>
], comparing the number of reads mapping to a locus on the genome can be used to infer the true isoform number and account for inflation [
<xref ref-type="bibr" rid="CR82">82</xref>
]. That most
<italic>P. schultei</italic>
transcriptome sequences (contigs) had more matching genome reads (Table 
<xref rid="Tab3" ref-type="table">3</xref>
) than their corresponding isogroup has members (Table 
<xref rid="Tab2" ref-type="table">2</xref>
) suggests that our contig numbers represent true isoforms within each isogroup, rather than an overestimation due to mis-assembly [
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR83">83</xref>
]. These phasmid isoforms may reflect multiple gene copies or alternatively spliced genes, either case suggesting a diverse complement of proteins working together to fully digest multiple varieties of carbohydrate polymer. a highly derived genetic capacity for plant cell wall breakdown [
<xref ref-type="bibr" rid="CR84">84</xref>
]. However, because some isotigs were truncated at the 3’ or 5’ end, the possibility exists that certain transcripts represent different ends of a single gene. Future work using RACE-PCR from primers based on the transcripts identified here would produce full-length cDNA sequences that will determine which transcripts represent unique genes and which are fragments, Such genes could then be expressed into insect cell cultures for use in downstream enzymatic activity assays [
<xref ref-type="bibr" rid="CR85">85</xref>
].</p>
<p>Previous research has confirmed that the endogenous cellulase genes we demonstrated are most highly expressed in the anterior midgut are also most highly active in the anterior midgut [
<xref ref-type="bibr" rid="CR27">27</xref>
], making it the site of both cellulase translation and action. The physical structure of the AMG supports this hypothesis: the pleating and folding serves to greatly increase the available surface area of the AMG while slowing down the transit speed of food, increasing the amount of time and space available for cellulase enzymes to hydrolyze ingested plant material. Cellulase activity falls to nearly nothing in the PMG, tracking with cellulase gene expression. If we extend the results of cellulases to those of the other PCWDEs, then we hypothesize that phasmid digestive enzymes are active in the same region of the gut where they are expressed, making the pleated AMG the site of primary plant cell wall and polymer digestion and the PMG the site of secondary digestion of smaller oligomers at most.</p>
<p>We also hypothesize that phasmids can fully digest cellulose into glucose, as they have the two enzymesnecessary to do so, and also actively degrade pectin into galacturonic acid. Such digestive abilities could explain how phasmids survive on otherwise uncommon, obligately folivorous diets: by fully breaking down plant cell walls into assimilatable nutrients rather than just degrading the walls to access the nutrient-rich cytoplasm within. As transcriptomics only demonstrates gene expression, not translation or activity, these hypotheses cannot be confirmed with this data alone. However, the fact that phasmids have active cellulases [
<xref ref-type="bibr" rid="CR27">27</xref>
] and the presence of the relevant catalytic residues on the phasmid cellulase, pectinase, and cellobiase transcripts (Figures 
<xref rid="Fig3" ref-type="fig">3</xref>
,
<xref rid="Fig4" ref-type="fig">4</xref>
,
<xref rid="Fig6" ref-type="fig">6</xref>
) and some beta-1,3-glucanase transcripts (Figure 
<xref rid="Fig8" ref-type="fig">8</xref>
) suggests the transcripts code for functional enzymes, supporting the hypothesis that these enzymes are indeed actively degrading plant cell walls. We have thus provided the necessary preliminary work justifying biochemical and proteomic assays into cellobiase, pectinase, and beta-glucanase activity in the phasmid gut.</p>
<p>Phasmid pectinases are all endopolygalacturonases in the GH28 group, known in insects only from the beetles and the Hemiptera, but they show homology and align to those from gamma proteobacteria (Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
). Pectinase genes were also absent in the
<italic>Timema</italic>
genome. Our pectinase transcripts may have come from a bacterial symbiont. The successful mapping of all
<italic>P. schultei</italic>
pectinase and cellulase transcripts to genes in the
<italic>P. schultei</italic>
genome, the presence of eukaryote-specific poly-A tails and signal peptides on phasmid transcripts with complete open reading frames, previous studies with
<italic>P. schultei</italic>
and
<italic>R. artemis</italic>
suggesting their digestion is symbiont independent [
<xref ref-type="bibr" rid="CR33">33</xref>
], and the absence of characteristic paunches for microbial fermentation [
<xref ref-type="bibr" rid="CR37">37</xref>
], all tentatively suggest these pectinases are encoded in the phasmids own genome and not produced by gut microbes. However, the possibility remains that the samples were contaminated by a non-symbiotic microbe: either a rare bacteria that poly-adenylates its RNA or a fungal symbiont that acquired a bacterial gene via horizontal transfer.</p>
<p>A more parsimonious hypothesis is that the phasmid pectinase gene was acquired through horizontal transfer from a bacterial ancestor, much as the beetle pectinases are thought to have been acquired though horizontal transfer from an Ascomycete fungus [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
], or as leaf beetle xylanases may have also transferred from a gamma proteobacteria [
<xref ref-type="bibr" rid="CR69">69</xref>
]. The absence of the genes in
<italic>Timema</italic>
would suggest either that the transfer event occurred after the split between the Timematidae and the other Phasmatodea, or that the pectinase genes are ancestral to both and lost in
<italic>Timema</italic>
. Lastly, the similarity between phasmid and bacterial sequences could simply be an artefact of the over-representation of microbial and dearth of animal pectinases in the NCBI database at this time [
<xref ref-type="bibr" rid="CR86">86</xref>
]. Using long range or RACE PCR to clone entire genes from phasmid genomic DNA and get introns would conclusively demonstrate whether or not the pectinases are endogenously produced or not, and such work on all six species studied here is underway.</p>
<p>Whether pectinase genes exist in other Polyneoptera remains to be seen, but would help determine when the horizontal transfer event could have occurred. Failure to find endogenous pectinases in closely related insects would mean the transfer occurred in an early Phasmatodea ancestor: a development that would have expanded the digestive abilities of the order and may have played a significant role in their evolution of obligate folivory. PCWDE diversity could also be correlated to the development of the longer and larger body sizes of the Euphasmatodea. Broader, multi-phyla, phylogenetic analysis for pectinolytic enzyme genes in the Animalia can answer this question [
<xref ref-type="bibr" rid="CR35">35</xref>
].</p>
<p>Phasmid cellobiases are GH1, as are those of other insects who produce them endogenously like the higher termites [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Such species can break down cellobiose independently, unlike the lower termites that have symbiotic microorganisms to produce their cellobiases for them. The beta-1,3-glucanases are GH16, similar to those found in Lepidoptera [
<xref ref-type="bibr" rid="CR74">74</xref>
], however the prevalence of this recently described gene in animals has not been sufficiently examined. A greater sampling of this gene's presence in other animal, fungal, and bacterial species, as well as biochemical studies to determine the conserved catalytic residues for the protein, are needed before ordinal-level hypotheses can be made for the enzyme's evolutionary history. So far, the animal enzymes appear most closely related, and we hypothesize that at least three distinct beta-1,3-glucanase gene families existed in an early Phasmatodea ancestor, including the ancestor of the Timematidae.</p>
<p>Our work promotes phasmids as a potentially high-value source of novel PCWDEs for biotechnological applications [
<xref ref-type="bibr" rid="CR70">70</xref>
]. Cellulases and pectinases are highly sought after by the biofuel industry to degrade feedstock into the monomers later converted into fuel, or to improve the flow rate of the material by reducing the amount of solid matter [
<xref ref-type="bibr" rid="CR39">39</xref>
]. Pectinases are also used in the production of coffee, tea, and juice, and in waste-water treatment [
<xref ref-type="bibr" rid="CR88">88</xref>
]. Phasmid PCWDEs could be introduced into bacteria or fungi like
<italic>Trichoderma reesei</italic>
, for industrial-scale enzyme production or direct use in bioreactors for wastewater treatment or biofuel production [
<xref ref-type="bibr" rid="CR89">89</xref>
].</p>
<p>Our
<italic>de novo</italic>
midgut transcriptomes enabled us to survey all expressed PCWDEs of the Phasmatodea at once and identify conserved catalytic domains, justifying downstream translation and activity level analyses. A benefit of this is system is the increased speed and efficiency compared to the converse [
<xref ref-type="bibr" rid="CR90">90</xref>
]: running chemical assays to identify enzyme activity, using proteomics to identify the amino acid sequence of isolated enzymes, and working backwards from there to design a primer for the enzyme-encoding gene and hope it exists within the target organism’s genome itself and not a symbiont or contaminant [
<xref ref-type="bibr" rid="CR91">91</xref>
]. Another benefit is that transcriptomics can reveal genes useful for phylogenetic analysis but that are not translated or whose proteins are modified post-translation such that the standard biochemical tests do not detect their function. An associated drawback is that expressed genes are not necessarily translated into active proteins, nor are they necessarily active at the site of expression [
<xref ref-type="bibr" rid="CR92">92</xref>
]. However, when a reference genome is not available, a transcriptome can provide large sets of potential genes for study and, combined with genomic data, can determine whether or not they are endogenous to the target organism, which cannot be determined by homology alone.
<italic>de novo</italic>
transcriptome assembly combined with RNA-Seq is a powerful tool for suggesting putative functions for unknown tissues in understudied organisms and directions for future study.</p>
</sec>
<sec id="Sec16" sec-type="conclusions">
<title>Conclusions</title>
<p>The folivorous Phasmatodea are an ideal system to study the evolution of obligate herbivory, yet a paucity of genetic resources and poorly understood basic biology impede such work. Using RNA-Seq, we demonstrated a diversity of plant cell wall degrading enzymes expressed differentially in the anterior section of the phasmid midgut. Of these, the cellulases, cellobiases, and beta-1,3-glucanases are likely all encoded in the insect’s own genome, as are the pectinases, though we could not definitively rule out a microbial source for the latter. Such an abundance of endogenous enzymes was not expected from the Polyneoptera, raising important questions on their evolutionary history. The efficiency by which our
<italic>de novo</italic>
transcriptomes generated new genomic resources and hypotheses for future research on Polyneopteran digestion demonstrate the power of such methods to analyze organisms lacking sequenced genomes. Our findings strongly encourage expanding the searches for PCWDEs, most notably the pectinases and beta-1,3-glucanases, into other, lower Polyneopteran insects.</p>
<sec id="Sec17">
<title>Availability of supporting data</title>
<p>All reads and sequence files described in the manuscript are available under BioProject accessions PRJNA221630 for
<italic>P. schultei</italic>
and PRJNA238833 for the other phasmids.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec18">
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="12864_2014_6620_MOESM1_ESM.xls">
<caption>
<p>Additional file 1: Table S1: KEGG Table for the most highly expressed genes of the
<italic>Aretaon asperrimus</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) and posterior midgut (PMG) used. (XLS 27 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="12864_2014_6620_MOESM2_ESM.xls">
<caption>
<p>Additional file 2: Table S2: KEGG Table for the most highly expressed genes of the
<italic>Extatosoma tiaratum</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) and posterior midgut (PMG) used. (XLS 30 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="12864_2014_6620_MOESM3_ESM.xls">
<caption>
<p>Additional file 3: Table S3: KEGG Table for the most highly expressed genes of the
<italic>Medauroidea extradentata</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) and posterior midgut (PMG) used. (XLS 25 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM4">
<media xlink:href="12864_2014_6620_MOESM4_ESM.xls">
<caption>
<p>Additional file 4: Table S4: KEGG Table for the most highly expressed genes of the
<italic>Peruphasma schultei</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) and posterior midgut (PMG) used. (XLS 42 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM5">
<media xlink:href="12864_2014_6620_MOESM5_ESM.xls">
<caption>
<p>Additional file 5: Table S5: KEGG Table for the most highly expressed genes of the
<italic>Ramulus artemis</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) and posterior midgut (PMG) used. (XLS 24 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM6">
<media xlink:href="12864_2014_6620_MOESM6_ESM.xls">
<caption>
<p>Additional file 6: Table S6: KEGG Table for the most highly expressed genes of the
<italic>Sipyloidea sipylus</italic>
midgut. Top 500 most highly expressed genes in each of the anterior midgut (AMG) only. (XLS 11 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM7">
<media xlink:href="12864_2014_6620_MOESM7_ESM.xls">
<caption>
<p>Additional file 7: Table S7: Representative isotigs (sequences) for each PCWDE isogroup for the phasmatodea. Data is from the full midgut transcriptomes with short sequences removed. Transcripts were identified as PCWDEs based on amino acid alignment to known proteins from the NCBI database. * = The sequence contained a complete open-reading frame. Other sequences could have been truncated at the 5’ or 3’ or both. † = The sequence or another in that isogroup (_c#) had a poly-A tail. (XLS 22 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM8">
<media xlink:href="12864_2014_6620_MOESM8_ESM.xls">
<caption>
<p>Additional file 8: Table S8: – Species and NCBI Accession No's for cellulase (Beta-1,4-endoglucanase) proteins compared to phasmid proteins. Sequences with *were not included in the alignment figure (Figure 
<xref rid="Fig4" ref-type="fig">4</xref>
) due to poor or absent overlap with other sequences at that region.
<bold>Table S9.</bold>
– Species and NCBI Accession No's for pectinase (polygalacturonase) proteins compared to phasmid proteins. Sequences with *were not included in the alignment figure (Figure 
<xref rid="Fig5" ref-type="fig">5</xref>
) due to poor or absent overlap with other sequences at that region.
<bold>Table S10.</bold>
– Species and NCBI Accession No's for cellobiase (beta-glucosidase) proteins compared to phasmid proteins. Sequences with *were not included in the alignment figure (Figure 
<xref rid="Fig7" ref-type="fig">7</xref>
) due to poor or absent overlap with other sequences at that region.
<bold>Table S11.</bold>
– Species and NCBI Accession No's for beta-1,3-glucanase proteins compared to phasmid proteins. Sequences with *were not included in the alignment figure Figure 
<xref rid="Fig9" ref-type="fig">9</xref>
) due to poor or absent overlap with other sequences at that region. (XLS 60 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM9">
<media xlink:href="12864_2014_6620_MOESM9_ESM.txt">
<caption>
<p>Additional file 9: Table S9: Number of
<italic>Peruphasma schultei</italic>
midgut transcriptome sequences with successful Blast search, mapping, and annotation. (TXT 163 bytes)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM10">
<media xlink:href="12864_2014_6620_MOESM10_ESM.pdf">
<caption>
<p>Additional file 10: Figure S1: Species distribution for top-hit Blast results of
<italic>P. schultei</italic>
midgut transcriptome. (PDF 4 KB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM11">
<media xlink:href="12864_2014_6620_MOESM11_ESM.xls">
<caption>
<p>Additional file 11: Table S12: The most differentially expressed genes (DEGs) in the
<italic>P. schultei</italic>
AMG. Includes genes found in both or only one tissue type. Means measured in RPKM. PPDE = Posterior Probability of Differential Expression. Annotations made with Blast2GO. (XLS 3 MB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM12">
<media xlink:href="12864_2014_6620_MOESM12_ESM.xls">
<caption>
<p>Additional file 12: Table S13: The most differentially expressed genes (DEGs) in the
<italic>P. schultei</italic>
PMG. Includes genes found in both or only one tissue type. Means measured in RPKM. PPDE = Posterior Probability of Differential Expression. Annotations made with Blast2GO. (XLS 3 MB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM13">
<media xlink:href="12864_2014_6620_MOESM13_ESM.xls">
<caption>
<p>Additional file 13: Table S14: The most highly expressed genes of the
<italic>P. schultei</italic>
AMG. Identified as genes with expression levels ten times greater than the mean for that section. Means measured in RPKM. Annotations made with Blast2GO. (XLS 3 MB)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM14">
<media xlink:href="12864_2014_6620_MOESM14_ESM.xls">
<caption>
<p>Additional file 14: Table S15: The most highly expressed genes of the
<italic>P. schultei</italic>
PMG. Identified as genes with expression levels ten times greater than the mean for that section. Means measured in RPKM. Annotations made with Blast2GO. (XLS 3 MB)</p>
</caption>
</media>
</supplementary-material>
</sec>
</sec>
</body>
<back>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-list>
<def-item>
<term>AMG</term>
<def>
<p>Anterior midgut</p>
</def>
</def-item>
<def-item>
<term>CIPRES</term>
<def>
<p>Cyberinfrastructure for phylogenetic research</p>
</def>
</def-item>
<def-item>
<term>DEG</term>
<def>
<p>Differentially expressed genes</p>
</def>
</def-item>
<def-item>
<term>EC</term>
<def>
<p>Enzyme commission</p>
</def>
</def-item>
<def-item>
<term>GH</term>
<def>
<p>Glycoside hydrolase</p>
</def>
</def-item>
<def-item>
<term>GO</term>
<def>
<p>Gene ontology</p>
</def>
</def-item>
<def-item>
<term>HEG</term>
<def>
<p>Highly expressed gene</p>
</def>
</def-item>
<def-item>
<term>KEGG</term>
<def>
<p>Kyoto encyclopedia of genes and genomes</p>
</def>
</def-item>
<def-item>
<term>NCBI</term>
<def>
<p>National center for biotechnology information</p>
</def>
</def-item>
<def-item>
<term>PCWDE</term>
<def>
<p>Plant cell wall degrading enzyme</p>
</def>
</def-item>
<def-item>
<term>PDB</term>
<def>
<p>Protein data bank</p>
</def>
</def-item>
<def-item>
<term>PMG</term>
<def>
<p>Posterior midgut</p>
</def>
</def-item>
<def-item>
<term>PPDE</term>
<def>
<p>Posterior probability of differential expression</p>
</def>
</def-item>
<def-item>
<term>RPKM</term>
<def>
<p>Reads per kilobase per million</p>
</def>
</def-item>
<def-item>
<term>RSEM</term>
<def>
<p>RNA-Seq by expectation maximization</p>
</def>
</def-item>
<def-item>
<term>SRA</term>
<def>
<p>Sequence read archive</p>
</def>
</def-item>
<def-item>
<term>XSEDE</term>
<def>
<p>Extreme science and engineering discovery environment.</p>
</def>
</def-item>
</def-list>
</def-list>
</glossary>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>Authors MS and BRJ conceived the study and contributed equally to the work. LSK and BRJ provided resources and expertise. MS and LSK reared the insects. WCJ, JA, and BRJ carried out the RNA Seq and
<italic>de novo</italic>
transcriptome assembly. MS, WCJ, JA, and BRJ analyzed and interpreted data. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>Thanks to Dr. Steve Heydon and the Bohart Museum of Entomology staff and volunteers for insect rearing, to the Dr. Patrik Nosil Lab of the University of Sheffield, UK, for their work on the
<italic>Timema</italic>
genome and making it available online, and to Dr. Yannick Pauchet of the Max Planck Institute of Chemical Ecoogy in Jena, Germany, for general advising. MS was supported by the National Science Foundation (USA) Graduate Research Fellowship under Grant No. 1148897, the UC Davis & Humanities Graduate Research Fellowship in Entomology for 2012–13 and 2013–14, and the McBeth Memorial Scholarship. The research was supported by funds from the University of California at Davis. Thanks also to the editors and reviewers who contributed for their feedback.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ekblom</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Galindo</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Applications of next generation sequencing in molecular ecology of non-model organisms</article-title>
<source>Heredity (Edinb)</source>
<year>2011</year>
<volume>107</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1038/hdy.2010.152</pub-id>
<pub-id pub-id-type="pmid">21139633</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Metzker</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Sequencing technologies - the next generation</article-title>
<source>Nat Rev Genet</source>
<year>2010</year>
<volume>11</volume>
<issue>1</issue>
<fpage>31</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1038/nrg2626</pub-id>
<pub-id pub-id-type="pmid">19997069</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grabherr</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Haas</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Yassour</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>JZ</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Amit</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Adiconis</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Raychowdhury</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Mauceli</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hacohen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gnirke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rhind</surname>
<given-names>N</given-names>
</name>
<name>
<surname>di Palma</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Birren</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Nusbaum</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lindblad-Toh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Regev</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Full-length transcriptome assembly from RNA-Seq data without a reference genome</article-title>
<source>Nat Biotechnol</source>
<year>2011</year>
<volume>29</volume>
<issue>7</issue>
<fpage>644</fpage>
<lpage>652</lpage>
<pub-id pub-id-type="doi">10.1038/nbt.1883</pub-id>
<pub-id pub-id-type="pmid">21572440</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>He</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>RNA-Seq analysis and de novo transcriptome assembly of
<italic>Hevea brasiliensis</italic>
</article-title>
<source>Plant Mol Biol</source>
<year>2011</year>
<volume>77</volume>
<issue>3</issue>
<fpage>299</fpage>
<lpage>308</lpage>
<pub-id pub-id-type="doi">10.1007/s11103-011-9811-z</pub-id>
<pub-id pub-id-type="pmid">21811850</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Francis</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Christianson</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Kiko</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Powers</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Shaner</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Haddock SH</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>167</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-167</pub-id>
<pub-id pub-id-type="pmid">23496952</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poelchau</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Denlinger</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Elsik</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Armbruster</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation</article-title>
<source>BMC Genomics</source>
<year>2011</year>
<volume>12</volume>
<fpage>619</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-12-619</pub-id>
<pub-id pub-id-type="pmid">22185595</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hull</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Geib</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Fabrick</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Brent</surname>
<given-names>CS</given-names>
</name>
</person-group>
<article-title>Sequencing and de novo assembly of the western tarnished plant bug (Lygus hesperus) transcriptome</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<issue>1</issue>
<fpage>e55105</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0055105</pub-id>
<pub-id pub-id-type="pmid">23357950</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCarthy</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Santini</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Pimenta</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Diambra</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>First comparative transcriptomic analysis of wild adult male and female
<italic>Lutzomyia longipalpis</italic>
, vector of visceral leishmaniasis</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<issue>3</issue>
<fpage>e58645</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0058645</pub-id>
<pub-id pub-id-type="pmid">23554910</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yazawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kawahigashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<issue>4</issue>
<fpage>e62460</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0062460</pub-id>
<pub-id pub-id-type="pmid">23638091</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lehnert</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Mouchka</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Burriesci</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Gallo</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Pringle</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Extensive differences in gene expression between symbiotic and aposymbiotic Cnidarians</article-title>
<source>G3 (Bethesda)</source>
<year>2014</year>
<volume>4</volume>
<issue>2</issue>
<fpage>277</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="doi">10.1534/g3.113.009084</pub-id>
<pub-id pub-id-type="pmid">24368779</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bedford</surname>
<given-names>GO</given-names>
</name>
</person-group>
<article-title>Biology and ecology of the phasmatodea</article-title>
<source>Annu Rev Entomol</source>
<year>1978</year>
<volume>23</volume>
<fpage>125</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.en.23.010178.001013</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kasenene</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Forest association and phenology of wild coffee in Kibale National Park, Uganda</article-title>
<source>Afr J Ecol</source>
<year>1998</year>
<volume>36</volume>
<fpage>241</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2028.1998.00142.x</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Readshaw</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Phasmatid outbreaks revisiting?</article-title>
<source>Aust J Zool</source>
<year>1990</year>
<volume>38</volume>
<fpage>343</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="doi">10.1071/ZO9900343</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jurskis</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Eucalypt dieback in eastern Australia: a simple model</article-title>
<source>Aust For</source>
<year>2002</year>
<volume>65</volume>
<issue>2</issue>
<fpage>87</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1080/00049158.2002.10674859</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Headrick</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wilen</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Indian Walking Stick</article-title>
<source>Pest Notes</source>
<year>2011</year>
<volume>74157</volume>
<fpage>1</fpage>
<lpage>3</lpage>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borges</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Reut</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ponte</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>Quartau</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sousa</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Pollet</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Soares</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Marcelino</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rego</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>New records of exotic spiders and insects to the Azores, and new data on recently introduced species</article-title>
<source>Arquipélago Life and Marine Sciences</source>
<year>2013</year>
<volume>30</volume>
<fpage>57</fpage>
<lpage>70</lpage>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calderón-Cortés</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Quesada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cano-Camacho</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Oyama</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Endogenous plant cell wall digestion: a key mechanism in insect evolution</article-title>
<source>Annu Rev Ecol Evol Syst</source>
<year>2012</year>
<volume>43</volume>
<fpage>45</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-ecolsys-110411-160312</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Whitman</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Blum</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Slansky</surname>
<given-names>F</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Ananthakrishnan</surname>
<given-names>TN</given-names>
</name>
</person-group>
<article-title>Carnivory in Phytophagous Insects</article-title>
<source>Functional Dynamics of Phytophagous Insects</source>
<year>1994</year>
<publisher-loc>New Delhi</publisher-loc>
<publisher-name>Oxford & IBH Publishing Co. Pvt. Ltd</publisher-name>
<fpage>161</fpage>
<lpage>205</lpage>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitman</surname>
<given-names>DW</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Necrophagy in grasshoppers:
<italic>Taeniopoda eques</italic>
feeds on mammal varrion</article-title>
<source>J Orthopt Res</source>
<year>2010</year>
<volume>19</volume>
<issue>2</issue>
<fpage>377</fpage>
<lpage>380</lpage>
<pub-id pub-id-type="doi">10.1665/034.019.0228</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sugimura</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals</article-title>
<source>Proc Biol Sci</source>
<year>2003</year>
<volume>270</volume>
<issue>Suppl 1</issue>
<fpage>S69</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1098/rsbl.2003.0016</pub-id>
<pub-id pub-id-type="pmid">12952640</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davison</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Blaxter</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Ancient origin of glycosyl hydrolase family 9 cellulase genes</article-title>
<source>Mol Biol Evol</source>
<year>2005</year>
<volume>22</volume>
<issue>5</issue>
<fpage>1273</fpage>
<lpage>1284</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msi107</pub-id>
<pub-id pub-id-type="pmid">15703240</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calderón-Cortés</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cano-Camacho</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zavala-Páramo</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Quesada</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>cDNA cloning, homology modelling and evolutionary insights into novel endogenous cellulases of the borer beetle
<italic>Oncideres albomarginata chamela</italic>
(Cerambycidae)</article-title>
<source>Insect Mol Biol</source>
<year>2010</year>
<volume>19</volume>
<issue>3</issue>
<fpage>323</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2583.2010.00991.x</pub-id>
<pub-id pub-id-type="pmid">20201981</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eyun</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ffrench-Constant</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Benson</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Valencia-Jimenez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Moriyama</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Siegfried</surname>
<given-names>BD</given-names>
</name>
</person-group>
<article-title>Molecular evolution of glycoside hydrolase genes in the western corn rootworm (
<italic>Diabrotica virgifera virgifera</italic>
)</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>4</issue>
<fpage>e94052</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0094052</pub-id>
<pub-id pub-id-type="pmid">24718603</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ostafe</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Twyman</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Cellulases from insects</article-title>
<source>Adv Biochem Eng Biotechnol</source>
<year>2013</year>
<volume>136</volume>
<fpage>51</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="pmid">23728162</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Treves</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Cellulose digestion in primitive hexapods: effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,
<italic>Thermobia domestica</italic>
(Zygentoma, Lepismatidae)</article-title>
<source>J Chem Ecol</source>
<year>1994</year>
<volume>20</volume>
<issue>8</issue>
<fpage>2003</fpage>
<lpage>2020</lpage>
<pub-id pub-id-type="doi">10.1007/BF02066239</pub-id>
<pub-id pub-id-type="pmid">24242725</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hong</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Sung</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>C-G</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>Y-H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D-J</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Kusakabe</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Characterization of cryptopygus antarcticus endo-β-1, 4-glucanase from bombyx Mori expression systems</article-title>
<source>Mol Biotechnol</source>
<year>2014</year>
<volume>56</volume>
<issue>10</issue>
<fpage>878</fpage>
<lpage>889</lpage>
<pub-id pub-id-type="doi">10.1007/s12033-014-9767-8</pub-id>
<pub-id pub-id-type="pmid">24848382</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shelomi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut</article-title>
<source>J Insect Physiol</source>
<year>2014</year>
<volume>60</volume>
<fpage>25</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.jinsphys.2013.10.007</pub-id>
<pub-id pub-id-type="pmid">24216471</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tokuda</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Cellulolytic systems in insects</article-title>
<source>Annu Rev Entomol</source>
<year>2010</year>
<volume>55</volume>
<fpage>609</fpage>
<lpage>632</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-ento-112408-085319</pub-id>
<pub-id pub-id-type="pmid">19754245</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Willis</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Oppert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Jurat-Fuentes</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Methods for discovery and characterization of cellulolytic enzymes from insects</article-title>
<source>Insect Sci</source>
<year>2010</year>
<volume>17</volume>
<fpage>184</fpage>
<lpage>198</lpage>
<pub-id pub-id-type="doi">10.1111/j.1744-7917.2010.01322.x</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gramzow</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Theissen</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Siegfried</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Ffrench-Constant</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles</article-title>
<source>Insect Biochem Mol Biol</source>
<year>2014</year>
<volume>52C</volume>
<fpage>33</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1016/j.ibmb.2014.06.008</pub-id>
<pub-id pub-id-type="pmid">24978610</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trautwein</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Wiegmann</surname>
<given-names>BM</given-names>
</name>
<name>
<surname>Beutel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kjer</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Yeates</surname>
<given-names>DK</given-names>
</name>
</person-group>
<article-title>Advances in insect phylogeny at the dawn of the postgenomic era</article-title>
<source>Annu Rev Entomol</source>
<year>2012</year>
<volume>57</volume>
<fpage>449</fpage>
<lpage>468</lpage>
<pub-id pub-id-type="doi">10.1146/annurev-ento-120710-100538</pub-id>
<pub-id pub-id-type="pmid">22149269</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Letsch</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Insect phylogenomics: new insights on the relationships of lower neopteran orders (Polyneoptera)</article-title>
<source>Syst Entomol</source>
<year>2013</year>
<volume>38</volume>
<issue>4</issue>
<fpage>783</fpage>
<lpage>793</lpage>
<pub-id pub-id-type="doi">10.1111/syen.12028</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shelomi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Kimsey</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Analysis of the gut microbiota of walking sticks (Phasmatodea)</article-title>
<source>BMC Res Notes</source>
<year>2013</year>
<volume>6</volume>
<issue>1</issue>
<fpage>368</fpage>
<pub-id pub-id-type="doi">10.1186/1756-0500-6-368</pub-id>
<pub-id pub-id-type="pmid">24025149</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Terry</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Whiting</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Mantophasmatodea and phylogeny of the lower neopterous insects</article-title>
<source>Cladistics</source>
<year>2005</year>
<volume>21</volume>
<fpage>240</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1111/j.1096-0031.2005.00062.x</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Letsch</surname>
<given-names>HO</given-names>
</name>
<name>
<surname>Meusemann</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wipfler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schutte</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Beutel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Misof</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Insect phylogenomics: results, problems and the impact of matrix composition</article-title>
<source>Proc Biol Sci</source>
<year>2012</year>
<volume>279</volume>
<issue>1741</issue>
<fpage>3282</fpage>
<lpage>3290</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.2012.0744</pub-id>
<pub-id pub-id-type="pmid">22628473</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plazzi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ricci</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Passamonti</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>The mitochondrial genome of
<italic>Bacillus</italic>
stick insects (Phasmatodea) and the phylogeny of orthopteroid insects</article-title>
<source>Mol Phylogenet Evol</source>
<year>2011</year>
<volume>58</volume>
<issue>2</issue>
<fpage>304</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2010.12.005</pub-id>
<pub-id pub-id-type="pmid">21167949</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shelomi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kimsey</surname>
<given-names>LS</given-names>
</name>
</person-group>
<article-title>Vital staining of the stick insect digestive system identifies appendices of the midgut as novel system of excretion</article-title>
<source>J Morphol</source>
<year>2014</year>
<volume>275</volume>
<issue>6</issue>
<fpage>623</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1002/jmor.20243</pub-id>
<pub-id pub-id-type="pmid">24338977</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monteiro</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Tamaki</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Terra</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Ribeiro</surname>
<given-names>AF</given-names>
</name>
</person-group>
<article-title>The digestive system of the "stick bug" Cladomorphus phyllinus (Phasmida, Phasmatidae): a morphological, physiological and biochemical analysis</article-title>
<source>Arthropod Struct Dev</source>
<year>2014</year>
<volume>43</volume>
<issue>2</issue>
<fpage>123</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1016/j.asd.2013.11.005</pub-id>
<pub-id pub-id-type="pmid">24374178</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geddes</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Nieves</surname>
<given-names>IU</given-names>
</name>
<name>
<surname>Ingram</surname>
<given-names>LO</given-names>
</name>
</person-group>
<article-title>Advances in ethanol production</article-title>
<source>Curr Opin Biotechnol</source>
<year>2011</year>
<volume>22</volume>
<issue>3</issue>
<fpage>312</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="doi">10.1016/j.copbio.2011.04.012</pub-id>
<pub-id pub-id-type="pmid">21600756</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Jurat-Fuentes</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Oppert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Klingeman</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Oppert</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Identification and Characterization of Insect Cellulolytic Systems for Plant Biomass Degradation</article-title>
<source>Sun Grant Initiative: Southeastern Regional Center</source>
<year>2011</year>
<publisher-loc>Knoxville, TN</publisher-loc>
<publisher-name>University of Tennessee</publisher-name>
<fpage>24</fpage>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hannon</surname>
<given-names>G</given-names>
</name>
</person-group>
<source>FASTX-toolkit</source>
<year>2012</year>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cutadapt removes adapter sequences from high-throughput sequencing reads</article-title>
<source>EMBnet journal</source>
<year>2011</year>
<volume>17</volume>
<issue>1</issue>
<fpage>10</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.14806/ej.17.1.200</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Andrews</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>FastQC: A Quality Control Tool for High Throughput Sequence Data</source>
<year>2010</year>
<publisher-loc>Cambridge, UK</publisher-loc>
<publisher-name>Babraham Bioinformatics</publisher-name>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trapnell</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pachter</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Salzberg</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>TopHat: discovering splice junctions with RNA-Seq</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<issue>9</issue>
<fpage>1105</fpage>
<lpage>1111</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp120</pub-id>
<pub-id pub-id-type="pmid">19289445</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anders</surname>
<given-names>S</given-names>
</name>
</person-group>
<source>HTSeq: analysing high-throughput sequencing data with python</source>
<year>2010</year>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dewey</surname>
<given-names>CN</given-names>
</name>
</person-group>
<article-title>RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome</article-title>
<source>BMC bioinformatics</source>
<year>2011</year>
<volume>12</volume>
<fpage>323</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-12-323</pub-id>
<pub-id pub-id-type="pmid">21816040</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leng</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dawson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Thomson</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Ruotti</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Rissman</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>BMG</given-names>
</name>
<name>
<surname>Haag</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Gould</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Kendziorski</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments</article-title>
<source>Bioinformatics</source>
<year>2013</year>
<volume>29</volume>
<issue>8</issue>
<fpage>1035</fpage>
<lpage>1043</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btt087</pub-id>
<pub-id pub-id-type="pmid">23428641</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conesa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gotz</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Blast2GO: a comprehensive suite for functional analysis in plant genomics</article-title>
<source>Int J Plant Genom</source>
<year>2008</year>
<volume>2008</volume>
<fpage>619832</fpage>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Altschul</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Gish</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Lipman</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Basic local alignment search tool</article-title>
<source>J Mol Biol</source>
<year>1990</year>
<volume>215</volume>
<issue>3</issue>
<fpage>403</fpage>
<lpage>410</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-2836(05)80360-2</pub-id>
<pub-id pub-id-type="pmid">2231712</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanehisa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Araki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hattori</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hirakawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Katayama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kawashima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Okuda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tokimatsu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamanishi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>KEGG for linking genomes to life and the environment</article-title>
<source>Nucleic Acids Res</source>
<year>2008</year>
<volume>36</volume>
<issue>Database issue</issue>
<fpage>D480</fpage>
<lpage>D484</lpage>
<pub-id pub-id-type="pmid">18077471</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Artimo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jonnalagedda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Baratin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Csardi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>de Castro</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Duvaud</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Flegel</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Fortier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gasteiger</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Grosdidier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hernandez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ioannidis</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kuznetsov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Liechti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Moretti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mostaguir</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Redaschi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Rossier</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Xenarios</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Stockinger</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>ExPASy: SIB bioinformatics resource portal</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<issue>W1</issue>
<fpage>W597</fpage>
<lpage>W603</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gks400</pub-id>
<pub-id pub-id-type="pmid">22661580</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</article-title>
<source>Nucleic Acids Res</source>
<year>2004</year>
<volume>32</volume>
<issue>5</issue>
<fpage>1792</fpage>
<lpage>1797</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkh340</pub-id>
<pub-id pub-id-type="pmid">15034147</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Maddison</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Maddison</surname>
<given-names>DR</given-names>
</name>
</person-group>
<source>Mesquite: a modular system for evolutionary analysis. Version 2.75</source>
<year>2011</year>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waterhouse</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Procter</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Clamp</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Jalview Version 2–a multiple sequence alignment editor and analysis workbench</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<issue>9</issue>
<fpage>1189</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp033</pub-id>
<pub-id pub-id-type="pmid">19151095</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furnham</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Holliday</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>de Beer</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Thornton</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes</article-title>
<source>Nucleic Acids Res</source>
<year>2014</year>
<volume>42</volume>
<issue>Database issue</issue>
<fpage>D485</fpage>
<lpage>489</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkt1243</pub-id>
<pub-id pub-id-type="pmid">24319146</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Felsenstein</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author</source>
<year>2005</year>
<publisher-loc>Seattle</publisher-loc>
<publisher-name>Department of Genome Sciences, University of Washington</publisher-name>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Pfeiffer</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schwartz</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees</article-title>
<source>Gateway Computing Environments Workshop (GCE)</source>
<year>2010</year>
<fpage>1</fpage>
<lpage>8</lpage>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<issue>21</issue>
<fpage>2688</fpage>
<lpage>2690</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btl446</pub-id>
<pub-id pub-id-type="pmid">16928733</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Teslenko</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van der Mark</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ayres</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Darling</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Höhna</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Larget</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Suchard</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space</article-title>
<source>Syst Biol</source>
<year>2012</year>
<volume>61</volume>
<issue>3</issue>
<fpage>539</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="doi">10.1093/sysbio/sys029</pub-id>
<pub-id pub-id-type="pmid">22357727</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>FigTree, a graphical viewer of phylogenetic trees</source>
<year>2007</year>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rosenblatt</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>DiVincenzo</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Bever</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Poiesz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>GN</given-names>
</name>
</person-group>
<article-title>Detection and cloning of new HTLV-related endogenous sequences in man</article-title>
<source>Nucleic Acids Res</source>
<year>1989</year>
<volume>17</volume>
<issue>17</issue>
<fpage>6841</fpage>
<lpage>6854</lpage>
<pub-id pub-id-type="doi">10.1093/nar/17.17.6841</pub-id>
<pub-id pub-id-type="pmid">2780312</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edmonds</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A history of poly A sequences: from formation to factors to function</article-title>
<source>Prog Nucleic Acid Res Mol Biol</source>
<year>2002</year>
<volume>71</volume>
<fpage>285</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6603(02)71046-5</pub-id>
<pub-id pub-id-type="pmid">12102557</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davis</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation</article-title>
<source>J Zhejiang Univ Sci B</source>
<year>2014</year>
<volume>15</volume>
<issue>5</issue>
<fpage>429</fpage>
<lpage>437</lpage>
<pub-id pub-id-type="doi">10.1631/jzus.B1400076</pub-id>
<pub-id pub-id-type="pmid">24793760</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Brunak</surname>
<given-names>S</given-names>
</name>
<name>
<surname>von Heijne</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>SignalP 4.0: discriminating signal peptides from transmembrane regions</article-title>
<source>Nat Methods</source>
<year>2011</year>
<volume>8</volume>
<issue>10</issue>
<fpage>785</fpage>
<lpage>786</lpage>
<pub-id pub-id-type="doi">10.1038/nmeth.1701</pub-id>
<pub-id pub-id-type="pmid">21959131</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Denton</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mutti</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pappan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kanost</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Reese</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Reeck</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Polygalacturonase from
<italic>Sitophilus oryzae</italic>
: possible horizontal transfer of a pectinase gene from fungi to weevils</article-title>
<source>J Insect Sci</source>
<year>2003</year>
<volume>3</volume>
<fpage>24</fpage>
<pub-id pub-id-type="doi">10.1673/031.003.2401</pub-id>
<pub-id pub-id-type="pmid">15841240</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Choo</surname>
<given-names>YM</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Seol</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Je</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Sohn</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket
<italic>Teleogryllus emma</italic>
</article-title>
<source>Comp Biochem Physiol B Biochem Mol Biol</source>
<year>2008</year>
<volume>150</volume>
<fpage>368</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1016/j.cbpb.2008.04.005</pub-id>
<pub-id pub-id-type="pmid">18514003</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Saski</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Feltus</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Luyten</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Quesneville</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Studying the organization of genes encoding plant cell wall degrading enzymes in Chrysomela tremula provides insights into a leaf beetle genome</article-title>
<source>Insect Mol Biol</source>
<year>2014</year>
<volume>23</volume>
<issue>3</issue>
<fpage>286</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="pmid">24456018</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chauhan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Cytochrome P450‒encoding genes from the Heliconius genome as candidates for cyanogenesis</article-title>
<source>Insect Mol Biol</source>
<year>2013</year>
<volume>22</volume>
<issue>5</issue>
<fpage>532</fpage>
<lpage>540</lpage>
<pub-id pub-id-type="doi">10.1111/imb.12042</pub-id>
<pub-id pub-id-type="pmid">23834845</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer</article-title>
<source>Proc Biol Sci</source>
<year>2013</year>
<volume>280</volume>
<issue>1763</issue>
<fpage>20131021</fpage>
<pub-id pub-id-type="doi">10.1098/rspb.2013.1021</pub-id>
<pub-id pub-id-type="pmid">23698014</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Busconi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Berzolla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Chiappini</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Preliminary data on cellulase encoding genes in the xylophagous beetle,
<italic>Hylotrupes bajulus</italic>
(Linnaeus)</article-title>
<source>Int Biodeterior Biodegradation</source>
<year>2014</year>
<volume>86</volume>
<fpage>92</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.1016/j.ibiod.2013.09.009</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Wielsch</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Svatoš</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle</article-title>
<source>BMC Genomics</source>
<year>2012</year>
<volume>13</volume>
<fpage>587</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-13-587</pub-id>
<pub-id pub-id-type="pmid">23116131</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tokuda</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Animal cellulases</article-title>
<source>Cell Mol Life Sci</source>
<year>2001</year>
<volume>58</volume>
<issue>9</issue>
<fpage>1167</fpage>
<lpage>1178</lpage>
<pub-id pub-id-type="doi">10.1007/PL00000931</pub-id>
<pub-id pub-id-type="pmid">11577976</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ortego</surname>
<given-names>F</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Smagghe</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Physiological Adaptations of the Insect Gut to Herbivory</article-title>
<source>Arthropod-Plant Interactions: Novel Insights and Approaches for IPM</source>
<year>2012</year>
<publisher-loc>Dordrecht, NY</publisher-loc>
<publisher-name>Springer</publisher-name>
<fpage>75</fpage>
<lpage>88</lpage>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Freitak</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Heidel-Fischer</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera</article-title>
<source>J Biol Chem</source>
<year>2009</year>
<volume>284</volume>
<issue>4</issue>
<fpage>2214</fpage>
<lpage>2224</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M806204200</pub-id>
<pub-id pub-id-type="pmid">19033442</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakon</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Irwin</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Karplus</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>Structure and mechanism of endo/exocellulase E4 from
<italic>Thermomonospora fusca</italic>
</article-title>
<source>Nat Struct Biol</source>
<year>1997</year>
<volume>4</volume>
<issue>10</issue>
<fpage>810</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="doi">10.1038/nsb1097-810</pub-id>
<pub-id pub-id-type="pmid">9334746</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Irwin</surname>
<given-names>DC</given-names>
</name>
<name>
<surname>Escovar-Kousen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>DB</given-names>
</name>
</person-group>
<article-title>Kinetic studies of
<italic>Thermobifida fusca</italic>
Cel9A active site mutant enzymes</article-title>
<source>Biochemistry</source>
<year>2004</year>
<volume>43</volume>
<issue>30</issue>
<fpage>9655</fpage>
<lpage>9663</lpage>
<pub-id pub-id-type="doi">10.1021/bi049394n</pub-id>
<pub-id pub-id-type="pmid">15274620</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pickersgill</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Worboys</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jenkins</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Crystal structure of polygalacturonase from Erwinia carotovora ssp. carotovora</article-title>
<source>J Biol Chem</source>
<year>1998</year>
<volume>273</volume>
<issue>38</issue>
<fpage>24660</fpage>
<lpage>24664</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.273.38.24660</pub-id>
<pub-id pub-id-type="pmid">9733763</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barrett</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Suresh</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Tolley</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Dodson</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase</article-title>
<source>Structure</source>
<year>1995</year>
<volume>3</volume>
<issue>9</issue>
<fpage>951</fpage>
<lpage>960</lpage>
<pub-id pub-id-type="doi">10.1016/S0969-2126(01)00229-5</pub-id>
<pub-id pub-id-type="pmid">8535788</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Juncosa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pons</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dot</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Querol</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Planas</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Identification of active site carboxylic residues in Bacillus licheniformis 1,3-1,4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis</article-title>
<source>J Biol Chem</source>
<year>1994</year>
<volume>269</volume>
<issue>20</issue>
<fpage>14530</fpage>
<lpage>14535</lpage>
<pub-id pub-id-type="pmid">8182059</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scully</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Hoover</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Carlson</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Tien</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Geib</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Midgut transcriptome profiling of
<italic>Anoplophora glabripennis</italic>
, a lignocellulose degrading cerambycid beetle</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>850</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-850</pub-id>
<pub-id pub-id-type="pmid">24304644</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Neil</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Emrich</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Assessing
<italic>De Novo</italic>
transcriptome assembly metrics for consistency and utility</article-title>
<source>BMC Genomics</source>
<year>2013</year>
<volume>14</volume>
<fpage>465</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2164-14-465</pub-id>
<pub-id pub-id-type="pmid">23837739</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>WH</given-names>
</name>
</person-group>
<article-title>Statistical inferences for isoform expression in RNA-Seq</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<issue>8</issue>
<fpage>1026</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btp113</pub-id>
<pub-id pub-id-type="pmid">19244387</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijay</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Poelstra</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Kunstner</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments</article-title>
<source>Mol Ecol</source>
<year>2013</year>
<volume>22</volume>
<issue>3</issue>
<fpage>620</fpage>
<lpage>634</lpage>
<pub-id pub-id-type="doi">10.1111/mec.12014</pub-id>
<pub-id pub-id-type="pmid">22998089</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scharf</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Sethi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Raychoudhury</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Boucias</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Defining host-symbiont collaboration in termite lignocellulose digestion</article-title>
<source>Commun Integr Biol</source>
<year>2011</year>
<volume>4</volume>
<issue>6</issue>
<fpage>761</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="doi">10.4161/cib.17750</pub-id>
<pub-id pub-id-type="pmid">22446549</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kirsch</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Giraud</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Heckel</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica</article-title>
<source>Insect Biochem Mol Biol</source>
<year>2014</year>
<volume>49</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1016/j.ibmb.2014.03.004</pub-id>
<pub-id pub-id-type="pmid">24657889</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pauchet</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wilkinson</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chauhan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ffrench-Constant</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Diversity of beetle genes encoding novel plant cell wall degrading enzymes</article-title>
<source>PLoS One</source>
<year>2010</year>
<volume>5</volume>
<issue>12</issue>
<fpage>e15635</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0015635</pub-id>
<pub-id pub-id-type="pmid">21179425</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tokuda</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hojo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Makiya</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Miyagi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Arakawa</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Arioka</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cellulolytic environment in the midgut of the wood-feeding higher termite
<italic>Nasutitermes takasagoensis</italic>
</article-title>
<source>J Insect Physiol</source>
<year>2012</year>
<volume>58</volume>
<issue>1</issue>
<fpage>147</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1016/j.jinsphys.2011.10.012</pub-id>
<pub-id pub-id-type="pmid">22085675</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kashyap</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Vohra</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Chopra</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tewari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Applications of pectinases in the commercial sector: a review</article-title>
<source>Bioresour Technol</source>
<year>2001</year>
<volume>77</volume>
<issue>3</issue>
<fpage>215</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-8524(00)00118-8</pub-id>
<pub-id pub-id-type="pmid">11272008</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dashtban</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schraft</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Fungal bioconversion of lignocellulosic residues; opportunities & perspectives</article-title>
<source>Int J Biol Sci</source>
<year>2009</year>
<volume>5</volume>
<issue>6</issue>
<fpage>578</fpage>
<pub-id pub-id-type="doi">10.7150/ijbs.5.578</pub-id>
<pub-id pub-id-type="pmid">19774110</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>McCorkle</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Monchy</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Taghavi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>van der Lelie</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Bioprospecting metagenomes: glycosyl hydrolases for converting biomass</article-title>
<source>Biotechnol Biofuels</source>
<year>2009</year>
<volume>2</volume>
<fpage>10</fpage>
<pub-id pub-id-type="doi">10.1186/1754-6834-2-10</pub-id>
<pub-id pub-id-type="pmid">19450243</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oppert</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Klingeman</surname>
<given-names>WE</given-names>
</name>
<name>
<surname>Willis</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Oppert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jurat-Fuentes</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Prospecting for cellulolytic activity in insect digestive fluids</article-title>
<source>Comp Biochem Physiol Biochem Mol Biol</source>
<year>2010</year>
<volume>155</volume>
<fpage>145</fpage>
<lpage>154</lpage>
<pub-id pub-id-type="doi">10.1016/j.cbpb.2009.10.014</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Góngora-Castillo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Buell</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence</article-title>
<source>Nat Prod Rep</source>
<year>2013</year>
<volume>30</volume>
<issue>4</issue>
<fpage>490</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="doi">10.1039/c3np20099j</pub-id>
<pub-id pub-id-type="pmid">23377493</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000169  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000169  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024