Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization

Identifieur interne : 000165 ( Pmc/Corpus ); précédent : 000164; suivant : 000166

Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization

Auteurs : Yun-Dong Gao ; Aj Harris ; Xing-Jin He

Source :

RBID : PMC:4518642

Abstract

Background

Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is Nomocharis Franchet. Nomocharis comprises 7–15 species bearing showy-flowers that are endemic to the H-D Mountains. Nomocharis has long been treated as sister to Lilium L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although Nomocharis appears morphologically distinctive, recent molecular studies have shown that it is nested within Lilium, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in Lilium-Nomocharis and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers.

Results

Our phylogenetic reconstruction revealed several Lilium species nested within a clade of Nomocharis, which evolved ca. 12 million years ago and is itself nested within the rest of Lilium. Flat/open and horizon oriented flowers are ancestral in Nomocharis. Species of Lilium nested within Nomocharis diverged from Nomocharis ca. 6.5 million years ago. These Lilium evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago. Nomocharis and the nested Lilium species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively.

Conclusions

The timing of speciation and ecological and morphological evolutionary events in Nomocharis are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3–4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in Nomocharis and the nested Lilium along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in Lilium-Nomocharis. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between Lilium and Nomocharis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-015-0405-2) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1186/s12862-015-0405-2
PubMed: 26219287
PubMed Central: 4518642

Links to Exploration step

PMC:4518642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Morphological and ecological divergence of
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization</title>
<author>
<name sortKey="Gao, Yun Dong" sort="Gao, Yun Dong" uniqKey="Gao Y" first="Yun-Dong" last="Gao">Yun-Dong Gao</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harris, Aj" sort="Harris, Aj" uniqKey="Harris A" first="Aj" last="Harris">Aj Harris</name>
<affiliation>
<nlm:aff id="Aff3">Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078-3013 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Xing Jin" sort="He, Xing Jin" uniqKey="He X" first="Xing-Jin" last="He">Xing-Jin He</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26219287</idno>
<idno type="pmc">4518642</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4518642</idno>
<idno type="RBID">PMC:4518642</idno>
<idno type="doi">10.1186/s12862-015-0405-2</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Morphological and ecological divergence of
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization</title>
<author>
<name sortKey="Gao, Yun Dong" sort="Gao, Yun Dong" uniqKey="Gao Y" first="Yun-Dong" last="Gao">Yun-Dong Gao</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Harris, Aj" sort="Harris, Aj" uniqKey="Harris A" first="Aj" last="Harris">Aj Harris</name>
<affiliation>
<nlm:aff id="Aff3">Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078-3013 USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Xing Jin" sort="He, Xing Jin" uniqKey="He X" first="Xing-Jin" last="He">Xing-Jin He</name>
<affiliation>
<nlm:aff id="Aff1">Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Evolutionary Biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is
<italic>Nomocharis</italic>
Franchet.
<italic>Nomocharis</italic>
comprises 7–15 species bearing showy-flowers that are endemic to the H-D Mountains.
<italic>Nomocharis</italic>
has long been treated as sister to
<italic>Lilium</italic>
L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although
<italic>Nomocharis</italic>
appears morphologically distinctive, recent molecular studies have shown that it is nested within
<italic>Lilium</italic>
, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers.</p>
</sec>
<sec>
<title>Results</title>
<p>Our phylogenetic reconstruction revealed several
<italic>Lilium</italic>
species nested within a clade of
<italic>Nomocharis</italic>
, which evolved ca. 12 million years ago and is itself nested within the rest of
<italic>Lilium</italic>
. Flat/open and horizon oriented flowers are ancestral in
<italic>Nomocharis</italic>
. Species of
<italic>Lilium</italic>
nested within
<italic>Nomocharis</italic>
diverged from
<italic>Nomocharis</italic>
ca. 6.5 million years ago. These
<italic>Lilium</italic>
evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago.
<italic>Nomocharis</italic>
and the nested
<italic>Lilium</italic>
species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The timing of speciation and ecological and morphological evolutionary events in
<italic>Nomocharis</italic>
are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3–4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in
<italic>Nomocharis</italic>
and the nested
<italic>Lilium</italic>
along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in
<italic>Lilium-Nomocharis</italic>
. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12862-015-0405-2) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Myers, N" uniqKey="Myers N">N Myers</name>
</author>
<author>
<name sortKey="Mittermeier, Ra" uniqKey="Mittermeier R">RA Mittermeier</name>
</author>
<author>
<name sortKey="Mittermeier, Cg" uniqKey="Mittermeier C">CG Mittermeier</name>
</author>
<author>
<name sortKey="Da Fonseca, Gab" uniqKey="Da Fonseca G">GAB da Fonseca</name>
</author>
<author>
<name sortKey="Kent, J" uniqKey="Kent J">J Kent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
<author>
<name sortKey="Wang, Yj" uniqKey="Wang Y">YJ Wang</name>
</author>
<author>
<name sortKey="Wang, Al" uniqKey="Wang A">AL Wang</name>
</author>
<author>
<name sortKey="Ohba, H" uniqKey="Ohba H">H Ohba</name>
</author>
<author>
<name sortKey="Abbott, Rj" uniqKey="Abbott R">RJ Abbott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Jp" uniqKey="Yue J">JP Yue</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
<author>
<name sortKey="Al Shehbaz, Ia" uniqKey="Al Shehbaz I">IA Al-Shehbaz</name>
</author>
<author>
<name sortKey="Li, Jh" uniqKey="Li J">JH Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, A" uniqKey="Peterson A">A Peterson</name>
</author>
<author>
<name sortKey="Levichev, Ig" uniqKey="Levichev I">IG Levichev</name>
</author>
<author>
<name sortKey="Peterson, J" uniqKey="Peterson J">J Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Yj" uniqKey="Wang Y">YJ Wang</name>
</author>
<author>
<name sortKey="Li, Xx" uniqKey="Li X">XX Li</name>
</author>
<author>
<name sortKey="Hao, G" uniqKey="Hao G">G Hao</name>
</author>
<author>
<name sortKey="Li, Jq" uniqKey="Li J">JQ Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
<author>
<name sortKey="Chen, Zd" uniqKey="Chen Z">ZD Chen</name>
</author>
<author>
<name sortKey="Lu, Am" uniqKey="Lu A">AM Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Friesen, N" uniqKey="Friesen N">N Friesen</name>
</author>
<author>
<name sortKey="Fritsch, Rm" uniqKey="Fritsch R">RM Fritsch</name>
</author>
<author>
<name sortKey="Pollner, S" uniqKey="Pollner S">S Pollner</name>
</author>
<author>
<name sortKey="Blattner, F" uniqKey="Blattner F">F Blattner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Hg" uniqKey="Tang H">HG Tang</name>
</author>
<author>
<name sortKey="Meng, Lh" uniqKey="Meng L">LH Meng</name>
</author>
<author>
<name sortKey="Ao, Sm" uniqKey="Ao S">SM Ao</name>
</author>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
<author>
<name sortKey="Tian, B" uniqKey="Tian B">B Tian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raudnitschka, D" uniqKey="Raudnitschka D">D Raudnitschka</name>
</author>
<author>
<name sortKey="Hensen, I" uniqKey="Hensen I">I Hensen</name>
</author>
<author>
<name sortKey="Oberprieler, C" uniqKey="Oberprieler C">C Oberprieler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carling, Md" uniqKey="Carling M">MD Carling</name>
</author>
<author>
<name sortKey="Thomassen, Ha" uniqKey="Thomassen H">HA Thomassen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balfour, B" uniqKey="Balfour B">B Balfour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sealy, Jr" uniqKey="Sealy J">JR Sealy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sealy, Jr" uniqKey="Sealy J">JR Sealy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Sy" uniqKey="Liang S">SY Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Yd" uniqKey="Gao Y">YD Gao</name>
</author>
<author>
<name sortKey="Hohenegger, M" uniqKey="Hohenegger M">M Hohenegger</name>
</author>
<author>
<name sortKey="Harris, A" uniqKey="Harris A">A Harris</name>
</author>
<author>
<name sortKey="Zhou, Sd" uniqKey="Zhou S">SD Zhou</name>
</author>
<author>
<name sortKey="He, Xj" uniqKey="He X">XJ He</name>
</author>
<author>
<name sortKey="Wan, J" uniqKey="Wan J">J Wan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Yd" uniqKey="Gao Y">YD Gao</name>
</author>
<author>
<name sortKey="Harris, A" uniqKey="Harris A">A Harris</name>
</author>
<author>
<name sortKey="Zhou, Sd" uniqKey="Zhou S">SD Zhou</name>
</author>
<author>
<name sortKey="He, Xj" uniqKey="He X">XJ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, K" uniqKey="Hayashi K">K Hayashi</name>
</author>
<author>
<name sortKey="Kawano, S" uniqKey="Kawano S">S Kawano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Sy" uniqKey="Liang S">SY Liang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, Sy" uniqKey="Liang S">SY Liang</name>
</author>
<author>
<name sortKey="Tamura, M" uniqKey="Tamura M">M Tamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, Yd" uniqKey="Gao Y">YD Gao</name>
</author>
<author>
<name sortKey="Zhou, Sd" uniqKey="Zhou S">SD Zhou</name>
</author>
<author>
<name sortKey="He, Xj" uniqKey="He X">XJ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Zy" uniqKey="Wu Z">ZY Wu</name>
</author>
<author>
<name sortKey="Wu, Sg" uniqKey="Wu S">SG Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comber, Hf" uniqKey="Comber H">HF Comber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haw, Sg" uniqKey="Haw S">SG Haw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Fb" uniqKey="Chen F">FB Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Fb" uniqKey="Chen F">FB Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harrison, Tm" uniqKey="Harrison T">TM Harrison</name>
</author>
<author>
<name sortKey="Copeland, P" uniqKey="Copeland P">P Copeland</name>
</author>
<author>
<name sortKey="Kidd, Wsf" uniqKey="Kidd W">WSF Kidd</name>
</author>
<author>
<name sortKey="Yin, A" uniqKey="Yin A">A Yin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Jj" uniqKey="Li J">JJ Li</name>
</author>
<author>
<name sortKey="Shi, Yf" uniqKey="Shi Y">YF Shi</name>
</author>
<author>
<name sortKey="Li, By" uniqKey="Li B">BY Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chapman, Ma" uniqKey="Chapman M">MA Chapman</name>
</author>
<author>
<name sortKey="Hiscock, Sj" uniqKey="Hiscock S">SJ Hiscock</name>
</author>
<author>
<name sortKey="Filatov, Da" uniqKey="Filatov D">DA Filatov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, Yy" uniqKey="Mao Y">YY Mao</name>
</author>
<author>
<name sortKey="Huang, Sq" uniqKey="Huang S">SQ Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Meng, Ll" uniqKey="Meng L">LL Meng</name>
</author>
<author>
<name sortKey="Yang, Yp" uniqKey="Yang Y">YP Yang</name>
</author>
<author>
<name sortKey="Duan, Yw" uniqKey="Duan Y">YW Duan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Yj" uniqKey="Wang Y">YJ Wang</name>
</author>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Al" uniqKey="Wang A">AL Wang</name>
</author>
<author>
<name sortKey="Yang, My" uniqKey="Yang M">MY Yang</name>
</author>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koener, C" uniqKey="Koener C">C Köener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ushimaru, A" uniqKey="Ushimaru A">A Ushimaru</name>
</author>
<author>
<name sortKey="Dohzono, I" uniqKey="Dohzono I">I Dohzono</name>
</author>
<author>
<name sortKey="Takami, Y" uniqKey="Takami Y">Y Takami</name>
</author>
<author>
<name sortKey="Hyodo, F" uniqKey="Hyodo F">F Hyodo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ushimaru, A" uniqKey="Ushimaru A">A Ushimaru</name>
</author>
<author>
<name sortKey="Hyodo, F" uniqKey="Hyodo F">F Hyodo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Sq" uniqKey="Huang S">SQ Huang</name>
</author>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Dafni, A" uniqKey="Dafni A">A Dafni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, Jf" uniqKey="Sun J">JF Sun</name>
</author>
<author>
<name sortKey="Gong, Yb" uniqKey="Gong Y">YB Gong</name>
</author>
<author>
<name sortKey="Renner, Ss" uniqKey="Renner S">SS Renner</name>
</author>
<author>
<name sortKey="Huang, Sq" uniqKey="Huang S">SQ Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fenster, Cb" uniqKey="Fenster C">CB Fenster</name>
</author>
<author>
<name sortKey="Armbruster, Ws" uniqKey="Armbruster W">WS Armbruster</name>
</author>
<author>
<name sortKey="Dudash, Mr" uniqKey="Dudash M">MR Dudash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maddison, W" uniqKey="Maddison W">W Maddison</name>
</author>
<author>
<name sortKey="Knowles, Ll" uniqKey="Knowles L">LL Knowles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richardson, Ao" uniqKey="Richardson A">AO Richardson</name>
</author>
<author>
<name sortKey="Palmer, Jd" uniqKey="Palmer J">JD Palmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Minami, S" uniqKey="Minami S">S Minami</name>
</author>
<author>
<name sortKey="Azuma, A" uniqKey="Azuma A">A Azuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiramatsu, M" uniqKey="Hiramatsu M">M Hiramatsu</name>
</author>
<author>
<name sortKey="Ii, K" uniqKey="Ii K">K Ii</name>
</author>
<author>
<name sortKey="Okubo, H" uniqKey="Okubo H">H Okubo</name>
</author>
<author>
<name sortKey="Huang, Kl" uniqKey="Huang K">KL Huang</name>
</author>
<author>
<name sortKey="Huang, Cw" uniqKey="Huang C">CW Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patterson, Tb" uniqKey="Patterson T">TB Patterson</name>
</author>
<author>
<name sortKey="Givnish, Tj" uniqKey="Givnish T">TJ Givnish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaw, J" uniqKey="Shaw J">J Shaw</name>
</author>
<author>
<name sortKey="Lickey, Eb" uniqKey="Lickey E">EB Lickey</name>
</author>
<author>
<name sortKey="Schilling, Ee" uniqKey="Schilling E">EE Schilling</name>
</author>
<author>
<name sortKey="Small, Rl" uniqKey="Small R">RL Small</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doyle, Jj" uniqKey="Doyle J">JJ Doyle</name>
</author>
<author>
<name sortKey="Doyle, Jl" uniqKey="Doyle J">JL Doyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiens, Jj" uniqKey="Wiens J">JJ Wiens</name>
</author>
<author>
<name sortKey="Morrill, Mc" uniqKey="Morrill M">MC Morrill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Jd" uniqKey="Thompson J">JD Thompson</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
<author>
<name sortKey="Plewniak, F" uniqKey="Plewniak F">F Plewniak</name>
</author>
<author>
<name sortKey="Jeanmougin, F" uniqKey="Jeanmougin F">F Jeanmougin</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Dudley, J" uniqKey="Dudley J">J Dudley</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morrison, Da" uniqKey="Morrison D">DA Morrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swofford, Dl" uniqKey="Swofford D">DL Swofford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nylander, Jaa" uniqKey="Nylander J">JAA Nylander</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Susko, E" uniqKey="Susko E">E Susko</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clement, M" uniqKey="Clement M">M Clement</name>
</author>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
<author>
<name sortKey="Templeton, Ar" uniqKey="Templeton A">AR Templeton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bremer, K" uniqKey="Bremer K">K Bremer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vinnersten, A" uniqKey="Vinnersten A">A Vinnersten</name>
</author>
<author>
<name sortKey="Bremer, K" uniqKey="Bremer K">K Bremer</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Bromham, L" uniqKey="Bromham L">L Bromham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Graur, D" uniqKey="Graur D">D Graur</name>
</author>
<author>
<name sortKey="Martin, W" uniqKey="Martin W">W Martin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dilcher, Dl" uniqKey="Dilcher D">DL Dilcher</name>
</author>
<author>
<name sortKey="Lott, Ta" uniqKey="Lott T">TA Lott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Potter, F" uniqKey="Potter F">F Potter</name>
</author>
<author>
<name sortKey="Dilcher, D" uniqKey="Dilcher D">D Dilcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, G" uniqKey="Sun G">G Sun</name>
</author>
<author>
<name sortKey="Dilcher, Dl" uniqKey="Dilcher D">DL Dilcher</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conran, Jg" uniqKey="Conran J">JG Conran</name>
</author>
<author>
<name sortKey="Carpenter, Rj" uniqKey="Carpenter R">RJ Carpenter</name>
</author>
<author>
<name sortKey="Jordan, Gj" uniqKey="Jordan G">GJ Jordan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carpenter, Rj" uniqKey="Carpenter R">RJ Carpenter</name>
</author>
<author>
<name sortKey="Jordan, Gj" uniqKey="Jordan G">GJ Jordan</name>
</author>
<author>
<name sortKey="Hill, Rs" uniqKey="Hill R">RS Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Js" uniqKey="Kim J">JS Kim</name>
</author>
<author>
<name sortKey="Hong, Jk" uniqKey="Hong J">JK Hong</name>
</author>
<author>
<name sortKey="Chase, Mw" uniqKey="Chase M">MW Chase</name>
</author>
<author>
<name sortKey="Fay, Mf" uniqKey="Fay M">MF Fay</name>
</author>
<author>
<name sortKey="Kim, Jh" uniqKey="Kim J">JH Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Ho, Syw" uniqKey="Ho S">SYW Ho</name>
</author>
<author>
<name sortKey="Phillips, Mj" uniqKey="Phillips M">MJ Phillips</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Harris, A" uniqKey="Harris A">A Harris</name>
</author>
<author>
<name sortKey="He, Xj" uniqKey="He X">XJ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Y" uniqKey="Yu Y">Y Yu</name>
</author>
<author>
<name sortKey="Harris, Aj" uniqKey="Harris A">AJ Harris</name>
</author>
<author>
<name sortKey="He, Xj" uniqKey="He X">XJ He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcrae, Ea" uniqKey="Mcrae E">EA McRae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ree, Rh" uniqKey="Ree R">RH Ree</name>
</author>
<author>
<name sortKey="Smith, Sa" uniqKey="Smith S">SA Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rutishauser, R" uniqKey="Rutishauser R">R Rutishauser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stover, Bc" uniqKey="Stover B">BC Stöver</name>
</author>
<author>
<name sortKey="Muller, Kf" uniqKey="Muller K">KF Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Tn" uniqKey="Ho T">TN Ho</name>
</author>
<author>
<name sortKey="Pringle, Js" uniqKey="Pringle J">JS Pringle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levan, A" uniqKey="Levan A">A Levan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, Xm" uniqKey="Tian X">XM Tian</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J Luo</name>
</author>
<author>
<name sortKey="Wang, Al" uniqKey="Wang A">AL Wang</name>
</author>
<author>
<name sortKey="Mao, Ks" uniqKey="Mao K">KS Mao</name>
</author>
<author>
<name sortKey="Liu, Jq" uniqKey="Liu J">JQ Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, Cm" uniqKey="Hu C">CM Hu</name>
</author>
<author>
<name sortKey="Kelso, S" uniqKey="Kelso S">S Kelso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schneeweiss, Gm" uniqKey="Schneeweiss G">GM Schneeweiss</name>
</author>
<author>
<name sortKey="Schonswetter, P" uniqKey="Schonswetter P">P Schonswetter</name>
</author>
<author>
<name sortKey="Kelso, S" uniqKey="Kelso S">S Kelso</name>
</author>
<author>
<name sortKey="Niklfeld, H" uniqKey="Niklfeld H">H Niklfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheo, Ty" uniqKey="Cheo T">TY Cheo</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Yang, G" uniqKey="Yang G">G Yang</name>
</author>
<author>
<name sortKey="Al Shenbaz, I" uniqKey="Al Shenbaz I">I Al-Shenbaz</name>
</author>
<author>
<name sortKey="Dorofeev, V" uniqKey="Dorofeev V">V Dorofeev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yue, Jp" uniqKey="Yue J">JP Yue</name>
</author>
<author>
<name sortKey="Gu, Zj" uniqKey="Gu Z">ZJ Gu</name>
</author>
<author>
<name sortKey="Al Shehbaz, Ia" uniqKey="Al Shehbaz I">IA Al-Shehbaz</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, Tj" uniqKey="White T">TJ White</name>
</author>
<author>
<name sortKey="Bruns, T" uniqKey="Bruns T">T Bruns</name>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S Lee</name>
</author>
<author>
<name sortKey="Taylor, J" uniqKey="Taylor J">J Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fay, Mf" uniqKey="Fay M">MF Fay</name>
</author>
<author>
<name sortKey="Swensen, Sm" uniqKey="Swensen S">SM Swensen</name>
</author>
<author>
<name sortKey="Chase, Mw" uniqKey="Chase M">MW Chase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuenoud, P" uniqKey="Cuenoud P">P Cuenoud</name>
</author>
<author>
<name sortKey="Savolainen, V" uniqKey="Savolainen V">V Savolainen</name>
</author>
<author>
<name sortKey="Chatrou, Lw" uniqKey="Chatrou L">LW Chatrou</name>
</author>
<author>
<name sortKey="Powell, M" uniqKey="Powell M">M Powell</name>
</author>
<author>
<name sortKey="Grayer, Rj" uniqKey="Grayer R">RJ Grayer</name>
</author>
<author>
<name sortKey="Chase, Mw" uniqKey="Chase M">MW Chase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taberlet, Pgl" uniqKey="Taberlet P">PGL Taberlet</name>
</author>
<author>
<name sortKey="Pautou, G" uniqKey="Pautou G">G Pautou</name>
</author>
<author>
<name sortKey="Bouvet, J" uniqKey="Bouvet J">J Bouvet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamilton, Mb" uniqKey="Hamilton M">MB Hamilton</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Evol Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Evol. Biol</journal-id>
<journal-title-group>
<journal-title>BMC Evolutionary Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2148</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26219287</article-id>
<article-id pub-id-type="pmc">4518642</article-id>
<article-id pub-id-type="publisher-id">405</article-id>
<article-id pub-id-type="doi">10.1186/s12862-015-0405-2</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Morphological and ecological divergence of
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Gao</surname>
<given-names>Yun-Dong</given-names>
</name>
<address>
<email>xjhe@scu.edu.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<xref ref-type="aff" rid="Aff2"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Harris</surname>
<given-names>AJ</given-names>
</name>
<address>
<email>aj.harris@okstate.edu</email>
</address>
<xref ref-type="aff" rid="Aff3"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>He</surname>
<given-names>Xing-Jin</given-names>
</name>
<address>
<email>gaoyd@cib.ac.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<label></label>
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China</aff>
<aff id="Aff2">
<label></label>
Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China</aff>
<aff id="Aff3">
<label></label>
Department of Botany, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078-3013 USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>29</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>29</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>15</volume>
<elocation-id>147</elocation-id>
<history>
<date date-type="received">
<day>11</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>2</day>
<month>6</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© Gao et al. 2015</copyright-statement>
<license license-type="open-access">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/publicdomain/zero/1.0/">http://creativecommons.org/publicdomain/zero/1.0/</ext-link>
) applies to the data made available in this article, unless otherwise stated.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>Several previous studies have shown that some morphologically distinctive, small genera of vascular plants that are endemic to the Qinghai-Tibetan Plateau and adjacent Hengduan Mountains appear to have unexpected and complex phylogenetic relationships with their putative sisters, which are typically more widespread and more species rich. In particular, the endemic genera may form one or more poorly resolved paraphyletic clades within the sister group despite distinctive morphology. Plausible explanations for this evolutionary and biogeographic pattern include extreme habitat specialization and hybridization. One genus consistent with this pattern is
<italic>Nomocharis</italic>
Franchet.
<italic>Nomocharis</italic>
comprises 7–15 species bearing showy-flowers that are endemic to the H-D Mountains.
<italic>Nomocharis</italic>
has long been treated as sister to
<italic>Lilium</italic>
L., which is comprised of more than 120 species distributed throughout the temperate Northern Hemisphere. Although
<italic>Nomocharis</italic>
appears morphologically distinctive, recent molecular studies have shown that it is nested within
<italic>Lilium</italic>
, from which is exhibits very little sequence divergence. In this study, we have used a dated molecular phylogenetic framework to gain insight into the timing of morphological and ecological divergence in
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
and to preliminarily explore possible hybridization events. We accomplished our objectives using dated phylogenies reconstructed from nuclear internal transcribed spacers (ITS) and six chloroplast markers.</p>
</sec>
<sec>
<title>Results</title>
<p>Our phylogenetic reconstruction revealed several
<italic>Lilium</italic>
species nested within a clade of
<italic>Nomocharis</italic>
, which evolved ca. 12 million years ago and is itself nested within the rest of
<italic>Lilium</italic>
. Flat/open and horizon oriented flowers are ancestral in
<italic>Nomocharis</italic>
. Species of
<italic>Lilium</italic>
nested within
<italic>Nomocharis</italic>
diverged from
<italic>Nomocharis</italic>
ca. 6.5 million years ago. These
<italic>Lilium</italic>
evolved recurved and campanifolium flowers as well as the nodding habit by at least 3.5 million years ago.
<italic>Nomocharis</italic>
and the nested
<italic>Lilium</italic>
species had relatively low elevation ancestors (<1000 m) and underwent diversification into new, higher elevational habitats 3.5 and 5.5 million years ago, respectively. Our phylogeny reveals signatures of hybridization including incongruence between the plastid and nuclear gene trees, geographic clustering of the maternal (i.e., plastid) lineages, and divergence ages of the nuclear gene trees consistent with speciation and secondary contact, respectively.</p>
</sec>
<sec>
<title>Conclusions</title>
<p>The timing of speciation and ecological and morphological evolutionary events in
<italic>Nomocharis</italic>
are temporally consistent with uplift in the Qinghai-Tibetan Plateau and of the Hengduan Mountains 7 and 3–4 million years ago, respectively. Thus, we speculate that the mountain building may have provided new habitats that led to specialization of morphological and ecological features in
<italic>Nomocharis</italic>
and the nested
<italic>Lilium</italic>
along ecological gradients. Additionally, we suspect that the mountain building may have led to secondary contact events that enabled hybridization in
<italic>Lilium-Nomocharis</italic>
. Both the habitat specialization and hybridization have probably played a role in generating the striking morphological differences between
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/s12862-015-0405-2) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Ancestral state reconstruction, biogeography</kwd>
<kwd>Divergence time</kwd>
<kwd>
<italic>Lilium</italic>
</kwd>
<kwd>
<italic>Nomocharis</italic>
</kwd>
<kwd>Hengduan Mountains</kwd>
<kwd>Qinghai-Tibetan Plateau</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Background</title>
<p>The Hengduan Mountains (H-D Mountains) are located in southwestern China east of the Qinghai-Tibetan Plateau (QTP) and represent one of the world’s most biodiverse regions [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Many endemic vascular plant species of the H-D Mountains exhibit high levels of morphological and ecological divergence from their closest, more widespread allies. Thus, the endemics are often treated within their own genera. However, molecular phylogenetic studies have revealed that the some of these endemic genera are nested within the widespread ones. Examples include representatives of Asteraceae (
<italic>Sinacalia</italic>
), Brassicaceae (
<italic>Solms-laubachia</italic>
), Liliaceae (
<italic>Lloydia</italic>
), Primulaceae (
<italic>Pomatosace</italic>
), Genetianaceae (
<italic>Lomatogoniopsis</italic>
), and Amaryllidaceae (
<italic>Milula</italic>
) (see more detail information in Table 
<xref rid="Tab1" ref-type="table">1</xref>
, [
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR8">8</xref>
]). The contrasting morphological diversity and nested phylogenetic status of genera in the H-D Mountains may result from extreme habitat specialization and/or hybridization events. The H-D mountains provide many unique habitats due to their topographic complexity [
<xref ref-type="bibr" rid="CR9">9</xref>
], while repeated phases of uplift of the mountain range may have enabled opportunities for hybridization [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
] via secondary contact. Continued research is needed to better understand the mechanisms driving morphological diversity of vascular plants within the H-D Mountains.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Morphologically distinctive plant species that are endemic to the QTP but phylogenetically indistinct (i.e., nested within) from allies</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Endemic OTU(s)</th>
<th>Phylogenetically indistinct allies</th>
<th>Distinctive morphology of endemic</th>
<th>Morphology of allies</th>
<th>Geographic range of allies</th>
<th>Family</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>Lomatogoniopsis</italic>
T. N. Ho & S. W. Liu</td>
<td>
<italic>Lomatogonium</italic>
A. Braun</td>
<td>2n = 12; Petals bearing one nectary each; Nectaries appendaged, not in pits</td>
<td>2n = 18; Petals bearing two nectarines each; Nectaries not appendaged, in pits</td>
<td>Throughout the temperate Northern Hemisphere</td>
<td>Gentianaceae</td>
<td>[
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR84">84</xref>
]</td>
</tr>
<tr>
<td>
<italic>Milula</italic>
Prain</td>
<td>
<italic>Allium</italic>
L.</td>
<td>
<italic>n</italic>
 = 10; inflorescence spicate; sepals fused over 1/3 or more of length</td>
<td>
<italic>n</italic>
 = 16 or multiples; inflorescence umbellate; sepals free or fused only at base</td>
<td>Throughout the Northern Hemisphere and in Africa, and Central and South America</td>
<td>Liliaceae</td>
<td>[
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR85">85</xref>
]</td>
</tr>
<tr>
<td>
<italic>Parapteropyrum</italic>
</td>
<td>
<italic>Fagopyrum</italic>
</td>
<td>woody; flowers bisexual</td>
<td>herbaceous; flowers monoecious</td>
<td>QTP and adjacent regions to the south and east</td>
<td>Polygonaceae</td>
<td>[
<xref ref-type="bibr" rid="CR86">86</xref>
]</td>
</tr>
<tr>
<td>
<italic>Parasenecio</italic>
W. W. Smith & J. Small</td>
<td>
<italic>Sinacalia</italic>
H. Robinson & Brettell</td>
<td>capitula discoid; roots not tuberous</td>
<td>capitula radiate; roots tuberous</td>
<td>Throughout temperate China</td>
<td>Asteraceae</td>
<td>[
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR87">87</xref>
]</td>
</tr>
<tr>
<td>
<italic>Pomatosace</italic>
Maximowicz</td>
<td>
<italic>Androsace</italic>
L.</td>
<td>fruit capsule operculate</td>
<td>fruit capsule opening along longitudinal slits</td>
<td>Temperate Northern Hemisphere except eastern North America and temperate South America</td>
<td>Primulaceae</td>
<td>[
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]</td>
</tr>
<tr>
<td>
<italic>Solms-laubachia</italic>
Muschler</td>
<td>
<italic>Parrya</italic>
R. Brown;
<italic>Desideria</italic>
Pampanini</td>
<td>unique suite of characters</td>
<td>unique suite of characters</td>
<td>Temperate, subarctic, and arctic areas in eastern and central Asia and North America</td>
<td>Brassicaceae</td>
<td>[
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR91">91</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>The
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
complex represents an exceptional study system for morphological diversification and hybridization in the H-D Mountains.
<italic>Nomocharis</italic>
Franchet. is endemic to the H-D Mountains and adjacent QTP.
<italic>Nomocharis</italic>
appeared somewhat similar to
<italic>Lilium</italic>
when the former was first described in 1889 [
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
] but was erected as a new genus because of its highly distinctive open-plate flowers and dark-colored tepal bases with special structures (Figs. 
<xref rid="Fig1" ref-type="fig">1</xref>
and
<xref rid="Fig2" ref-type="fig">2</xref>
) [
<xref ref-type="bibr" rid="CR12">12</xref>
<xref ref-type="bibr" rid="CR15">15</xref>
]. Currently, there are eight recognized species of
<italic>Nomocharis</italic>
, of which seven are circumscribed in two traditional sections [
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR15">15</xref>
], and one is a recently described hybrid species,
<italic>N. gongshanensis</italic>
Y. D. Gao & X. J. He [
<xref ref-type="bibr" rid="CR16">16</xref>
]. Recent molecular phylogenetic studies show strong support for
<italic>Nomocharis</italic>
nested within
<italic>Lilium</italic>
[
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
]. In contrast to
<italic>Nomocharis</italic>
,
<italic>Lilium</italic>
comprises approximately 120 species and is widespread throughout the Northern Hemisphere, including areas within the QTP and H-D mountains [
<xref ref-type="bibr" rid="CR18">18</xref>
<xref ref-type="bibr" rid="CR20">20</xref>
].
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Pictures of
<italic>Nomocharis aperta</italic>
in western Yunnan: (
<bold>a</bold>
-
<bold>c</bold>
), population from Zhongdian, Yunnan showed spot variation; (
<bold>c</bold>
-
<bold>e</bold>
), population of Fugong, Yunnan showed variations in tepal color; (
<bold>f</bold>
-
<bold>h</bold>
), habits of
<italic>N. aperta</italic>
under different habitats; (
<bold>i</bold>
-
<bold>j</bold>
), anatomical pictures showed two types of
<italic>N. aperta</italic>
from Zhongdian and Fugong, as well as a comparison of outer and inner tepals</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig1_HTML" id="MO1"></graphic>
</fig>
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Pictures from western China showing
<italic>Nomocharis</italic>
: (
<bold>a</bold>
-
<bold>c</bold>
),
<italic>N. basilissa</italic>
; (
<bold>d</bold>
-
<bold>f</bold>
),
<italic>N. farreri</italic>
; (
<bold>g</bold>
-
<bold>i</bold>
),
<italic>N. gongshanensis</italic>
; (
<bold>j</bold>
-
<bold>l</bold>
),
<italic>N. meleagrina</italic>
</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p>The goals of our present study are to use a molecular phylogeny as a framework to 1) determine whether the timing of morphological and ecological evolutionary events in
<italic>Nomocharis</italic>
are consistent with phases of uplift in the H-D Mountains and QTP, and 2) detect additional hybridization events with the
<italic>Lilium-Nomocharis</italic>
species of the H-D Mountains and QTP.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<sec id="Sec3">
<title>Phylogenetic analyses</title>
<p>A large ITS dataset confirmed the phylogentic position of
<italic>Nomocharis</italic>
within
<italic>Lilium</italic>
and showed no major differences compared with previous studies (e.g., [
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
]). Our extensive sampling of
<italic>Nomocharis</italic>
enabled us to resolve three sublclades within the genus: Eunomocharis, Ecristata, and the Non-Nomocharis lilies (
<italic>Lilium</italic>
species, N-N, hereafter). The Eunomocharis and Ecristata subclades are congruent with traditional classifications based on morphology [
<xref ref-type="bibr" rid="CR13">13</xref>
]. The N-N lilies are morphologically divergent from
<italic>Nomocharis</italic>
and have characteristics more like other
<italic>Lilium</italic>
(Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).
<italic>Nomocharis</italic>
and the N-N lilies are sister to a clade comprised of
<italic>Lilium</italic>
sect.
<italic>Liriotypus</italic>
(i.e., European lilies) and that these two clades are sister to the rest of
<italic>Lilium</italic>
(Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Maximum credibility tree showing monophyletic clade of
<italic>Nomocharis</italic>
and its relatives reconstructed using Bayesian analysis of ITS data and
<italic>Lilium</italic>
species from around the world. The position of this clade is indicated on the tree (for details see Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1). Support values shown on braches; Bayesian posterior probabilities (PP) on left and parsimony bootstrap (BS) on right. Clade names based on Balfour [
<xref ref-type="bibr" rid="CR12">12</xref>
]</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
<p>Major clades of the plastid consensus trees were the same in the Bayesian and MP reconstructions, so we present only the Bayesian consensus (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The plastid data resolved two large clusters consisting of seven major clades (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Cluster I (PP = 1.00, BS = 99 %) comprised two major clades of species of
<italic>Lilium</italic>
that are primarily distributed throughout the Sino-Japanese Forest subkingdom [
<xref ref-type="bibr" rid="CR22">22</xref>
]. Cluster II (PP = 1.0, BS = 90 %) contained
<italic>Nomocharis</italic>
and species of
<italic>Lilium</italic>
that occur within the H-D Mountains and adjacent Himalayas.
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Maximum credibility tree resulting from a Bayesian analysis of combined plastid DNA. Clade names based on Comber [
<xref ref-type="bibr" rid="CR23">23</xref>
] and Liang [
<xref ref-type="bibr" rid="CR19">19</xref>
]. Distributional areas of clades indicated by color. Support values shown on braches; Bayesian posterior probabilities (PP) on left and parsimony bootstrap (BS) on right. Lineages identified in network (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
) were also marked for references. The Sinomartagon I clade is highlighted for its conflicting position compared to the ITS result in Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<p>Within the plastid phylogeny,
<italic>Nomocharis</italic>
formed a poorly resolved grade with species of the
<italic>Sinomartagon</italic>
and
<italic>Leucolirion</italic>
clades. Most of the species of
<italic>Sinomartagon</italic>
that associated with
<italic>Nomocharis</italic>
and the N-N lilies occur in the
<italic>Sinomartagon</italic>
I clade in the ITS topology and represent all
<italic>Sinomartagon</italic>
species that inhabit the H-D Mountains and QTP [
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
]. Despite poor resolution of
<italic>Nomocharis</italic>
within the plastid phylogeny, the genus roughly comprised its traditionally recognized sections, sects.
<italic>Ecristata</italic>
and
<italic>Eunomocharis</italic>
. A clade of
<italic>Ecristata</italic>
included
<italic>N. aperta</italic>
accessions and
<italic>N. saluenensis</italic>
, which have been have been historically treated in the section
<italic>.</italic>
The
<italic>Ecristata</italic>
clade also contained clones
<italic>N. gongshanensis</italic>
, which is the hybrid species,
<italic>L. nepalense,</italic>
and
<italic>N. meleagrina,</italic>
which is morphologically similar to species of
<italic>Eunomocharis</italic>
by having whorled leaves and has traditionally been circumscribed in that section. A grade of sect.
<italic>Eunomocharis</italic>
also included one accession of
<italic>N. aperta</italic>
(Franchet) E.H. and
<italic>Lilium yapingense</italic>
, an N-N lily species.</p>
<p>Overall,
<italic>Nomocharis</italic>
and the N-N lilies exhibited poorly resolved relationships within cluster II of the plastid phylogeny and did not form a monophyletic group.</p>
</sec>
<sec id="Sec4">
<title>Statistical parsimony network</title>
<p>Our parsimony network was complex but relatively well resolved (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). Interior haplotypes and their descendants appear to represent eight lineages, most of which are present in the dichotomously branching plastid phylogeny (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The network supported the plastid tree topology in showing that geographically proximal species have more closely related haplotypes irrespective of morphological similarities or classification in traditional subgenera. Notably, the plastid tree and network also agreed in the placement of
<italic>Nomocharis</italic>
. In the network,
<italic>Nomocharis</italic>
was divided into two lineages, II and IV, and separated by Lineage III in which N-N lilies were included (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
). Haplotypes of the
<italic>Nomocharis</italic>
and the N-N lilies of lineages III and IV exhibit a shared history with
<italic>Sinomartagon</italic>
and
<italic>Leucolirion</italic>
species of lineage VI and VII as well as with species of a Lilium clade (lineage VIII, compare to Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
).
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>Parsimony network conducted by TCS [
<xref ref-type="bibr" rid="CR58">58</xref>
] using combined plastid DNA matrix. Sixty-six haplotypes were identified and clustered in eight lineages with different colors. Circle sizes correspond to the number of taxa possessing the haplotype. Species names are abbreviated by the generic first letter and two or three letters of the species epithet (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Inferred haplotypes (not present in the data set) are depicted as black lines, and unnamed dots indicated the missing interior haplotypes. The Sinomartagon I clade was highlighted for its conflict position compared to the ITS result in Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
</sec>
<sec id="Sec5">
<title>Divergence time estimate and biogeography inferences</title>
<p>We performed divergence time dating using two secondary calibration points applied to our ITS plastid dataset. According to dating using the plastid dataset, and we inferred that the last shared ancestor of the
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
occurred around 13.19 Mya and Nomocharis evolved 6.5 Mya (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
). The ITS dataset recovered a slightly older age of approximately 14 Mya for the last shared ancestor of
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
and ca. 12 Mya for the evolution of
<italic>Nomocharis</italic>
(Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). Overall, the ITS dates for major diversification events are older than the plastid dates (Figs. 
<xref rid="Fig6" ref-type="fig">6</xref>
and
<xref rid="Fig7" ref-type="fig">7</xref>
).
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>Ultrametric chronograms showing divergence time dating and biogeographic results based on the combined plastid DNA phylogeny. Scale bar at bottom indicating branch length of 2 Mya. Mean divergence age given on nodes. Bars on nodes indicate the 95 % HPD for divergence ages. Pie charts show probabilities of ancestral area reconstructions, colors of pie slices defined in legend. The bottom chart summarized the biogeographic event through time. The Sinomartagon I clade was highlighted for its conflict position compared to the ITS result in Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig6_HTML" id="MO6"></graphic>
</fig>
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>The ancestral state reconstructions of leaf, flower, and ecological characters. Pie charts show probabilities of ancestral area reconstructions, colors of pie slices defined in legend. Reconstructions of
<bold>a</bold>
, leaf arrangement,
<bold>b</bold>
, stigma:stamen ratio,
<bold>c</bold>
, corolla shape,
<bold>d</bold>
, corolla orientation with respect to the ground, and
<bold>e</bold>
, elevational range</p>
</caption>
<graphic xlink:href="12862_2015_405_Fig7_HTML" id="MO7"></graphic>
</fig>
</p>
<p>The results from Bayesian Binary Method (BBM) of biogeographic analysis show that the last shared ancestor of
<italic>Lilium-Nomocharis</italic>
arose in the H-D Mountain region (B: 78.4 %; Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
), while the results from the DEC method in Lagrange support a broader ancestral area within the H-D Mountains and the adjacent Sino-Japanese Floristic Subkingdom (SJFS; BC: 21.4 %; Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
). The results obtained from BBM and DEC may not be incongruent because no significant geographic boundary separated the H-D Mountains and the SJFS areas until at least late Miocene (~7 Mya), which is the earliest date postulated for the H-D Mountain uplift [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
].
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
began intensive diversification in the late Miocene (ca. 11–5 Mya, Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
or ca. 13–6 Mya, Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). The three
<italic>Nomocharis</italic>
lineages,
<italic>Eunomocharis</italic>
,
<italic>Ecristata</italic>
, and the N-N lilies, originated approximately between ca. 8 Mya (ITS, Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
) and 6 Mya (plastid, Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
) and underwent diversification during the late Pliocene beginning ca. 7–4 Mya (Figs. 
<xref rid="Fig6" ref-type="fig">6</xref>
and
<xref rid="Fig7" ref-type="fig">7</xref>
respectively).</p>
</sec>
<sec id="Sec6">
<title>Ancestral state reconstruction (ASR)</title>
<p>We performed our ancestral state reconstructions using a reduced ITS dataset and they showed that floral characters were more phylogenetically dependent than vegetative ones (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). Leaf arrangement patterns showed the greatest lability within clades (Fig. 
<xref rid="Fig7" ref-type="fig">7a</xref>
). Overall whorled leaves arose at least four times in
<italic>Lilium</italic>
, including two shifts to whorled leaved within
<italic>Nomocharis</italic>
and the N-N lilies occurring approximately 4 Mya and 2.5 Mya, respectively (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). Our results show that nodding flowers with recurved tepals and roughly equal stigma and stamen lengths are most likely the ancestral condition for
<italic>Lilium</italic>
(Fig. 
<xref rid="Fig7" ref-type="fig">7b</xref>
,
<xref rid="Fig7" ref-type="fig">c</xref>
,
<xref rid="Fig7" ref-type="fig">d</xref>
). Ancestors of
<italic>Nomocharis</italic>
had longer stigmas than stamen, and this feature also was a synapomorphy within the sympatric Sinomartagon I clade (Fig. 
<xref rid="Fig7" ref-type="fig">7b</xref>
). However, one species of
<italic>Nomocharis</italic>
,
<italic>N. saluenensis</italic>
, experienced a reversion to the roughly equal condition about 1 Mya (Fig. 
<xref rid="Fig7" ref-type="fig">7b</xref>
). There appeared to be a correlation between floral orientation and corolla shape; namely that species with campanifolium and recurved petals have nodding flowers, and species with flat open and funnel/trumpet shaped flowers are horizon in orientation (Fig. 
<xref rid="Fig7" ref-type="fig">7c</xref>
,
<xref rid="Fig7" ref-type="fig">d</xref>
). This seems to be true among modern species and reconstructed ancestors. Recurved and campanifolium petals and the nodding habit evolved in the last shared ancestor of the N-N lilies around 7.5 Mya, and distinguish them from
<italic>Nomocharis</italic>
, which retained flat/open flowers and horizon orientation (Fig. 
<xref rid="Fig7" ref-type="fig">7c</xref>
,
<xref rid="Fig7" ref-type="fig">d</xref>
). The elevation reconstruction indicate that the ancestors of
<italic>Nomocharis</italic>
and the N-N lilies occurred at low (<1000 m) elevations and that radiations into different elevations habitats occurred around 5.5 Mya in the N-N lilies and around 3.5 Mya in the Ecristata clade of
<italic>Nomocharis</italic>
(i.e., including
<italic>N. aperta</italic>
accessions and
<italic>N. saluenensis</italic>
; Fig. 
<xref rid="Fig7" ref-type="fig">7e</xref>
).</p>
</sec>
</sec>
<sec id="Sec7" sec-type="discussion">
<title>Discussion</title>
<sec id="Sec8">
<title>Morphological divergence and habitat specialization</title>
<p>Traditionally, classification of
<italic>Lilium</italic>
has focused primarily on floral morphology, especially orientation of the flowers with respect to the ground and corolla shape. Thus, nodding flowers and campaniform corollas have been used to support a close relationship between the N-N lilies, which include
<italic>L. nepalense</italic>
,
<italic>L. souliei</italic>
,
<italic>L. paradoxum</italic>
,
<italic>L. saccatum</italic>
and
<italic>L. yapingense</italic>
(Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
: Figure S3, Additional file
<xref rid="MOESM4" ref-type="media">4</xref>
: Figure S4), and sect.
<italic>Lophophorum</italic>
(e.g.,
<italic>Lilium nanum</italic>
, Additional file
<xref rid="MOESM4" ref-type="media">4</xref>
: Figure S4h, k, and
<italic>L. lophophorum</italic>
, Additional file
<xref rid="MOESM3" ref-type="media">3</xref>
: Figure S3d, e, f, of sect.
<italic>Lophophorum</italic>
), which shares the same floral features [
<xref ref-type="bibr" rid="CR23">23</xref>
]. However, our ITS phylogeny is in contrast to traditional classification of the N-N lilies with sect.
<italic>Lophophorum</italic>
and shows that the N-N species are nested within
<italic>Nomocharis</italic>
, which is otherwise monophyletic (Figs. 
<xref rid="Fig3" ref-type="fig">3</xref>
, Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1). The N-N lilies share few apparent morphological traits in common with
<italic>Nomocharis</italic>
and, in particular, lack the unique floral characters that have classically been used to delimit
<italic>Nomocharis</italic>
from
<italic>Lilium</italic>
.</p>
<p>N-N lilies and traditional
<italic>Nomocharis</italic>
may exhibit morphological dissimilarities despite their close evolutionary relationships due to habitat specialization. The N-N lilies may have expanded their habitats into diverse elevations around 5.5 Mya that became available after the last QTP orogeny, which occurred ca. 7 Mya [
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
] (Fig. 
<xref rid="Fig5" ref-type="fig">5e</xref>
). Similarly, uplift of the H-D Mountains probably provided new habitat for an ancestor of the Ecristata clade of
<italic>Nomocharis</italic>
. Within the QTP, the N-N lilies tend to occupy higher elevations than the Nomochrais species of the H-D Mountains. Differential adaptations to elevation may explain the strikingly different floral morphology of
<italic>Nomocharis</italic>
and the N-N species [
<xref ref-type="bibr" rid="CR29">29</xref>
]. In particular, the N-N lilies live almost exclusively in alpine meadows. Thus, N-N lilies are exposed to torrential downpours in alpine meadows compared to traditional
<italic>Nomocharis</italic>
species, which grow in the herbaceous layer beneath bamboo canopies (Additional file
<xref rid="MOESM5" ref-type="media">5</xref>
: Figure S5b, h) [
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
]. The N-N lilies may have evolved nodding flowers ca. 7.5 Mya during QTP uplift and campaniform corollas as advantageous protections for their delicate reproductive structures against harsh precipitation conditions [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
]. Although the nodding, campaniform flowers probably provide protection from rainfall for the N-N lilies, they may also have reduced pollen transfer efficiency as an evolutionary trade-off [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
]. In contrast,
<italic>Nomocharis</italic>
species are probably not limited by the need for protection from heavy rainfall, and may experience higher pollen transfer efficiency by virtue of their horizontally arranged, plate-shaped flowers [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR14">14</xref>
].</p>
<p>The profound effects of habitat specialization within the H-D Mountains and QTP regions on morphology is supported by evidence of convergent evolution among sympatric, distantly related
<italic>Lilium-Nomocharis</italic>
species. In particular,
<italic>Nomocharis</italic>
and N-N lilies share some morphological traits in common with species of the
<italic>Lophophorum</italic>
clade, despite their differences and with which they are sympatric in alpine areas of the QTP. Shared traits especially include inner perianth-segments that have crested or fringed glandular bases (e.g.,
<italic>L. nanum</italic>
and
<italic>L. lophophorum</italic>
Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
: Figure S6) and that are sometimes anthocyanin rich (e.g.,
<italic>L. henrici</italic>
Additional file
<xref rid="MOESM6" ref-type="media">6</xref>
: Figure S6). These shared morphological traits appear to represent convergent evolution. Morphological convergence within QTP alpine plant genera has been noted in other plant genera including in
<italic>Androsace</italic>
(Primulaceae) [
<xref ref-type="bibr" rid="CR5">5</xref>
],
<italic>Pseudoeriocoryne</italic>
(Asteraceae: Cardueae) [
<xref ref-type="bibr" rid="CR32">32</xref>
],
<italic>Rheum</italic>
(Polygonaceae) [
<xref ref-type="bibr" rid="CR33">33</xref>
] and the
<italic>Ligularia-Cremanthodium-Parasenecio</italic>
complex (Asteraceae) [
<xref ref-type="bibr" rid="CR2">2</xref>
]. An alternative explanation for the shared morphology between
<italic>Nomocharis</italic>
and
<italic>Lophophorum</italic>
is hybridization. However, the monophyly of
<italic>Lophophorum</italic>
is supported by both ITS and plastid phylogenies (Figs. 
<xref rid="Fig3" ref-type="fig">3</xref>
and
<xref rid="Fig4" ref-type="fig">4</xref>
). Thus, convergence seems to better explain the morphological similarities and supports habitat specialization of
<italic>Nomocharis</italic>
and the N-N lilies within the H-D Mountains and QTP.</p>
<p>Detecting the environmental drivers of convergence remain beyond the scope of this study. However, it is noteworthy that many alpine plant groups exhibit floral traits that are well-adapted to the frequent but unpredictable rains experienced in alpine habitats [
<xref ref-type="bibr" rid="CR34">34</xref>
<xref ref-type="bibr" rid="CR36">36</xref>
]. For example, the nodding flower orientation is thought to have evolved to avoid pollen damage and nectar dilution by rainfall [
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
]. Floral orientation may also be strongly affected by niche features such as the presence and abundance of various types of pollinators. In particular, the horizontal orientation may increase the precision of pollen transfer in bilaterally symmetrical flowers (e.g.
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
) under some pollination syndromes [
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. However, morphological convergence among alpine plants may also be strongly affected by understudied environmental interactions, such as with the intense solar radiation experienced during the daytime in alpine areas or the cold night time temperatures [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Overall, morphological convergence within the QTP and H-D Mountains habitats is likely linked to the extreme morphological divergence between QTP and H-D Mountains endemics and their widespread relatives. Thus, morphological convergence among QTP and H-D Mountains species of
<italic>Lilium-Nomocharis</italic>
and within other plant groups merits more attention in future studies.</p>
</sec>
<sec id="Sec9">
<title>Hybridization</title>
<p>Our ITS and plastid gene trees reveal several signatures of possible hybridization. In particular, the gene trees exhibit incongruence. In the ITS phylogeny,
<italic>Nomocharis</italic>
and the N-N lilies form a clade in the ITS tree (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
) that is sister to
<italic>Lilium</italic>
sect.
<italic>Liriotypus</italic>
. This is in contrast to the plastid phylogeny, which shows poor resolution of
<italic>Nomocharis</italic>
and the N-N lilies and places them among species of sects.
<italic>Sinomartagon, Martagon</italic>
(Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). Incongruence between nuclear and plastid and nuclear gene trees is known to result from hybridization, but can also result from incomplete lineage sorting, which is common among vascular plants, and horizontal gene transfer, which is not [
<xref ref-type="bibr" rid="CR40">40</xref>
,
<xref ref-type="bibr" rid="CR41">41</xref>
].</p>
<p>Another signature of hybridization may be the strong geographic clustering observed in the plastid phylogeny (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
) among clades, which are distantly related in the nuclear phylogeny (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
, Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figure S1). The sympatry of clades with closely related plastid genomes is consistent with secondary contact. Moreover, hybridization in
<italic>Lilium-Nomocharis</italic>
is most likely to occur among species that occur within reasonably close proximity due to the limited dispersability of seeds [
<xref ref-type="bibr" rid="CR42">42</xref>
] and typically also of pollen via wind or pollinators [
<xref ref-type="bibr" rid="CR43">43</xref>
].</p>
<p>If hybridization did occur between
<italic>Nomocharis</italic>
(including N-N lilies) and sympatric
<italic>Lilium</italic>
, it must have occurred following the evolution of the latter, ca. 12 Mya (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). If the dates in the plastid phylogeny can be taken to represent the times of contact, then hybridization events occurred in
<italic>Nomocharis</italic>
5.73 Mya with
<italic>Sinomartagon</italic>
and 4.85 Mya with
<italic>Leucolirion</italic>
species. These events seem to post-date late orogenies of the QTP ca. 7 Mya and pre-date uplift of the H-D Mountains, in the late Neogene (ca. 3.4 Mya, [
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
]). However, 95 % CIs for the dates include the orogenic periods (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
) and may also be consistent with ecological expansion of some
<italic>Nomocharis</italic>
species into new elevational ranges (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
e).</p>
</sec>
</sec>
<sec id="Sec10" sec-type="conclusions">
<title>Conclusions</title>
<p>
<italic>Lilium-Nomocharis</italic>
exhibits complex phylogenetic relationships typical of a pattern in which QTP and H-D Mountains endemic, morphologically and ecologically distinct vascular plant groups such as
<italic>Nomocharis</italic>
, are included within widespread ones, such as
<italic>Lilium</italic>
. Our phylogenetic results show that
<italic>Nomocharis</italic>
itself is paraphyletic and includes some species traditionally classified as
<italic>Lilium</italic>
; here, the N-N clade. Species of the N-N clade exhibit typical
<italic>Lilium</italic>
morphology, which distinguishes them from the
<italic>Nomocharis</italic>
species. Features characteristic of
<italic>Nomocharis</italic>
, such as horizon oriented and flat/open flowers are probably ancestral to the group, and evolved before the uplift of the QTP. However, such features may have enabled the invasion of the QTP and, later, the H-D Mountains by
<italic>Nomocharis</italic>
and should be the subject of future studies. Despite their differences,
<italic>Nomocharis</italic>
and the N-N clade have probably evolved some similarities due to differently timed expansions into diverse elevational habitats. Our phylogenetic results also show some circumstantial evidence for hybridization in among traditional
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
species, and that may help to explain the complex phylogenetic relationships within the
<italic>Lilium-Nomocharis</italic>
complex.</p>
</sec>
<sec id="Sec11" sec-type="materials|methods">
<title>Methods</title>
<sec id="Sec12">
<title>Plant materials</title>
<p>We reconstructed a molecular phylogeny of
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
using nuclear ITS and 294 total accessions, of which 67 were obtained from GenBank, 227 were collected with necessary permissions by the author, of which 30 were newly sequenced for this study (Table 
<xref rid="Tab2" ref-type="table">2</xref>
, Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
: Table S1). Note that only 90 accessions used for our phylogenetic reconstruction have been sequenced for all plastid markers and ITS (Table 
<xref rid="Tab2" ref-type="table">2</xref>
, Additional file
<xref rid="MOESM8" ref-type="media">8</xref>
: Table S1). For molecular phylogenetic reconstructions of plastid DNA, we focused our sampling efforts on
<italic>Nomocharis</italic>
and its
<italic>Lilium</italic>
allies; namely
<italic>Lilium</italic>
species that are geographically and/or evolutionarily close to
<italic>Nomocharis</italic>
. Of particular note, we sampled
<italic>L. henrici</italic>
Franchet,
<italic>L. xanthellum</italic>
F. T. Wang & T. Tang,
<italic>L. saccatum</italic>
S. Y. Liang that are endemic to the H-D Mountains and have been sparsely sampled in previous studies. Among
<italic>Nomochari</italic>
s species, only
<italic>N. synaptica</italic>
Sealy, which is native to India, was not sampled. Additionally, we included representative species of
<italic>Lilium</italic>
from across the geographic and phylogenetic distribution of the genus. Altogether, for the plastid phylogeny we sampled 14
<italic>Nomocharis</italic>
accessions representing seven of eight species, thirteen
<italic>Lilium</italic>
species for their geographic or evolutionary proximity to
<italic>Nomocharis</italic>
, and 29 additional
<italic>Lilium</italic>
species (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). We selected representative accessions of other genera from within the Lilieae tribe as outgroups including two each of
<italic>Notholirion</italic>
,
<italic>Cardiocrinum</italic>
and
<italic>Fritillaria</italic>
(see [
<xref ref-type="bibr" rid="CR44">44</xref>
]). Of the total 360 sequences that we used in this study, two hundred and sixty-five are new to our study, and these have collection, voucher, and Genbank accession information provided in Table 
<xref rid="Tab2" ref-type="table">2</xref>
. We have deposited downstream sequencing data, namely alignments and phylogenetic trees, in TreeBase (Submission number: 17567).
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Materials and GenBank accession numbers of five chloroplast makers and accession information</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th colspan="5">Genbank accession numbers (bold indicated contributed by this study)</th>
</tr>
<tr>
<th>Taxon name</th>
<th>Voucher(SZ)</th>
<th>GPS coordinates</th>
<th>Distribution</th>
<th>Abbreviation of taxa</th>
<th>
<italic>mat</italic>
K</th>
<th>
<italic>rbc</italic>
L</th>
<th>
<italic>trn</italic>
L-
<italic>trn</italic>
F</th>
<th>
<italic>rpl</italic>
32-
<italic>trn</italic>
L</th>
<th>
<italic>psb</italic>
A-
<italic>trn</italic>
H</th>
</tr>
</thead>
<tbody>
<tr>
<td>
<italic>Lilium amabile</italic>
Palibin</td>
<td>G09017</td>
<td>N45°14′1.75″, E124°43′21″</td>
<td>C</td>
<td>LAM</td>
<td>
<italic>KF850798</italic>
</td>
<td>
<italic>KF850875</italic>
</td>
<td>
<italic>KF850981</italic>
</td>
<td>
<italic>KF850909</italic>
</td>
<td>
<italic>KF850830</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium anhuiense</italic>
D. C. Zhang & J. Z. Shao</td>
<td>G09001</td>
<td>N30°0′13.51″, E117°32′55″</td>
<td>C</td>
<td>LAH</td>
<td>
<italic>KF850803</italic>
</td>
<td>
<italic>KF850880</italic>
</td>
<td>
<italic>KF850994</italic>
</td>
<td>
<italic>KF850922</italic>
</td>
<td>
<italic>KF850835</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium bakerianum</italic>
Collett & Hemsley var.
<italic>rubrum</italic>
Stearn</td>
<td>G09008</td>
<td>N24°58′29″, E102°36′38″</td>
<td>B</td>
<td>LBKR1</td>
<td>HQ692243</td>
<td>HQ692342</td>
<td>
<italic>KF851009</italic>
</td>
<td>
<italic>KF850937</italic>
</td>
<td>HQ692442</td>
</tr>
<tr>
<td>
<italic>Lilium bakerianum</italic>
Collett & Hemsley var.
<italic>rubrum</italic>
Stearn</td>
<td>G09010</td>
<td>N26°23′10″, E102°47′15″</td>
<td>B</td>
<td>LBKR2</td>
<td>HQ692244</td>
<td>HQ692343</td>
<td>
<italic>KF851010</italic>
</td>
<td>
<italic>KF850938</italic>
</td>
<td>HQ692443</td>
</tr>
<tr>
<td>
<italic>Lilium bakerianum</italic>
var.
<italic>bakerianum</italic>
Collett & Hemsley</td>
<td>LQQ200901</td>
<td>N29°38′12″, E102°07′29″</td>
<td>B</td>
<td>LBK</td>
<td>HQ687300</td>
<td>HQ687318</td>
<td>
<italic>HQ687354</italic>
</td>
<td>
<italic>HQ687336</italic>
</td>
<td>KF850837</td>
</tr>
<tr>
<td>
<italic>Lilium brownii</italic>
var.
<italic>viridulum</italic>
Baker</td>
<td>G08031</td>
<td>N34°20′42″, E106°00′42″</td>
<td>BC</td>
<td>LBW</td>
<td>HQ692218</td>
<td>HQ692317</td>
<td>
<italic>KF850992</italic>
</td>
<td>
<italic>KF850920</italic>
</td>
<td>HQ692417</td>
</tr>
<tr>
<td>
<italic>Lilium cernuum</italic>
Komarov</td>
<td>G09018</td>
<td>N45°14′1″, E124°43′21″</td>
<td>C</td>
<td>LCM</td>
<td>
<italic>KF850799</italic>
</td>
<td>
<italic>KF850876</italic>
</td>
<td>
<italic>KF850982</italic>
</td>
<td>
<italic>KF850910</italic>
</td>
<td>
<italic>KF850831</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium concolor</italic>
Salisbury var.
<italic>pulchellum</italic>
(Fischer) Regel</td>
<td>G09012</td>
<td>N42°13′14″, E124°17′07″</td>
<td>BC</td>
<td>LCN</td>
<td>JN785993</td>
<td>JN786053</td>
<td>
<italic>KF850983</italic>
</td>
<td>
<italic>KF850911</italic>
</td>
<td>JN786023</td>
</tr>
<tr>
<td>
<italic>Lilium davidii</italic>
Duchartre ex Elwes</td>
<td>G2010062901</td>
<td>N29°03′37″, E107°12′07″</td>
<td>BC</td>
<td>LDV</td>
<td>HQ692179</td>
<td>HQ692279</td>
<td>
<italic>KF850986</italic>
</td>
<td>
<italic>KF850914</italic>
</td>
<td>HQ692378</td>
</tr>
<tr>
<td>
<italic>Lilium distichum</italic>
Nakai ex Kamibayashi</td>
<td>G09013</td>
<td>N42°14′28″, E127°25′11″</td>
<td>C</td>
<td>LDST</td>
<td>JN785999</td>
<td>JN786059</td>
<td>
<italic>KF850989</italic>
</td>
<td>
<italic>KF850917</italic>
</td>
<td>JN786029</td>
</tr>
<tr>
<td>
<italic>Lilium duchartrei</italic>
Franchet</td>
<td>G08018</td>
<td>N33°03′39″, E104°41′34″</td>
<td>B</td>
<td>LDC</td>
<td>
<italic>KF850807</italic>
</td>
<td>
<italic>KF850884</italic>
</td>
<td>
<italic>KF851018</italic>
</td>
<td>
<italic>KF850946</italic>
</td>
<td>
<italic>KF850841</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium fargesii</italic>
Franchet</td>
<td>G09011</td>
<td>N34°00′29″, E107°47′28″</td>
<td>B</td>
<td>LFG1</td>
<td>HQ687301</td>
<td>HQ687319</td>
<td>
<italic>HQ687355</italic>
</td>
<td>
<italic>HQ687337</italic>
</td>
<td>JN786032</td>
</tr>
<tr>
<td>
<italic>Lilium fargesii</italic>
Franchet</td>
<td>G2011015</td>
<td>N32°39′30″, E106°32′50″</td>
<td>B</td>
<td>LFG2</td>
<td>JN786006</td>
<td>JN786066</td>
<td>
<italic>KF851035</italic>
</td>
<td>
<italic>KF850963</italic>
</td>
<td>JN786036</td>
</tr>
<tr>
<td>
<italic>Lilium fargesii</italic>
Franchet</td>
<td>G2011016</td>
<td>N32°41′47″, E106°32′24″</td>
<td>B</td>
<td>LFG3</td>
<td>JN786007</td>
<td>JN786067</td>
<td>
<italic>KF851036</italic>
</td>
<td>
<italic>KF850964</italic>
</td>
<td>JN786037</td>
</tr>
<tr>
<td>
<italic>Lilium henrici</italic>
var.
<italic>henrici</italic>
Franchet</td>
<td>G09054</td>
<td>N27°47′10″, E98°32′42″</td>
<td>B</td>
<td>LHER</td>
<td>HQ687305</td>
<td>HQ687323</td>
<td>
<italic>HQ687359</italic>
</td>
<td>
<italic>HQ687341</italic>
</td>
<td>
<italic>KF850850</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium henryi</italic>
Baker</td>
<td>G08042</td>
<td>N27°21′15″, E106°13′55″</td>
<td>C</td>
<td>LHR</td>
<td>
<italic>KF850804</italic>
</td>
<td>
<italic>KF850881</italic>
</td>
<td>
<italic>KF851002</italic>
</td>
<td>
<italic>KF850930</italic>
</td>
<td>
<italic>KF850836</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium jinfushanense</italic>
L. J. Peng & B. N. Wang</td>
<td>G2010004</td>
<td>N29°01′54″, E107°11′18″</td>
<td>C</td>
<td>LJF1</td>
<td>HQ692257</td>
<td>HQ692356</td>
<td>
<italic>KF851007</italic>
</td>
<td>
<italic>KF850935</italic>
</td>
<td>HQ692456</td>
</tr>
<tr>
<td>
<italic>Lilium jinfushanense</italic>
L. J. Peng & B. N. Wang</td>
<td>G2010005</td>
<td>N29°02′18″, E107°12′37″</td>
<td>C</td>
<td>LJF2</td>
<td>HQ692258</td>
<td>HQ692357</td>
<td>
<italic>KF851008</italic>
</td>
<td>
<italic>KF850936</italic>
</td>
<td>HQ692457</td>
</tr>
<tr>
<td>
<italic>Lilium lankongense</italic>
Franchet</td>
<td>G2010082301-2</td>
<td>N27°47′07″, E99°38′42″</td>
<td>B</td>
<td>LLK1</td>
<td>HQ692247</td>
<td>HQ692346</td>
<td>
<italic>KF851012</italic>
</td>
<td>
<italic>KF850940</italic>
</td>
<td>HQ692446</td>
</tr>
<tr>
<td>
<italic>Lilium lankongense</italic>
Franchet</td>
<td>G2010071201-1</td>
<td>N27°07′35″, E100°14′31″</td>
<td>B</td>
<td>LLK2</td>
<td>HQ692248</td>
<td>HQ692347</td>
<td>
<italic>KF851013</italic>
</td>
<td>
<italic>KF850941</italic>
</td>
<td>HQ692447</td>
</tr>
<tr>
<td>
<italic>Lilium lankongense</italic>
Franchet</td>
<td>G2011007</td>
<td>N27°47′22″, E98°35′51″</td>
<td>B</td>
<td>LLK3</td>
<td>
<italic>KF850828</italic>
</td>
<td>
<italic>KF850905</italic>
</td>
<td>
<italic>KF851049</italic>
</td>
<td>
<italic>KF850977</italic>
</td>
<td>
<italic>KF850873</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium leucanthum</italic>
(Baker) Baker var.
<italic>centifolium</italic>
(Stapf ex Elwes) Stearn</td>
<td>Z0647</td>
<td>N30°32′37″, E104°17′33″</td>
<td>BC</td>
<td>LLUC</td>
<td>HQ692231</td>
<td>HQ692330</td>
<td>
<italic>KF851015</italic>
</td>
<td>
<italic>KF850943</italic>
</td>
<td>HQ692430</td>
</tr>
<tr>
<td>
<italic>Lilium leucanthum</italic>
(Baker) Baker var.
<italic>leucanthum</italic>
</td>
<td>G08030</td>
<td>N33°03′20″, E104°40′14″</td>
<td>BC</td>
<td>LLUE</td>
<td>HQ692230</td>
<td>HQ692329</td>
<td>
<italic>KF851014</italic>
</td>
<td>
<italic>KF850942</italic>
</td>
<td>HQ692429</td>
</tr>
<tr>
<td>
<italic>Lilium lijiangense</italic>
L. J. Peng</td>
<td>G09005</td>
<td>N26°21′44″, E102°48′45″</td>
<td>B</td>
<td>LLJ</td>
<td>
<italic>KF850805</italic>
</td>
<td>
<italic>KF850882</italic>
</td>
<td>
<italic>KF851006</italic>
</td>
<td>
<italic>KF850934</italic>
</td>
<td>
<italic>KF850838</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium longiflorum</italic>
Thunberg var.
<italic>scabrum</italic>
Masamune</td>
<td>Z05100</td>
<td>N26°21′44″, E102°48′45″</td>
<td>C</td>
<td>LLG</td>
<td>
<italic>KF850802</italic>
</td>
<td>
<italic>KF850879</italic>
</td>
<td>
<italic>KF850993</italic>
</td>
<td>
<italic>KF850921</italic>
</td>
<td>
<italic>KF850834</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium lophophorum</italic>
(Bureau & Franchet) Franchet</td>
<td>G08034</td>
<td>N30°52′05″, E108°52′01″</td>
<td>B</td>
<td>LLP1</td>
<td>HQ692196</td>
<td>HQ692296</td>
<td>
<italic>KF851021</italic>
</td>
<td>
<italic>KF850949</italic>
</td>
<td>HQ692395</td>
</tr>
<tr>
<td>
<italic>Lilium lophophorum</italic>
(Bureau & Franchet) Franchet</td>
<td>G2010081001-1</td>
<td>N29°08′32″, E100°04′50″</td>
<td>B</td>
<td>LLP2</td>
<td>HQ687303</td>
<td>HQ687321</td>
<td>
<italic>HQ687357</italic>
</td>
<td>
<italic>HQ687339</italic>
</td>
<td>HQ692403</td>
</tr>
<tr>
<td>
<italic>Lilium martagon</italic>
L. var.
<italic>pilosiusculum</italic>
Freyn</td>
<td>Em003</td>
<td>N46°44′49″, E84°25′57″</td>
<td>C</td>
<td>LMAT</td>
<td>
<italic>KF850801</italic>
</td>
<td>
<italic>KF850878</italic>
</td>
<td>
<italic>KF850988</italic>
</td>
<td>
<italic>KF850916</italic>
</td>
<td>
<italic>KF850833</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium matangense</italic>
J. M. Xu</td>
<td>G07009</td>
<td>N31°56′56″, E102°38′10″</td>
<td>B</td>
<td>LMT</td>
<td>HQ687302</td>
<td>HQ687320</td>
<td>
<italic>HQ687356</italic>
</td>
<td>
<italic>HQ687338</italic>
</td>
<td>
<italic>KF850840</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
Klotzsch</td>
<td>STET712</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LNM1</td>
<td>HQ687295</td>
<td>HQ687313</td>
<td>
<italic>HQ687349</italic>
</td>
<td>
<italic>HQ687331</italic>
</td>
<td>
<italic>KF850844</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
Klotzsch</td>
<td>G2011001</td>
<td>N29°46′22″, E95°40′52″</td>
<td>B</td>
<td>LNM2</td>
<td>JN786008</td>
<td>JN786068</td>
<td>
<italic>KF851037</italic>
</td>
<td>
<italic>KF850965</italic>
</td>
<td>JN786038</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
Klotzsch</td>
<td>G2011002</td>
<td>N29°46′22″, E95°40′52″</td>
<td>B</td>
<td>LNM3</td>
<td>JN786009</td>
<td>JN786069</td>
<td>
<italic>KF851038</italic>
</td>
<td>
<italic>KF850966</italic>
</td>
<td>JN786039</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
Klotzsch</td>
<td>G2011003</td>
<td>N29°46′22″, E95°40′52″</td>
<td>B</td>
<td>LNM4</td>
<td>JN786010</td>
<td>JN786070</td>
<td>
<italic>KF851039</italic>
</td>
<td>
<italic>KF850967</italic>
</td>
<td>JN786040</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
var.
<italic>flavidum</italic>
(Rendle) Sealy</td>
<td>G2011009</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LNF1</td>
<td>
<italic>KF850823</italic>
</td>
<td>
<italic>KF850900</italic>
</td>
<td>
<italic>KF851044</italic>
</td>
<td>
<italic>KF850972</italic>
</td>
<td>
<italic>KF850868</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
var.
<italic>flavidum</italic>
(Rendle) Sealy</td>
<td>G2011009</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LNF2</td>
<td>
<italic>KF850824</italic>
</td>
<td>
<italic>KF850901</italic>
</td>
<td>
<italic>KF851045</italic>
</td>
<td>
<italic>KF850973</italic>
</td>
<td>
<italic>KF850869</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium nanum</italic>
var.
<italic>flavidum</italic>
(Rendle) Sealy</td>
<td>G2011009</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LNF3</td>
<td>
<italic>KF850825</italic>
</td>
<td>
<italic>KF850902</italic>
</td>
<td>
<italic>KF851046</italic>
</td>
<td>
<italic>KF850974</italic>
</td>
<td>
<italic>KF850870</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium nepalense</italic>
D. Don</td>
<td>YY10080907</td>
<td>N28°50′54″, E85°20′06″</td>
<td>A</td>
<td>LNP</td>
<td>HQ687299</td>
<td>HQ687317</td>
<td>
<italic>HQ687353</italic>
</td>
<td>
<italic>HQ687335</italic>
</td>
<td>N/A</td>
</tr>
<tr>
<td>
<italic>Lilium paradoxum</italic>
Stearn</td>
<td>G2011010</td>
<td>N29°37′47″, E94°24′14″</td>
<td>B</td>
<td>LPD1</td>
<td>
<italic>KF850826</italic>
</td>
<td>
<italic>KF850903</italic>
</td>
<td>
<italic>KF851047</italic>
</td>
<td>
<italic>KF850975</italic>
</td>
<td>
<italic>KF850871</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium paradoxum</italic>
Stearn</td>
<td>G2011010</td>
<td>N29°37′47″, E94°24′14″</td>
<td>B</td>
<td>LPD2</td>
<td>
<italic>KF850827</italic>
</td>
<td>
<italic>KF850904</italic>
</td>
<td>
<italic>KF851048</italic>
</td>
<td>
<italic>KF850976</italic>
</td>
<td>
<italic>KF850872</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium primulinum</italic>
Baker var.
<italic>burmanicum</italic>
(Franchet) Stearn</td>
<td>G2010082801</td>
<td>N27°20′36″, E100°09′23″</td>
<td>B</td>
<td>LPRO1</td>
<td>HQ692238</td>
<td>HQ692337</td>
<td>
<italic>KF851003</italic>
</td>
<td>
<italic>KF850931</italic>
</td>
<td>HQ692437</td>
</tr>
<tr>
<td>
<italic>Lilium primulinum</italic>
Baker var.
<italic>ochraceum</italic>
(Franchet) Stearn</td>
<td>WZX2010090101</td>
<td>N27°01′20″, E100°13′24″</td>
<td>B</td>
<td>LPRO2</td>
<td>HQ692236</td>
<td>HQ692335</td>
<td>
<italic>KF851004</italic>
</td>
<td>
<italic>KF850932</italic>
</td>
<td>HQ692435</td>
</tr>
<tr>
<td>
<italic>Lilium primulinum</italic>
Baker var.
<italic>ochraceum</italic>
(Franchet) Stearn</td>
<td>G09009</td>
<td>N26°00′50″, E98°37′04″</td>
<td>B</td>
<td>LRPO3</td>
<td>HQ692240</td>
<td>HQ692339</td>
<td>
<italic>KF851005</italic>
</td>
<td>
<italic>KF850933</italic>
</td>
<td>HQ692439</td>
</tr>
<tr>
<td>
<italic>Lilium pumilum</italic>
Redouté</td>
<td>G08007</td>
<td>N35°47′49″, E104°03′49″</td>
<td>C</td>
<td>LPM1</td>
<td>HQ692180</td>
<td>HQ692280</td>
<td>
<italic>KF850979</italic>
</td>
<td>
<italic>KF850907</italic>
</td>
<td>HQ692379</td>
</tr>
<tr>
<td>
<italic>Lilium pumilum</italic>
Redouté</td>
<td>G08008</td>
<td>N35°47′56″, E104°03′06″</td>
<td>C</td>
<td>LPM2</td>
<td>HQ692181</td>
<td>HQ692281</td>
<td>
<italic>KF850980</italic>
</td>
<td>
<italic>KF850908</italic>
</td>
<td>HQ692380</td>
</tr>
<tr>
<td>
<italic>Lilium regale</italic>
E. H. Wilson</td>
<td>G09020</td>
<td>N31°29′38″, E103°36′49″</td>
<td>B</td>
<td>LRG1</td>
<td>HQ692192</td>
<td>HQ692292</td>
<td>
<italic>KF850995</italic>
</td>
<td>
<italic>KF850923</italic>
</td>
<td>HQ692391</td>
</tr>
<tr>
<td>
<italic>Lilium regale</italic>
E. H. Wilson</td>
<td>G07026</td>
<td>N31°30′23″, E103°33′29″</td>
<td>B</td>
<td>LRG2</td>
<td>HQ692191</td>
<td>HQ692291</td>
<td>
<italic>KF850996</italic>
</td>
<td>
<italic>KF850924</italic>
</td>
<td>HQ692390</td>
</tr>
<tr>
<td>
<italic>Lilium saccatum</italic>
S. Yun Liang</td>
<td>G2010070902</td>
<td>N29°37′47″, E94°24′14″</td>
<td>B</td>
<td>LSC1</td>
<td>HQ687297</td>
<td>HQ687315</td>
<td>
<italic>HQ687351</italic>
</td>
<td>
<italic>HQ687333</italic>
</td>
<td>
<italic>KF850845</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium saccatum</italic>
S. Yun Liang</td>
<td>STET1261</td>
<td>N29°46′22″, E95°40′52″</td>
<td>B</td>
<td>LSC2</td>
<td>HQ687298</td>
<td>HQ687316</td>
<td>
<italic>HQ687352</italic>
</td>
<td>
<italic>HQ687334</italic>
</td>
<td>
<italic>KF850846</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium sargentiae</italic>
E. H. Wilson</td>
<td>G08032</td>
<td>N29°04′37″, E107°12′08″</td>
<td>B</td>
<td>LSG1</td>
<td>HQ692214</td>
<td>HQ692313</td>
<td>
<italic>KF850997</italic>
</td>
<td>
<italic>KF850925</italic>
</td>
<td>HQ692413</td>
</tr>
<tr>
<td>
<italic>Lilium sargentiae</italic>
E. H. Wilson</td>
<td>G08006</td>
<td>N31°06′26″, E103°33′37″</td>
<td>B</td>
<td>LSG2</td>
<td>HQ692213</td>
<td>HQ692312</td>
<td>
<italic>KF850998</italic>
</td>
<td>
<italic>KF850926</italic>
</td>
<td>HQ692412</td>
</tr>
<tr>
<td>
<italic>Lilium sempervivoideum</italic>
H. Léveillé</td>
<td>G09006</td>
<td>N27°49′34″, E102°15′34″</td>
<td>B</td>
<td>LSMP</td>
<td>
<italic>KF850806</italic>
</td>
<td>
<italic>KF850883</italic>
</td>
<td>
<italic>KF851016</italic>
</td>
<td>
<italic>KF850944</italic>
</td>
<td>
<italic>KF850839</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium</italic>
sp.</td>
<td>G2010090302</td>
<td>N28°12′27″, 99°58′14″</td>
<td>B</td>
<td>LSOL1</td>
<td>
<italic>KF850808</italic>
</td>
<td>
<italic>KF850885</italic>
</td>
<td>
<italic>KF851019</italic>
</td>
<td>
<italic>KF850947</italic>
</td>
<td>
<italic>KF850842</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium</italic>
sp.</td>
<td>G2010081705</td>
<td>N28°08′27″, 99°18′15″</td>
<td>B</td>
<td>LSOL2</td>
<td>
<italic>KF850809</italic>
</td>
<td>
<italic>KF850886</italic>
</td>
<td>
<italic>KF851020</italic>
</td>
<td>
<italic>KF850948</italic>
</td>
<td>
<italic>KF850843</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium souliei</italic>
(Franchet) Sealy</td>
<td>G2011004</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LSOL3</td>
<td>JN786012</td>
<td>JN786072</td>
<td>
<italic>KF851040</italic>
</td>
<td>
<italic>KF850968</italic>
</td>
<td>JN786042</td>
</tr>
<tr>
<td>
<italic>Lilium souliei</italic>
(Franchet) Sealy</td>
<td>STET713</td>
<td>N28°30′04″, E98°07′49″</td>
<td>B</td>
<td>LSOL4</td>
<td>JN786013</td>
<td>JN786073</td>
<td>
<italic>KF851041</italic>
</td>
<td>
<italic>KF850969</italic>
</td>
<td>JN786043</td>
</tr>
<tr>
<td>
<italic>Lilium speciosum</italic>
Thunberg var.
<italic>gloriosoides</italic>
Baker</td>
<td>G09032</td>
<td>N30°05′15″, E117°29′25″</td>
<td>C</td>
<td>LSP</td>
<td>
<italic>KF850797</italic>
</td>
<td>
<italic>KF850874</italic>
</td>
<td>
<italic>KF850978</italic>
</td>
<td>
<italic>KF850906</italic>
</td>
<td>
<italic>KF850829</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium sulphureum</italic>
Baker ex J. D. Hooker</td>
<td>G09028</td>
<td>N23°15′03″, E104°16′03″</td>
<td>B</td>
<td>LSL1</td>
<td>HQ692226</td>
<td>HQ692325</td>
<td>
<italic>KF850999</italic>
</td>
<td>
<italic>KF850927</italic>
</td>
<td>HQ692425</td>
</tr>
<tr>
<td>
<italic>Lilium sulphureum</italic>
Baker ex J. D. Hooker</td>
<td>G09029</td>
<td>N23°15′03″, E104°16′03″</td>
<td>B</td>
<td>LSL2</td>
<td>HQ692225</td>
<td>HQ692324</td>
<td>
<italic>KF851000</italic>
</td>
<td>
<italic>KF850928</italic>
</td>
<td>HQ692424</td>
</tr>
<tr>
<td>
<italic>Lilium sulphureum</italic>
Baker ex J. D. Hooker</td>
<td>G09030</td>
<td>N25°50′26″, E98°54′38″</td>
<td>B</td>
<td>LSL3</td>
<td>HQ692224</td>
<td>HQ692323</td>
<td>
<italic>KF851001</italic>
</td>
<td>
<italic>KF850929</italic>
</td>
<td>HQ692423</td>
</tr>
<tr>
<td>
<italic>Lilium taliense</italic>
Franchet</td>
<td>G2010071801</td>
<td>N28°04′10″, E99°46′29″</td>
<td>B</td>
<td>LTL</td>
<td>HQ692209</td>
<td>HQ692308</td>
<td>
<italic>KF851011</italic>
</td>
<td>
<italic>KF850939</italic>
</td>
<td>HQ692408</td>
</tr>
<tr>
<td>
<italic>Lilium tigrinum</italic>
Ker Gawler</td>
<td>Z0692</td>
<td>N31°48′40″, E104°26′51″</td>
<td>BC</td>
<td>LTG1</td>
<td>HQ692193</td>
<td>HQ692293</td>
<td>
<italic>KF850984</italic>
</td>
<td>
<italic>KF850912</italic>
</td>
<td>HQ692392</td>
</tr>
<tr>
<td>
<italic>Lilium tigrinum</italic>
Ker Gawler</td>
<td>G0833</td>
<td>N34°03′13″, E107°30′15″</td>
<td>BC</td>
<td>LTG2</td>
<td>HQ692195</td>
<td>HQ692295</td>
<td>
<italic>KF850985</italic>
</td>
<td>
<italic>KF850913</italic>
</td>
<td>HQ692394</td>
</tr>
<tr>
<td>
<italic>Lilium tsingtauense</italic>
Gilg.</td>
<td>G201101</td>
<td>N36°10′1″, E120°34′23″</td>
<td>C</td>
<td>LTS</td>
<td>
<italic>KF850800</italic>
</td>
<td>
<italic>KF850877</italic>
</td>
<td>
<italic>KF850987</italic>
</td>
<td>
<italic>KF850915</italic>
</td>
<td>
<italic>KF850832</italic>
</td>
</tr>
<tr>
<td>
<italic>Lilium wardii</italic>
Stapf ex F. C. Stern</td>
<td>G2011007</td>
<td>N29°58′21″, E95°21′48″</td>
<td>B</td>
<td>LWD1</td>
<td>JN786014</td>
<td>JN786074</td>
<td>
<italic>KF851042</italic>
</td>
<td>
<italic>KF850970</italic>
</td>
<td>JN786044</td>
</tr>
<tr>
<td>
<italic>Lilium wardii</italic>
Stapf ex F. C. Stern</td>
<td>G2011008</td>
<td>N29°57′43″, E 94°47′27″</td>
<td>B</td>
<td>LWD2</td>
<td>JN786015</td>
<td>JN786075</td>
<td>
<italic>KF851043</italic>
</td>
<td>
<italic>KF850971</italic>
</td>
<td>JN786045</td>
</tr>
<tr>
<td>
<italic>Lilium wenshanense</italic>
L. J. Peng & F. X. Li</td>
<td>G09002</td>
<td>N26°00′50″, E98°37′04″</td>
<td>B</td>
<td>LWS1</td>
<td>HQ692232</td>
<td>HQ692331</td>
<td>
<italic>KF850990</italic>
</td>
<td>
<italic>KF850918</italic>
</td>
<td>HQ692431</td>
</tr>
<tr>
<td>
<italic>Lilium wenshanense</italic>
L. J. Peng & F. X. Li</td>
<td>WJ10051401</td>
<td>N31°50′32″, E104°39′36″</td>
<td>B</td>
<td>LWS2</td>
<td>HQ692235</td>
<td>HQ692334</td>
<td>
<italic>KF850991</italic>
</td>
<td>
<italic>KF850919</italic>
</td>
<td>HQ692434</td>
</tr>
<tr>
<td>
<italic>Lilium xanthellum</italic>
F. T. Wang & Tang var.
<italic>luteum</italic>
S. Yun Liang</td>
<td>G2010070106-1</td>
<td>N29°02′39″, E99°42′41″</td>
<td>B</td>
<td>LXAL</td>
<td>HQ692255</td>
<td>HQ692354</td>
<td>
<italic>KF851017</italic>
</td>
<td>
<italic>KF850945</italic>
</td>
<td>HQ692454</td>
</tr>
<tr>
<td>
<italic>Lilium xanthellum</italic>
var.
<italic>xanthellum</italic>
F. T. Wang & Tang</td>
<td>G2010070106-2</td>
<td>N29°02′39″, E99°42′41″</td>
<td>B</td>
<td>LXA</td>
<td>HQ687304</td>
<td>HQ687322</td>
<td>
<italic>HQ687358</italic>
</td>
<td>
<italic>HQ687340</italic>
</td>
<td>HQ692451</td>
</tr>
<tr>
<td>
<italic>Lilium yapingense</italic>
Y. D. Gao et X. J. He</td>
<td>G2010070903</td>
<td>N27°12′20″, E98°44′24″</td>
<td>B</td>
<td>LYP</td>
<td>HQ687296</td>
<td>HQ687314</td>
<td>
<italic>HQ687350</italic>
</td>
<td>
<italic>HQ687332</italic>
</td>
<td>
<italic>KF850847</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>Z0674</td>
<td>N27°47′41″, E99°54′27″</td>
<td>B</td>
<td>NAP7</td>
<td>HQ687306</td>
<td>HQ687324</td>
<td>
<italic>HQ687360</italic>
</td>
<td>
<italic>HQ687342</italic>
</td>
<td>
<italic>KF850853</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA01</td>
<td>N28°1′8″, E99°45′41″</td>
<td>B</td>
<td>NAP1</td>
<td>
<italic>KF850811</italic>
</td>
<td>
<italic>KF850888</italic>
</td>
<td>
<italic>KF851023</italic>
</td>
<td>
<italic>KF850951</italic>
</td>
<td>
<italic>KF850854</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA02</td>
<td>N27°31′14″, E99°52′43″</td>
<td>B</td>
<td>NAP2</td>
<td>
<italic>KF850812</italic>
</td>
<td>
<italic>KF850889</italic>
</td>
<td>
<italic>KF851024</italic>
</td>
<td>
<italic>KF850952</italic>
</td>
<td>
<italic>KF850855</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA03</td>
<td>N27°30′30″, E99°48′33″</td>
<td>B</td>
<td>NAP3</td>
<td>
<italic>KF850813</italic>
</td>
<td>
<italic>KF850890</italic>
</td>
<td>
<italic>KF851025</italic>
</td>
<td>
<italic>KF850953</italic>
</td>
<td>
<italic>KF850856</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA04</td>
<td>N27°26′33″, E99°48′33″</td>
<td>B</td>
<td>NAP4</td>
<td>
<italic>KF850814</italic>
</td>
<td>
<italic>KF850891</italic>
</td>
<td>
<italic>KF851026</italic>
</td>
<td>
<italic>KF850954</italic>
</td>
<td>
<italic>KF850857</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA05</td>
<td>N28°1′8″, E99°45′41″</td>
<td>B</td>
<td>NAP5</td>
<td>
<italic>KF850815</italic>
</td>
<td>
<italic>KF850892</italic>
</td>
<td>
<italic>KF851027</italic>
</td>
<td>
<italic>KF850955</italic>
</td>
<td>
<italic>KF850858</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis aperta</italic>
(Franchet) E. H. Wilson</td>
<td>G10ZDNA06</td>
<td>N28°1′8″, E99°45′41″</td>
<td>B</td>
<td>NAP6</td>
<td>
<italic>KF850816</italic>
</td>
<td>
<italic>KF850893</italic>
</td>
<td>
<italic>KF851028</italic>
</td>
<td>
<italic>KF850956</italic>
</td>
<td>
<italic>KF850859</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis basilissa</italic>
Farrer ex W. E. Evans</td>
<td>G2010070904</td>
<td>N27°12′20″, E98°44′24″</td>
<td>B</td>
<td>NBA</td>
<td>HQ687308</td>
<td>HQ687326</td>
<td>
<italic>HQ687362</italic>
</td>
<td>
<italic>HQ687344</italic>
</td>
<td>N/A</td>
</tr>
<tr>
<td>
<italic>Nomocharis farreri</italic>
(W. E. Evans) Harrow</td>
<td>G09037</td>
<td>N25°58′43″, E98°40′20″</td>
<td>B</td>
<td>NFR</td>
<td>HQ687309</td>
<td>HQ687327</td>
<td>
<italic>HQ687363</italic>
</td>
<td>
<italic>HQ687345</italic>
</td>
<td>
<italic>KF850860</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis gongshanensis</italic>
Y. D. Gao et X. J. He</td>
<td>G09003</td>
<td>N27°46′09″, E98°26′58″</td>
<td>B</td>
<td>NGS</td>
<td>
<italic>KF850810</italic>
</td>
<td>
<italic>KF850887</italic>
</td>
<td>
<italic>KF851022</italic>
</td>
<td>
<italic>KF850950</italic>
</td>
<td>
<italic>KF850848</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis meleagrina</italic>
Franchet</td>
<td>G09038</td>
<td>N27°46′18″, E98°27′20″</td>
<td>B</td>
<td>NML</td>
<td>HQ687310</td>
<td>HQ687328</td>
<td>
<italic>HQ687364</italic>
</td>
<td>
<italic>HQ687346</italic>
</td>
<td>
<italic>KF850861</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis pardanthina</italic>
f.
<italic>punctulata</italic>
Sealy</td>
<td>G09040</td>
<td>N27°46′09″, E98°26′58″</td>
<td>B</td>
<td>NPDF</td>
<td>HQ687307</td>
<td>HQ687325</td>
<td>
<italic>HQ687361</italic>
</td>
<td>
<italic>HQ687343</italic>
</td>
<td>
<italic>KF850852</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis pardanthina</italic>
Franchet</td>
<td>G09036</td>
<td>N25°42′28″, E100°06′27″</td>
<td>B</td>
<td>NPD</td>
<td>HQ687311</td>
<td>HQ687329</td>
<td>
<italic>HQ687365</italic>
</td>
<td>
<italic>HQ687347</italic>
</td>
<td>
<italic>KF850851</italic>
</td>
</tr>
<tr>
<td>
<italic>Nomocharis saluenensis</italic>
I. B. Balfour</td>
<td>G09039</td>
<td>N27°46′13″, E98°26′44″</td>
<td>B</td>
<td>NSL</td>
<td>HQ687312</td>
<td>HQ687330</td>
<td>
<italic>HQ687366</italic>
</td>
<td>
<italic>HQ687348</italic>
</td>
<td>
<italic>KF850849</italic>
</td>
</tr>
<tr>
<td>
<italic>Cardiocrinum cathayanum</italic>
(E. H. Wilson) Stearn</td>
<td>G09045</td>
<td>N30°04′10″, E117°48′11″</td>
<td>C</td>
<td>/</td>
<td>
<italic>KF850819</italic>
</td>
<td>
<italic>KF850896</italic>
</td>
<td>
<italic>KF851031</italic>
</td>
<td>
<italic>KF850959</italic>
</td>
<td>
<italic>KF850864</italic>
</td>
</tr>
<tr>
<td>
<italic>Cardiocrinum giganteum</italic>
(Wallich) Makino</td>
<td>Z05023</td>
<td>N29°02′18″, E107°12′37″</td>
<td>B</td>
<td>/</td>
<td>
<italic>KF850820</italic>
</td>
<td>
<italic>KF850897</italic>
</td>
<td>
<italic>KF851032</italic>
</td>
<td>
<italic>KF850960</italic>
</td>
<td>
<italic>KF850865</italic>
</td>
</tr>
<tr>
<td>
<italic>Fritillaria cirrhosa</italic>
D. Don</td>
<td>G09048</td>
<td>N27°19′40″, E102°27′44″</td>
<td>B</td>
<td>/</td>
<td>
<italic>KF850818</italic>
</td>
<td>
<italic>KF850895</italic>
</td>
<td>
<italic>KF851030</italic>
</td>
<td>
<italic>KF850958</italic>
</td>
<td>
<italic>KF850863</italic>
</td>
</tr>
<tr>
<td>
<italic>Fritillaria thunbergii</italic>
Miquel</td>
<td>G09100</td>
<td>N32°6′2″, E118°56′27″</td>
<td>C</td>
<td>/</td>
<td>
<italic>KF850817</italic>
</td>
<td>
<italic>KF850894</italic>
</td>
<td>
<italic>KF851029</italic>
</td>
<td>
<italic>KF850957</italic>
</td>
<td>
<italic>KF850862</italic>
</td>
</tr>
<tr>
<td>
<italic>Notholirion bulbuliferum</italic>
(Lingelsheim ex H. Limpricht) Stearn</td>
<td>G07002</td>
<td>N31°45′43″, E102°15′35″</td>
<td>B</td>
<td>/</td>
<td>
<italic>KF850822</italic>
</td>
<td>
<italic>KF850899</italic>
</td>
<td>
<italic>KF851034</italic>
</td>
<td>
<italic>KF850962</italic>
</td>
<td>
<italic>KF850867</italic>
</td>
</tr>
<tr>
<td>
<italic>Notholirion macrophyllum</italic>
(D. Don) Boissier</td>
<td>G09043</td>
<td>N29°2′34.77″, E100°32′30.01″</td>
<td>AB</td>
<td>/</td>
<td>
<italic>KF850821</italic>
</td>
<td>
<italic>KF850898</italic>
</td>
<td>
<italic>KF851033</italic>
</td>
<td>
<italic>KF850961</italic>
</td>
<td>
<italic>KF850866</italic>
</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>We surveyed the morphology of
<italic>Nomocharis</italic>
, its close allies, and major lineages throughout
<italic>Lilium</italic>
. In particular, we used photographs of specimens observed in the field, field collected materials, and greenhouse specimens to assess macromorphological traits of 14 species of
<italic>Nomocharis</italic>
and closely related species of
<italic>Lilium</italic>
. To evaluate the same characters more broadly in 10 major lineages of
<italic>Lilium</italic>
(based on our phylogenetic results) we examined preserved specimens available to us, utilized the Chinese Virtual Herbarium, and obtained data from the literature (e.g., Flora of China [
<xref ref-type="bibr" rid="CR20">20</xref>
]).</p>
</sec>
<sec id="Sec13">
<title>DNA extraction, Polymerase Chain Reaction (PCR) and sequencing</title>
<p>We selected the nuclear marker ITS and the cpDNA regions
<italic>trn</italic>
L-F,
<italic>rbc</italic>
L,
<italic>mat</italic>
K,
<italic>rpl</italic>
32-
<italic>trn</italic>
L and
<italic>psb</italic>
A-
<italic>trn</italic>
H to reconstruct the molecular phylogeny of
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
. We chose the five cpDNA makers because three of them have been proposed as DNA barcodes for their high resolution and amplification success [
<xref ref-type="bibr" rid="CR45">45</xref>
], and the other two have shown suitable variation in preliminary analyses (data not shown). For PCR amplifications of nuclear and plastid markers, we used total DNA extractions from fresh or silica gel-dried leaf tissue using a modified cetyltrimethyl-ammonium bromide (CTAB) protocol by Doyle and Doyle [
<xref ref-type="bibr" rid="CR46">46</xref>
] or the Plant Genomic DNA Kit (TIANGEN Biotech, Beijing, China). We amplified all six markers using the primers listed in Table 
<xref rid="Tab3" ref-type="table">3</xref>
. All PCR reactions were performed with 50 ng genomic DNA in 20 μl reactions in a GeneAmp PCR System 9700 (Applied Biosystems, USA). The ITS reactions were performed using the following thermocycler protocol: 94 °C denaturation for 2 min; 35 cycles of 94 °C denaturation for 30 s, 55 °C primer annealing for 30 s, and 72 °C extension for 60 s; and a final extension of 72 °C for 10 min. For the plastid markers, the amplification conditions were the same except that primer annealing was performed at 52 °C for 45 s each cycle. Our amplified PCR products were sent to Invitrogen Biotech Co. Ltd. (Shanghai, China) for purification and sequencing, which was done on an ABI-3730XL DNA sequencer. For each sequenced accession, forward and reverse sequencing reactions were performed for increased coverage. Sequencing of the
<italic>psb</italic>
A-
<italic>trn</italic>
H spacer failed in two species,
<italic>Nomocharis basilissa</italic>
and
<italic>Lilium nepalense</italic>
, due to homopolymers at ~200 bp from the 5’ end. Thus, all data for this marker for these two species was considered missing (i.e., '?’, [
<xref ref-type="bibr" rid="CR47">47</xref>
]) in downstream phylogenetic analyses.
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Primers and sequences statistics of nuclear and chloroplast makers used in present study</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Region</th>
<th>Forward-primer (5′-3′)</th>
<th>Reverse-primer (5′-3′)</th>
<th>Reference</th>
<th>Alignment length (bp)</th>
<th>Variable sites</th>
<th>Parsimony informative sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS</td>
<td>GGAAGTAAAAGTCGTAACAAGG</td>
<td>TCCTCCGCTTATTGATATGC</td>
<td>[
<xref ref-type="bibr" rid="CR92">92</xref>
]</td>
<td>673</td>
<td>398</td>
<td>287</td>
</tr>
<tr>
<td>
<italic>rbc</italic>
L</td>
<td>ATGTCACCACAAACAGAGAC</td>
<td>TCACATGTACCCGCAGTAGC</td>
<td>[
<xref ref-type="bibr" rid="CR93">93</xref>
]</td>
<td>796</td>
<td>84</td>
<td>42</td>
</tr>
<tr>
<td>
<italic>mat</italic>
K</td>
<td>CGATCTATTCATTCAATATTTC</td>
<td>TCTAGCACACGAAAGTCGAAGT</td>
<td>[
<xref ref-type="bibr" rid="CR94">94</xref>
]</td>
<td>392</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>
<italic>trn</italic>
L intron and
<italic>trn</italic>
L-
<italic>trn</italic>
F spacer</td>
<td>CGAAATCGGTAGACGCTACG</td>
<td>ATTTGAACTGGTGACACGAG</td>
<td>[
<xref ref-type="bibr" rid="CR95">95</xref>
]</td>
<td>786</td>
<td>57</td>
<td>34</td>
</tr>
<tr>
<td>
<italic>rpl</italic>
32-
<italic>trn</italic>
L(UAG)</td>
<td>CAGTTCCAAAAAAACGTACTTC</td>
<td>CTGCTTCCTAAGAGCAGCGT</td>
<td>[
<xref ref-type="bibr" rid="CR45">45</xref>
]</td>
<td>842</td>
<td>138</td>
<td>100</td>
</tr>
<tr>
<td>
<italic>psb</italic>
A-
<italic>trn</italic>
H</td>
<td>ACTGCCTTGATCCACTTGGC</td>
<td>CGAAGCTCCATCTACAAATGG</td>
<td>[
<xref ref-type="bibr" rid="CR96">96</xref>
]</td>
<td>613</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total plastid</td>
<td>3429</td>
<td>336</td>
<td>218</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
</sec>
<sec id="Sec14">
<title>Molecular analysis</title>
<p>We aligned our DNA sequences using ClustalX [
<xref ref-type="bibr" rid="CR48">48</xref>
] and then by eye in MEGA4.0 [
<xref ref-type="bibr" rid="CR49">49</xref>
] following the guidelines of Morrison [
<xref ref-type="bibr" rid="CR50">50</xref>
]. We trimmed the sequences to the limits of the ITS and the plastid regions, respectively, by comparing with examples deposited in Genbank. We positioned gaps to minimize nucleotide mismatches. We combined the five cpDNA markers into a single dataset, and all six aligned, and curated datasets were used to calculate uncorrected pairwise nucleotide differences in PAUP* version 4.0b10 [
<xref ref-type="bibr" rid="CR51">51</xref>
]. Our nuclear ITS dataset contained a total of 294 accessions, inclusive of our eight outgroups. The ITS matrix contained 673 characters of which 398 were variable and 271 were parsimony-informative. There were 90 accessions for which sequences of all chloroplast markers were available, including for six outgroups. Details of the five chloroplast makers are presented in Table 
<xref rid="Tab3" ref-type="table">3</xref>
. The combined cpDNA alignment was 3429 bp long and contained 336 variables sites, of which 218 (or 6.3 %) were parsimony informative.</p>
<p>For phylogenetic analyses, we combined all five plastid sequences, because chloroplast genes have shared evolutionary histories within the chloroplast genome and because they do not recombine. We treated the ITS dataset independently. Bayesian phylogenetic analyses of the combined chloroplast dataset and the ITS dataset were conducted using MrBayes version 3.1.2 [
<xref ref-type="bibr" rid="CR52">52</xref>
] with the GTR+ G + I and GTR+ G models of nucleotide substitution, respectively. These models were selected under the Akaike information criterion (AIC) using MrModeltest version 2.2 [
<xref ref-type="bibr" rid="CR53">53</xref>
]. For each of the two datasets, we performed two simultaneous Bayesian analyses that started from a random tree and ran for 10 million generations with sampling every 1000 generations. Within each simultaneous run, four independent MCMC chains were used and the temperature increment between chains was adjusted to 0.2 based on mixing observed in preliminary analyses. Variation in likelihood scores was examined graphically for each independent run using Tracer 1.4 [
<xref ref-type="bibr" rid="CR54">54</xref>
] and was used to determine apparent stationarity. Based on observations in Tracer, the first 25 % (2500) of posterior trees were discarded from each run as “burn-in” and posterior probabilities (pp) of clades were calculated from the remaining trees. Following burnin, we selected the best tree from among the simultaneous analyses of the plastid and ITS dataset, independently, using maximum clade credibility.</p>
<p>Maximum parsimony (MP) analyses of the ITS and the combined chloroplast makers were carried out using PAUP* [
<xref ref-type="bibr" rid="CR51">51</xref>
]. Characters were treated as unordered and unweighted. A heuristic search was performed with 1000 replicate analyses, random stepwise addition of taxa, tree-bisection-reconnection (TBR) branch swapping, and maximum trees set to 50,000. We summarized the resulting equally parsimonious topologies using majority-rule consensus and calculated bootstrap values from one million replicate analyses using fast stepwise addition of taxa. We retained the bootstrap values for clades consistent with the majority-rule consensus tree.</p>
<p>We carried out topological testing using Kishino-Hasegawa (KH) tests in PAUP*, because KH tests are known to exhibit very low type I error rates [
<xref ref-type="bibr" rid="CR55">55</xref>
]. To perform the tests, we used a reduced dataset, which consisted of one sequence for each major evolutionary lineage that was mutually represented in the plastid and nuclear gene trees (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
: Figure S7). We confirmed that the selected samples produced the same arrangements of evolutionary lineages as the entire plastid and nuclear alignments by generating maximum likelihood (ML) trees using the GTR+ G + I and GTR+ G models, respectively (data not shown). Major lineages were manually organized into plastid and nuclear cladograms in Mesquite [
<xref ref-type="bibr" rid="CR56">56</xref>
] (Additional file
<xref rid="MOESM7" ref-type="media">7</xref>
: Figure S7). The reduced alignments plus the cladograms were loaded into PAUP* for performing the KH tests. Specifically, we used the tests to determine if each tree represented a significantly better fit for the dataset from which it was reconstructed compared to tree resulting from the other dataset. We performed the KH tests under the GTR+ G + I and GTR+ G models for the plastid and nuclear datasets using a normal test distribution.</p>
</sec>
<sec id="Sec15">
<title>Statistical parsimony network</title>
<p>We expected that strictly bifurcating trees may not completely describe the evolutionary relationships within
<italic>Lilium-Nomocharis</italic>
, because hybridization in
<italic>Lilium-Nomocharis</italic>
has been postulated [
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
] and incomplete lineage sorting has been detected in many plant lineages [
<xref ref-type="bibr" rid="CR40">40</xref>
]. Therefore, we used the statistical parsimony network approach implemented in TCS v.1.21 [
<xref ref-type="bibr" rid="CR58">58</xref>
] to further evaluate evolutionary relationships within the
<italic>Lilium-Nomocharis</italic>
complex using the combined chloroplast sequences. We built the parsimony network using eighty-four accessions sequenced for all cpDNA markers except
<italic>psb</italic>
A-
<italic>trn</italic>
H, which was missing data for two taxa (see above). We tested whether removal of
<italic>psb</italic>
A-
<italic>trn</italic>
H would change relationships among species, by reconstructing a bifurcating plastid phylogeny without the marker, and it showed no differences compared to the tree constructed using whole dataset (results not shown). For the network analysis, we considered each indel as a single mutation event, and all indels were reduced to single characters (arbitrarily A or T) in a final alignment. The resulting plastid matrix was 3037 characters in length and contained 66 plastid haplotypes representing 84 accessions of
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
. We eliminated loops from the parsimony based on the principle that haplotypes with interior positions in the network are assumed to be ancestral [
<xref ref-type="bibr" rid="CR59">59</xref>
].</p>
</sec>
<sec id="Sec16">
<title>Divergence estimation</title>
<p>Molecular dating in Liliales has been previously performed using distantly related fossils [
<xref ref-type="bibr" rid="CR60">60</xref>
], calibrations from previous studies [
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR61">61</xref>
], and single calibration points [
<xref ref-type="bibr" rid="CR17">17</xref>
]. In particular, Bremer [
<xref ref-type="bibr" rid="CR60">60</xref>
] dated nodes in the monocot phylogeny using fossils closely related to palms, aroids, grasses, and cattails and found that Liliales evolved approximately 112 Mya and began diversifying 82 ± 10 Mya. Deriving calibration points from Bremer [
<xref ref-type="bibr" rid="CR60">60</xref>
], Patterson and Givnish [
<xref ref-type="bibr" rid="CR44">44</xref>
] inferred the divergence time of the tribe Lilieae as 12 Mya and Vinnersten and Bremer [
<xref ref-type="bibr" rid="CR61">61</xref>
] concluded that the monophyletic lineage comprised of
<italic>Lilium</italic>
,
<italic>Nomocharis</italic>
and
<italic>Fritillaria</italic>
diverged 6 ± 2.9 Ma. Gao et al. [
<xref ref-type="bibr" rid="CR17">17</xref>
] provided a detailed review of Liliales fossils and performed dating using a single, reliable fossil of
<italic>Smilax</italic>
,
<italic>Smilax wilcoxensis</italic>
Berry [
<xref ref-type="bibr" rid="CR62">62</xref>
], to calibrate the divergence between Liliaceae and Smilaceae. Their results showed that Lilieae evolved approximately 16mya. Despite these efforts, it has been widely discussed and shown that single calibration points and caibrations derived from prior studies lead to less reliable, and often younger, clade ages [
<xref ref-type="bibr" rid="CR63">63</xref>
<xref ref-type="bibr" rid="CR65">65</xref>
].</p>
<p>We sought to more rigorously date events in
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
by applying two calibration points for dating analyses in BEAST (Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
: Figure S2) [
<xref ref-type="bibr" rid="CR66">66</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
]. For one calibration, we constrained the divergence time of Liliaceae and Smilacaceae using
<italic>Smilax wilcoxensis</italic>
. In brief,
<italic>Smilax wilcoxensis</italic>
is known from the early Eocene (∼48.6–55.8 Mya) of the Tennessee Wilcox Formation [
<xref ref-type="bibr" rid="CR62">62</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
], which is assigned a relative age based on pollen [
<xref ref-type="bibr" rid="CR69">69</xref>
,
<xref ref-type="bibr" rid="CR70">70</xref>
]. Specifically, we calibrated the Liliaceae-Smilacaceae node using a uniform prior with a lower bound (paleontologically upper) of 48.6 Mya and an upper bound of 131 Mya. Thus, we asserted our belief that Smilacaceae cannot be younger than
<italic>Smilax wilcoxensis</italic>
or older than the Barremian (i.e., 131 Mya), from which the oldest flowering plant fossil is known [
<xref ref-type="bibr" rid="CR71">71</xref>
]. For the second calibration, we used
<italic>Ripogonum tasmanicum</italic>
Conran, et al. [
<xref ref-type="bibr" rid="CR72">72</xref>
] to constrain the age of the ancestor of the monotypic Ripogonanceae and Philesiaceae (following Angiosperm Phylogeny Website, [
<xref ref-type="bibr" rid="CR73">73</xref>
]).
<italic>Ripogonum tasmanicum</italic>
is reported from the Tasmanian Macquarie Harbour Formation [
<xref ref-type="bibr" rid="CR72">72</xref>
], which is approximately 51–52 million years old based on a foraminiferal index [
<xref ref-type="bibr" rid="CR74">74</xref>
]. Thus, we constrained the Ripogonanceae and Philesiaceae split using a uniform prior with a lower bound of 51 Mya and an upper bound of 131 Mya. The prior asserts our belief that Ripogonaceae cannot be younger than its fossil or older than the earliest known flowering plant.</p>
<p>The two fossils facilitated establishing calibration points that were well outside of the
<italic>Nomocharis</italic>
-
<italic>Lilium</italic>
complex. Therefore, we applied these two calibrations to infer the split between
<italic>Lilium</italic>
and
<italic>Fritillaria</italic>
using a dataset comprised of three cpDNA markers (
<italic>apt</italic>
F-H,
<italic>mat</italic>
K and
<italic>rbc</italic>
L, see Additional file
<xref rid="MOESM9" ref-type="media">9</xref>
: Table S2, Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
: Figure S2) that included 45 representative Liliales species and more than 3000 bp [
<xref ref-type="bibr" rid="CR75">75</xref>
]. We applied the result mean and 95 % Highest Posterior Density (HPD) to constrain the
<italic>Lilium</italic>
and
<italic>Fritillaria</italic>
node using a normal prior distribution in an analysis of our plastid dataset. We take these results (Additional file
<xref rid="MOESM2" ref-type="media">2</xref>
: Figure S2) to be our best estimates of ages within
<italic>Lilium-Nomocharis</italic>
. More vetted fossils closer to
<italic>Lilium</italic>
may eliminate the need for the second dating step in the future.</p>
<p>Divergence time estimations were performed using BEAST ver. 1.5.3 [
<xref ref-type="bibr" rid="CR67">67</xref>
] identically for the
<italic>cp</italic>
DNA and ITS datasets. The normal prior distribution on the age of the
<italic>Lilium</italic>
stem node (i.e., the split of
<italic>Lilium</italic>
and
<italic>Fritillaria</italic>
) was set using a mean of 14.92 Mya and a standard deviation of 2.5. The chosen standard deviation gave a 95 % HPD of 10.81-19.03 Ma, which was slightly narrower than the actual result of 6.32–25.71 Ma. A likelihood ratio test in PAUP 4.10b [
<xref ref-type="bibr" rid="CR51">51</xref>
] rejected strict clocks for both datasets (
<italic>P</italic>
 < 0.01), therefore we used an uncorrelated lognormal (UCLN), relaxed clock [
<xref ref-type="bibr" rid="CR76">76</xref>
]. We used the GTR + G + I and GTR + G models of nucleotide substitution for combined plastid and nuclear ITS dataset, respectively. For the distribution of divergence times, a pure birth branching process (Yule model) was chosen as a prior. BEAST analyses were run on the Cyberinfrastructure for Phylogenetic Research (CIPRES) Science Gateway (
<ext-link ext-link-type="uri" xlink:href="http://www.phylo.org/portal2">http://www.phylo.org/portal2</ext-link>
). We ran two independent Markov chains, each for 50,000,000 generations, initiated with a random starting tree, and sampled every 1000 generations. The first 20 % of sampled trees from all runs were discarded as burn-in based on visual inspection in Tracer version 1.4 [
<xref ref-type="bibr" rid="CR54">54</xref>
].</p>
</sec>
<sec id="Sec17">
<title>Ancestral Area Reconstructions (AAR)</title>
<p>We used the Bayesian Binary method (BBM) in Reconstruct Ancestral States in Phylogenies 2.1b (RASP 2.0) [
<xref ref-type="bibr" rid="CR77">77</xref>
<xref ref-type="bibr" rid="CR79">79</xref>
] to reconstruct the biogeographic history of
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
on the ITS consensus phylogeny constructed from BEAST trees. Based on prior studies (e.g., [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
]) three areas of endemism were recognized: Qinghai-Tibetan Plateau (QTP, A), H-D Mountains (HDM, B), the geographic region now covered by Sino-Japanese Forest subkingdom (SJFS, C; A-C stand for each region in the RASP analyses, Table 
<xref rid="Tab2" ref-type="table">2</xref>
). We compared BBM results to results from Lagrange, which implements a likelihood method and the Dispersal-Extinction-Cladogenesis (DEC) model [
<xref ref-type="bibr" rid="CR81">81</xref>
]. In Lagrange, we set migration probabilities among the three areas of endemism to 1.0 throughout time and did not limit the number of areas that a widespread taxon could occupy (Additional file
<xref rid="MOESM10" ref-type="media">10</xref>
: Table S3). We allowed Lagrange to estimate the extinction and dispersal parameters required for the DEC model.</p>
</sec>
<sec id="Sec18">
<title>Ancestral state reconstruction (ASR)</title>
<p>We reconstructed the ancestral states for four, variable macro morphological characters and the habitat characteristic, elevation, in
<italic>Lilium</italic>
-
<italic>Nomocharis</italic>
. We selected variable macromorphological characters with states that could be evaluated with confidence given the coarse availability of specimen data (see
<italic>Taxon sampling</italic>
above). Specifically, we performed reconstructions for corolla shape, flower orientation, the ratio of stigma versus stamen length, and leaf arrangement (Additional file
<xref rid="MOESM11" ref-type="media">11</xref>
: Table S4). We selected these characters from among other plausible ones, because they have previously been used to delimit species within
<italic>Lilium</italic>
and
<italic>Nomocharis</italic>
[
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR80">80</xref>
] but they have not been previously considered within a phylogenetic framework. For corolla shape, we coded species as having flat or open flowers, campaniform or bell shaped flowers, recurved, funnel or trumpet shaped, or bowl-shaped. Flower orientation states were coded as nodding, horizon, and up (i.e., upward facing). For stigma-stamen ratio, we coded states as being greater than 1.25, less than 0.75, or between 0.75 and 1.25. Using these ranges for stigma-stamen ratios enabled us to code species visually. Leaf arrangement was coded as being alternate or whorled. The whorled leaf character was assigned to species that have 3+ leaves arising from a single node and species with scattered leaves arising asynchronously [
<xref ref-type="bibr" rid="CR82">82</xref>
]. For elevation, we acquired information from floras and specimen records on GBIF (
<ext-link ext-link-type="uri" xlink:href="http://www.gbif.org/">http://www.gbif.org/</ext-link>
). We treated elevation as categorical by using 1000 ft. increments for our discrete character states.</p>
<p>To reconstruct the ancestral character states we used BBM in RASP, which is not limited to historical biogeographic applications. We performed the reconstructions of ancestral morphological states across the dated ITS consensus tree resulting from the BEAST analysis and using the character matrices presented in Additional file
<xref rid="MOESM9" ref-type="media">9</xref>
: Table S2. We modified the BEAST consensus tree using TreeGraph 2.0 [
<xref ref-type="bibr" rid="CR83">83</xref>
] by pruning outgroups and collapsing the major clades except
<italic>Nomocharis</italic>
. We did this to avoid confounding the issue with outgroups, which were not completely sampled or studied, and to simplify the reconstructions for less well sampled clades outside of
<italic>Nomocharis</italic>
. Branch length and divergence time information were preserved. The Bayesian analyses in RASP were carried out using default settings except that we ran the analyses for 1,000,000 MCMC generations and used the F81 + G model for changes between states.</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec19">
<title>Additional files</title>
<p>
<media position="anchor" xlink:href="12862_2015_405_MOESM1_ESM.png" id="MOESM1">
<label>Additional file 1: Figure S1.</label>
<caption>
<p>Reconstructed phylogenetic relationship of whole
<italic>Lilium-Nomocharis</italic>
based on Bayesian inferences of ITS dataset. Names of terminal clades based on Comber [
<xref ref-type="bibr" rid="CR23">23</xref>
] and Liang [
<xref ref-type="bibr" rid="CR19">19</xref>
]. The Sinomartagon I clade is highlighted.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM2_ESM.pdf" id="MOESM2">
<label>Additional file 2: Figure S2.</label>
<caption>
<p>Divergence dating of major clades of Liliales using two fossil calibrations (1 and 2).</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM3_ESM.tif" id="MOESM3">
<label>Additional file 3: Figure S3.</label>
<caption>
<p>Pictures from western China showing: a-c
<italic>Lilium henrici</italic>
var.
<italic>henrici</italic>
; d-f
<italic>L. lophophorum</italic>
; g-i
<italic>L. saccatum</italic>
; j-l 
<italic>L. yapingense</italic>
.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM4_ESM.tif" id="MOESM4">
<label>Additional file 4: Figure S4.</label>
<caption>
<p>Pictures from western China showing: a-e
<italic>Lilium xanthellum</italic>
with variations on tepal morphology within a same locality; g-i, flower of
<italic>L. souilei</italic>
,
<italic>L. nanum</italic>
and
<italic>L. nepalense</italic>
; j-l, habit of
<italic>L. souilei</italic>
,
<italic>L. nanum</italic>
and
<italic>L. nepalense</italic>
.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM5_ESM.tif" id="MOESM5">
<label>Additional file 5: Figure S5.</label>
<caption>
<p>Pictures from western China showing
<italic>Nomocharis</italic>
: a-c,
<italic>N. pardanthina</italic>
; d-f,
<italic>N. saluenensis</italic>
; g-i,
<italic>N. pardanthina</italic>
f.
<italic>punctulata</italic>
.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM6_ESM.tif" id="MOESM6">
<label>Additional file 6: Figure S6.</label>
<caption>
<p>Outer and inner tepals comparison in a,
<italic>Lilium henrici</italic>
; b,
<italic>L. lophophorum</italic>
; c-d, two types of
<italic>L. xanthellum</italic>
; e,
<italic>L. yapingense</italic>
; f,
<italic>L. saccatum</italic>
; g,
<italic>Nomocharis saluenensis</italic>
; h,
<italic>N. pardanthina</italic>
f.
<italic>punctulata</italic>
; i-j, two types of
<italic>N. aperta</italic>
(Zhongdian and Fugong, respectively); k,
<italic>N. basilissa</italic>
; l,
<italic>N. gongshanensis</italic>
; m,
<italic>N. pardanthina</italic>
; n,
<italic>N. meleagrina</italic>
.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM7_ESM.pdf" id="MOESM7">
<label>Additional file 7: Figure S7.</label>
<caption>
<p>Results of KH tests for ITS and combined plastid datasets.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM8_ESM.xlsx" id="MOESM8">
<label>Additional file 8: Table S1.</label>
<caption>
<p>Sources of ITS sequence data.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM9_ESM.xlsx" id="MOESM9">
<label>Additional file 9: Table S2.</label>
<caption>
<p>Genbank accessions used in diversification dating of major clades of Liliales.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM10_ESM.xlsx" id="MOESM10">
<label>Additional file 10: Table S3.</label>
<caption>
<p>The matrix of model used in AAR analysis of LARANGE.</p>
</caption>
</media>
<media position="anchor" xlink:href="12862_2015_405_MOESM11_ESM.xlsx" id="MOESM11">
<label>Additional file 11: Table S4.</label>
<caption>
<p>Morphological character states used in ancestral state reconstruction.</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
<fn>
<p>
<bold>Authors’ contributions</bold>
</p>
<p>Conceived, designed, and performed the laboratory experiments: YDG. Performed analyses the data: YDG AJ-H. Contributed reagents/materials/analysis tools: YDG AJ-H XJH. Wrote the paper: YDG AJ-H. All authors read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<p>We thank Dr. You-Sheng Chen and Xiao-Hua Jin from Institution of Botany, Chinese Academy of Sciences for the help in field work and material collection. We also thank Qin-Qin Li, Cheng-Yang Liao, Chang-Bao Wang, Qiang Wang and Xiang-Guang Ma with the help in the field work. This work was supported by the National Natural Science Foundation of China (Grant Nos. 31270241, 31470009), and the Specimen Platform of China, Teaching Specimen’s sub-platform (
<ext-link ext-link-type="uri" xlink:href="http://mnh.scu.edu.cn/">http://mnh.scu.edu.cn/</ext-link>
).</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Myers</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mittermeier</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Mittermeier</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>da Fonseca</surname>
<given-names>GAB</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Biodiversity hotspots for conservation priorities</article-title>
<source>Nature</source>
<year>2000</year>
<volume>403</volume>
<fpage>853</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1038/35002501</pub-id>
<pub-id pub-id-type="pmid">10706275</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Ohba</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Abbott</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Radiation and diversification within the
<italic>Ligularia-Cremanthodium-Parasenecio</italic>
complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau</article-title>
<source>Mol Phylogenet Evol</source>
<year>2006</year>
<volume>38</volume>
<fpage>31</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2005.09.010</pub-id>
<pub-id pub-id-type="pmid">16290033</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Al-Shehbaz</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Support for an expanded
<italic>Sloms-Laubachia</italic>
(Brassicaceae): evidence from sequence of chloroplast and nuclear genes</article-title>
<source>Ann Mo Bot Gard</source>
<year>2006</year>
<volume>93</volume>
<fpage>402</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.3417/0026-6493(2007)93[402:SFAESB]2.0.CO;2</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Levichev</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Systematics of
<italic>Gagea</italic>
and
<italic>Lloydia</italic>
(Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data</article-title>
<source>Mol Phylogenet Evol</source>
<year>2008</year>
<volume>46</volume>
<issue>2</issue>
<fpage>446</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2007.11.016</pub-id>
<pub-id pub-id-type="pmid">18180173</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>XX</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>Molecular phylogeny and biogeography of
<italic>Androsace</italic>
(Primulaceae) and the convergent evolution of cushion morphology</article-title>
<source>Acta Phytotaxonomica Sinica</source>
<year>2004</year>
<volume>42</volume>
<issue>6</issue>
<fpage>481</fpage>
<lpage>99</lpage>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZD</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>A preliminary study of the phylogeny of the
<italic>Swertiinae</italic>
based on ITS data (Gentianaceae)</article-title>
<source>Irsael J Plant Sci</source>
<year>2001</year>
<volume>49</volume>
<fpage>345</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friesen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fritsch</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Pollner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Blattner</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Molecular and morphological evidence for an origin of the aberrant genus
<italic>Milula</italic>
within Himalayan species of
<italic>Allium</italic>
(Alliaceae)</article-title>
<source>Mol Phylogenet Evol</source>
<year>2000</year>
<volume>17</volume>
<fpage>209</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1006/mpev.2000.0844</pub-id>
<pub-id pub-id-type="pmid">11083935</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>HG</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Ao</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>Origin of the Qinghai-Tibetan Plateau endemic
<italic>Milula</italic>
(Liliaceae): further insights from karyological comparisons with
<italic>Allium</italic>
</article-title>
<source>Caryologia</source>
<year>2005</year>
<volume>58</volume>
<issue>4</issue>
<fpage>320</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1080/00087114.2005.10589470</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
<name>
<surname>Tian</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Origin, evolution, and systematics of Himalaya endemic genera</article-title>
<source>Newslett Himalayan Botany</source>
<year>2007</year>
<volume>40</volume>
<fpage>20</fpage>
<lpage>7</lpage>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raudnitschka</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hensen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Oberprieler</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Introgressive hybridization of
<italic>Senecio hercynicus</italic>
and
<italic>S. ovatus</italic>
(Compositae, Senecioneae) along an altitudinal gradient in Harz National Park (Germany)</article-title>
<source>Syst Biodivers</source>
<year>2007</year>
<volume>5</volume>
<issue>3</issue>
<fpage>333</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.1017/S1477200007002435</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carling</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Thomassen</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>The Role of Environmental Heterogeneity in Maintaining Reproductive Isolation between Hybridizing Passerina (Aves: Cardinalidae) Buntings</article-title>
<source>Int J Ecol</source>
<year>2012</year>
<volume>2012</volume>
<fpage>295463</fpage>
<pub-id pub-id-type="doi">10.1155/2012/295463</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balfour</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The Genus Nomocharis</article-title>
<source>Bot J Scotl</source>
<year>1918</year>
<volume>27</volume>
<issue>3</issue>
<fpage>273</fpage>
<lpage>300</lpage>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sealy</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>
<italic>Nomocharis</italic>
and
<italic>Lilium</italic>
</article-title>
<source>Kew Bull</source>
<year>1950</year>
<volume>5</volume>
<issue>2</issue>
<fpage>273</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.2307/4117245</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sealy</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>A revision of the genus
<italic>Nomocharis</italic>
Franchet</article-title>
<source>Bot J Linn Soc</source>
<year>1983</year>
<volume>87</volume>
<fpage>285</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.1111/j.1095-8339.1983.tb00996.x</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>SY</given-names>
</name>
</person-group>
<article-title>Studies on the genus
<italic>Nomocharis</italic>
(Liliaceae)</article-title>
<source>Bull Botanical Res</source>
<year>1984</year>
<volume>4</volume>
<issue>3</issue>
<fpage>163</fpage>
<lpage>78</lpage>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>YD</given-names>
</name>
<name>
<surname>Hohenegger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>He</surname>
<given-names>XJ</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A new species in the genus
<italic>Nomocharis</italic>
Franchet (Liliaceae): evidence that brings the genus
<italic>Nomocharis</italic>
into
<italic>Lilium</italic>
</article-title>
<source>Plant Syst Evol</source>
<year>2012</year>
<volume>298</volume>
<fpage>69</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1007/s00606-011-0524-1</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>YD</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>He</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<article-title>Evolutionary events in
<italic>Lilium</italic>
(including
<italic>Nomocharis</italic>
, Liliaceae) are temporally correlated with orogenies of the Q-T plateau and the Hengduan Mountains</article-title>
<source>Mol Phylogenet Evol</source>
<year>2013</year>
<volume>68</volume>
<issue>3</issue>
<fpage>443</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2013.04.026</pub-id>
<pub-id pub-id-type="pmid">23665039</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayashi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kawano</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Molecular systematics of
<italic>Lilium</italic>
and allied genera (Liliaceae): phylogenetic relationships among
<italic>Lilium</italic>
and related genera based on the rbcL and
<italic>mat</italic>
K gene sequence data</article-title>
<source>Plant Species Biol</source>
<year>2000</year>
<volume>15</volume>
<fpage>73</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1046/j.1442-1984.2000.00025.x</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>SY</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wang</surname>
<given-names>FZ</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The genus
<italic>Lilium</italic>
L</article-title>
<source>Flora Reipublicae Popularis Sinicae, Anagiospermae, Monocotyledoneae Liliaceae (I)</source>
<year>1980</year>
<publisher-loc>Beijing</publisher-loc>
<publisher-name>Science Press</publisher-name>
<fpage>116</fpage>
<lpage>57</lpage>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>M</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>
<italic>Lilium</italic>
L</article-title>
<source>Flora of China</source>
<year>2000</year>
<publisher-loc>Beijing; St. Louis</publisher-loc>
<publisher-name>Science Press; Missouri Botanical Garden Press</publisher-name>
<fpage>135</fpage>
<lpage>59</lpage>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>YD</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>He</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<article-title>
<italic>Lilium yapingense</italic>
(Liliaceae), a new species from Yunnan, China, and its systematic significance relative to
<italic>Nomocharis</italic>
</article-title>
<source>Ann Bot Fenn</source>
<year>2013</year>
<volume>50</volume>
<fpage>187</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.5735/085.050.0311</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>SG</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Zhang</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>SG</given-names>
</name>
</person-group>
<article-title>A proposal for a new floristic kingdom (realm) - the E. Asiatic kingdom, its delimitation and characteristics</article-title>
<source>Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants</source>
<year>1996</year>
<publisher-loc>Beijing and Berlin</publisher-loc>
<publisher-name>Higher Education Press, Springer-Verlag Heidelberg</publisher-name>
<fpage>3</fpage>
<lpage>42</lpage>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comber</surname>
<given-names>HF</given-names>
</name>
</person-group>
<article-title>A new classification of genus
<italic>Lilium</italic>
</article-title>
<source>Royal Horticult Soc Liliy Year Book</source>
<year>1949</year>
<volume>13</volume>
<fpage>85</fpage>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Haw</surname>
<given-names>SG</given-names>
</name>
</person-group>
<source>The Lilies of China</source>
<year>1986</year>
<publisher-loc>Portland</publisher-loc>
<publisher-name>Timber Press</publisher-name>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>H-D event: an important tectonic event of the late Cenozoic in Eastern Asia</article-title>
<source>Mt Res</source>
<year>1992</year>
<volume>10</volume>
<issue>4</issue>
<fpage>195</fpage>
<lpage>202</lpage>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>Second discussion on the H-D movement</article-title>
<source>Mt Res</source>
<year>1996</year>
<volume>17</volume>
<issue>3–4</issue>
<fpage>14</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harrison</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Copeland</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kidd</surname>
<given-names>WSF</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Raising Tibet</article-title>
<source>Science</source>
<year>1992</year>
<volume>255</volume>
<fpage>1663</fpage>
<lpage>1670</lpage>
<pub-id pub-id-type="doi">10.1126/science.255.5052.1663</pub-id>
<pub-id pub-id-type="pmid">17749419</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>YF</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>BY</given-names>
</name>
</person-group>
<source>Uplift of the Qinghai-Xizang (Tibet) Plateau and Global Change</source>
<year>1995</year>
<publisher-loc>Lanzhou, China</publisher-loc>
<publisher-name>Lanzhou University Press</publisher-name>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chapman</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Hiscock</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Filatov</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Genomic divergence during speciation driven by adaptation to altitude</article-title>
<source>Mol Biol Evol</source>
<year>2013</year>
<volume>30</volume>
<issue>12</issue>
<fpage>2553</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/mst168</pub-id>
<pub-id pub-id-type="pmid">24077768</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mao</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>SQ</given-names>
</name>
</person-group>
<article-title>Pollen resistance to water in 80 angiosperm species: flower structures protect rain-susceptible pollen</article-title>
<source>New Phytol</source>
<year>2009</year>
<volume>183</volume>
<issue>3</issue>
<fpage>892</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.02925.x</pub-id>
<pub-id pub-id-type="pmid">19563452</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Duan</surname>
<given-names>YW</given-names>
</name>
</person-group>
<article-title>Change infloral orientation in
<italic>Anisodus luridus</italic>
(Solanaceae) protects pollen grains and facilitates development of fertilized ovules</article-title>
<source>Am J Bot</source>
<year>2010</year>
<volume>97</volume>
<fpage>1618</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.3732/ajb.1000010</pub-id>
<pub-id pub-id-type="pmid">21616797</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>YJ</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>Phylogenetic analyses of
<italic>Saussurea</italic>
sect.
<italic>Pseudoeriocoryne</italic>
(Asteraceae: Cardueae) based on chloroplast DNA
<italic>trn</italic>
L-F sequences</article-title>
<source>Biochem Sys Ecol</source>
<year>2004</year>
<volume>32</volume>
<fpage>1009</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1016/j.bse.2004.04.005</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>MY</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>Molecular phylogeny, recent radiation and evolution of gross morphology of the Rhubarb genus
<italic>Rheum</italic>
(Polygonaceae) inferred from chloroplast DNA
<italic>trn</italic>
L-F sequences</article-title>
<source>Ann Bot</source>
<year>2005</year>
<volume>96</volume>
<fpage>489</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1093/aob/mci201</pub-id>
<pub-id pub-id-type="pmid">15994840</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Köener</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Alpine plant life: functional plant ecology of high mountain ecosystems</source>
<year>2003</year>
<publisher-loc>Berlin</publisher-loc>
<publisher-name>Springer</publisher-name>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ushimaru</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dohzono</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Takami</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hyodo</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Flower orientation enhances pollen transfer in bilaterally symmetrical flowers</article-title>
<source>Oecologia</source>
<year>2009</year>
<volume>160</volume>
<fpage>667</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1007/s00442-009-1334-9</pub-id>
<pub-id pub-id-type="pmid">19333624</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ushimaru</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hyodo</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Why do bilaterally symmetrical flowers orient vertically? Flower orientation in fluences pollinator landing behaviour</article-title>
<source>Evol Ecol Res</source>
<year>2005</year>
<volume>7</volume>
<fpage>151</fpage>
<lpage>60</lpage>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>SQ</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dafni</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Why does the flower stalk of
<italic>Pulsatilla cernua</italic>
(Ranunculaceae) bend during anthesis?</article-title>
<source>Am J Bot</source>
<year>2002</year>
<volume>89</volume>
<fpage>1599</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.3732/ajb.89.10.1599</pub-id>
<pub-id pub-id-type="pmid">21665586</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gong</surname>
<given-names>YB</given-names>
</name>
<name>
<surname>Renner</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>SQ</given-names>
</name>
</person-group>
<article-title>Multifunctional bracts in the Dove tree
<italic>Davidia involucrate</italic>
(Nyssaceae: Cornales): rain protection and pollinator attraction</article-title>
<source>Am Nat</source>
<year>2008</year>
<volume>117</volume>
<fpage>119</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="doi">10.1086/523953</pub-id>
<pub-id pub-id-type="pmid">18171156</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fenster</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Armbruster</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Dudash</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Specialization of flowers: is floral orientation an overlooked step?</article-title>
<source>New Phytol</source>
<year>2009</year>
<volume>183</volume>
<issue>3</issue>
<fpage>502</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-8137.2009.02852.x</pub-id>
<pub-id pub-id-type="pmid">19422542</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maddison</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Knowles</surname>
<given-names>LL</given-names>
</name>
</person-group>
<article-title>Inferring phylogeny despite incomplete lineage sorting</article-title>
<source>Syst Biol</source>
<year>2006</year>
<volume>55</volume>
<issue>1</issue>
<fpage>21</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1080/10635150500354928</pub-id>
<pub-id pub-id-type="pmid">16507521</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richardson</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Palmer</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Horizontal gene transfer in plants</article-title>
<source>J Exp Bot</source>
<year>2007</year>
<volume>58</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/erl148</pub-id>
<pub-id pub-id-type="pmid">17030541</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Minami</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Azuma</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Various flying modes of wind-dispersal seeds</article-title>
<source>J Theor Biol</source>
<year>2003</year>
<volume>225</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-5193(03)00216-9</pub-id>
<pub-id pub-id-type="pmid">14559055</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiramatsu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ii</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Okubo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Biogeography and origin of Lilium longiflorum and L. formosanum (Liliaceae) endemic to the Ryukyu Archipelago and Taiwan as determined by allozyme diversity</article-title>
<source>Am J Bot</source>
<year>2001</year>
<volume>88</volume>
<issue>7</issue>
<fpage>1230</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.2307/3558334</pub-id>
<pub-id pub-id-type="pmid">11454623</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patterson</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Givnish</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from
<italic>rbc</italic>
L and
<italic>ndh</italic>
F sequence data</article-title>
<source>Evolution</source>
<year>2002</year>
<volume>56</volume>
<issue>2</issue>
<fpage>233</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1111/j.0014-3820.2002.tb01334.x</pub-id>
<pub-id pub-id-type="pmid">11926492</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shaw</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lickey</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Schilling</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Small</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III</article-title>
<source>Am J Bot</source>
<year>2007</year>
<volume>94</volume>
<issue>3</issue>
<fpage>275</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.3732/ajb.94.3.275</pub-id>
<pub-id pub-id-type="pmid">21636401</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doyle</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Doyle</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>A rapid DNA isolation procedure for small quantities of fresh leaf tissue</article-title>
<source>Phytochem Bull</source>
<year>1987</year>
<volume>19</volume>
<fpage>11</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiens</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Morrill</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Missing data in phylogenetic analysis: reconciling results from simulations and empirical data</article-title>
<source>Syst Biol</source>
<year>2011</year>
<volume>60</volume>
<issue>5</issue>
<fpage>719</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1093/sysbio/syr025</pub-id>
<pub-id pub-id-type="pmid">21447483</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Plewniak</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jeanmougin</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools</article-title>
<source>Nucleic Acids Res</source>
<year>1997</year>
<volume>25</volume>
<fpage>4876</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1093/nar/25.24.4876</pub-id>
<pub-id pub-id-type="pmid">9396791</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Dudley</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0</article-title>
<source>Mol Biol Evol</source>
<year>2004</year>
<volume>24</volume>
<fpage>1596</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msm092</pub-id>
<pub-id pub-id-type="pmid">17488738</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morrison</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>A framework for phylogenetic sequence alignment</article-title>
<source>Plant Syst Evol</source>
<year>2009</year>
<volume>282</volume>
<fpage>127</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="doi">10.1007/s00606-008-0072-5</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Swofford</surname>
<given-names>DL</given-names>
</name>
</person-group>
<source>PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods)</source>
<year>2003</year>
<edition>4</edition>
<publisher-loc>Sunderland, Massachusetts</publisher-loc>
<publisher-name>Sinauer Associates</publisher-name>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>MrBayes 3: Bayesian phylogenetic inference under mixed models</article-title>
<source>Bioinformatics</source>
<year>2003</year>
<volume>19</volume>
<issue>12</issue>
<fpage>1572</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btg180</pub-id>
<pub-id pub-id-type="pmid">12912839</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Nylander</surname>
<given-names>JAA</given-names>
</name>
</person-group>
<article-title>MrModeltest 2.0</article-title>
<source>Department of Systematic Zoology</source>
<year>2004</year>
<edition>20</edition>
<publisher-loc>Uppsala</publisher-loc>
<publisher-name>EBC, Uppsala University</publisher-name>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<source>Tracer v1.4</source>
<year>2007</year>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Susko</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Tests for two trees using likelihood methods</article-title>
<source>Molecular Biology and Evolution</source>
<year>2014</year>
<volume>31</volume>
<issue>4</issue>
<fpage>1029</fpage>
<lpage>39</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/msu039</pub-id>
<pub-id pub-id-type="pmid">24401182</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<mixed-citation publication-type="other">Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. In: 2.75 edn; 2011.</mixed-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<mixed-citation publication-type="other">Douglas NA, Wall WA, Xiang QY, Hoffman WA, Wentworth TR, Gray JB, et al. Recent vicariance and the origin of the rare, edaphically specialized Sandhills lily,
<italic>Lilium pyrophilum</italic>
(Liliaceae): evidence from phylogenetic and coalescent analyses. Mol Ecol. 2011;20:2901–15.</mixed-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clement</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>TCS: a computer program to estimate gene genealogies</article-title>
<source>Mol Ecol</source>
<year>2000</year>
<volume>9</volume>
<fpage>1657</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-294x.2000.01020.x</pub-id>
<pub-id pub-id-type="pmid">11050560</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
<name>
<surname>Templeton</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction</article-title>
<source>Genetics</source>
<year>1993</year>
<volume>134</volume>
<fpage>959</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">8349118</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bremer</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Early Cretaceous lineages of monocot flowering plants</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2000</year>
<volume>97</volume>
<issue>9</issue>
<fpage>4707</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.080421597</pub-id>
<pub-id pub-id-type="pmid">10759567</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vinnersten</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bremer</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Age and biogeography of major clades in Liliales</article-title>
<source>Am J Bot</source>
<year>2001</year>
<volume>88</volume>
<fpage>1695</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="doi">10.2307/3558415</pub-id>
<pub-id pub-id-type="pmid">21669704</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<mixed-citation publication-type="other">Berry EW. Revision of the Lower Eocene Wilcox flora of the southeastern states: With descriptions of new species, chiefly from Tennessee and Kentucky, vol. 156. Washington, DC: US Government Printing Office; 1930.</mixed-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<mixed-citation publication-type="other">Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al. Testing the impact of calibration on molecular divergence times using a Fossil-Rich Group: The Case of Nothofagus (Fagales). Syst Biol. 2012;61(2):289–313.</mixed-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bromham</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Estimating divergence dates from molecular sequences</article-title>
<source>Mol Biol Evol</source>
<year>1998</year>
<volume>15</volume>
<issue>4</issue>
<fpage>442</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1093/oxfordjournals.molbev.a025940</pub-id>
<pub-id pub-id-type="pmid">9549094</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graur</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision</article-title>
<source>Trends Genet</source>
<year>2004</year>
<volume>20</volume>
<issue>2</issue>
<fpage>80</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.tig.2003.12.003</pub-id>
<pub-id pub-id-type="pmid">14746989</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<mixed-citation publication-type="other">Drummond AJ, Rambaut A. BEAST: Bayesian Evolutionary Analysis Sampling Trees v1.3. 2003, 2012.</mixed-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>BEAST: Bayesian evolutionary analysis by sampling trees</article-title>
<source>BMC Evol Biol</source>
<year>2007</year>
<volume>7</volume>
<fpage>214</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-7-214</pub-id>
<pub-id pub-id-type="pmid">17996036</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dilcher</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Lott</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>A middle Eocene fossil plant assemblage (Powers Clay Pit) from western Tennessee</article-title>
<source>Florida Mus Nat Hist Bull</source>
<year>2005</year>
<volume>45</volume>
<fpage>1</fpage>
<lpage>43</lpage>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Potter</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dilcher</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Biostratigraphic analysis of Eocene clay deposits in Henry County, Tennessee</article-title>
<source>Biostratigraph Fossil Plants</source>
<year>1980</year>
<volume>211</volume>
<fpage>225</fpage>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<mixed-citation publication-type="other">Tschudy RH. Stratigraphic distribution of significant Eocene palynomorphs of the Mississippi embayment. Washington, DC: US Government Printing Office; 1973.</mixed-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dilcher</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>A eudicot from the Early Cretaceous of China</article-title>
<source>Nature</source>
<year>2011</year>
<volume>471</volume>
<issue>7340</issue>
<fpage>625</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1038/nature09811</pub-id>
<pub-id pub-id-type="pmid">21455178</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conran</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Carpenter</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Early Eocene Ripogonum (Liliales: Ripogonaceae) leaf macrofossils from southern Australia</article-title>
<source>Aust Syst Bot</source>
<year>2009</year>
<volume>22</volume>
<issue>3</issue>
<fpage>219</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="doi">10.1071/SB08050</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<mixed-citation publication-type="other">Stevens PF. Angiosperm Phylogeny Website. Version 12 [
<ext-link ext-link-type="uri" xlink:href="http://www.mobot.org/MOBOT/research/APweb/">http://www.mobot.org/MOBOT/research/APweb/</ext-link>
]</mixed-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carpenter</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Jordan</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>RS</given-names>
</name>
</person-group>
<article-title>A toothed Lauraceae leaf from the Early Eocene of Tasmania</article-title>
<source>Austr Int J Plant Sci</source>
<year>2007</year>
<volume>168</volume>
<issue>8</issue>
<fpage>1191</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1086/520721</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Chase</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Fay</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci: matK, rbcL, atpB and atpF-H</article-title>
<source>Bot J Linn Soc</source>
<year>2013</year>
<volume>172</volume>
<issue>1</issue>
<fpage>5</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1111/boj.12039</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>SYW</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Relaxed phylogenetics and dating with confidence</article-title>
<source>PLoS Biol</source>
<year>2006</year>
<volume>4</volume>
<issue>5</issue>
<fpage>e88</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pbio.0040088</pub-id>
<pub-id pub-id-type="pmid">16683862</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>A</given-names>
</name>
<name>
<surname>He</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<article-title>S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories</article-title>
<source>Mol Phylogenet Evol</source>
<year>2010</year>
<volume>56</volume>
<fpage>848</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2010.04.011</pub-id>
<pub-id pub-id-type="pmid">20399277</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<mixed-citation publication-type="other">Yu Y, Harris A, He XJ. RASP (Reconstruct Ancestral State in Phylogenies) 2.0 beta. In:
<ext-link ext-link-type="uri" xlink:href="http://www.mnh.scu.edu.cn/soft/blog/RASP">http://www.mnh.scu.edu.cn/soft/blog/RASP</ext-link>
; 2012.</mixed-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>He</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<source>A novel Bayesian method for reconstructing geographic ranges and ancestral states on phylogenies</source>
<year>2011</year>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>McRae</surname>
<given-names>EA</given-names>
</name>
</person-group>
<source>Lilies: a guide for growers and collectors</source>
<year>1998</year>
<publisher-loc>Portland</publisher-loc>
<publisher-name>Timber Press</publisher-name>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ree</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis</article-title>
<source>Syst Biol</source>
<year>2008</year>
<volume>57</volume>
<issue>1</issue>
<fpage>4</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1080/10635150701883881</pub-id>
<pub-id pub-id-type="pmid">18253896</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rutishauser</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identities</article-title>
<source>Int J Plant Sci</source>
<year>1999</year>
<volume>160</volume>
<issue>S6</issue>
<fpage>S81</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1086/314221</pub-id>
<pub-id pub-id-type="pmid">10572024</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stöver</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>KF</given-names>
</name>
</person-group>
<article-title>TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses</article-title>
<source>BMC Bioinformatics</source>
<year>2010</year>
<volume>11</volume>
<fpage>7</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-11-7</pub-id>
<pub-id pub-id-type="pmid">20051126</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ho</surname>
<given-names>TN</given-names>
</name>
<name>
<surname>Pringle</surname>
<given-names>JS</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>Gentianaceae</article-title>
<source>Flora of China</source>
<year>1995</year>
<publisher-loc>Beijing and St. Louis</publisher-loc>
<publisher-name>Science Press and Missouri Botanical Garden Press</publisher-name>
<fpage>1</fpage>
<lpage>140</lpage>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levan</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cytological studies in
<italic>Allium</italic>
, II Chromosome morphological contributions</article-title>
<source>Hereditas</source>
<year>1932</year>
<volume>16</volume>
<fpage>257</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1111/j.1601-5223.1932.tb02572.x</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>XM</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Mao</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>JQ</given-names>
</name>
</person-group>
<article-title>On the origin of the woody buckwheat
<italic>Fagopyrum tibeticum</italic>
(=Parapteropyrum tibeticum) in the Qinghai-Tibetan Plateau</article-title>
<source>Mol Phylogenet Evol</source>
<year>2011</year>
<volume>61</volume>
<issue>2</issue>
<fpage>515</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2011.07.001</pub-id>
<pub-id pub-id-type="pmid">21798359</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<mixed-citation publication-type="other">Shi Z, Chen YL, Chen YS, Lin YR, Liu SW, Ge XJ, et al. Asteraceae (Compositae). In: Wu ZY, Raven PH, editors. Flora of China, vol. 20–21. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press; 2011. p. 1–8.</mixed-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Kelso</surname>
<given-names>S</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>
<italic>Lysimachia</italic>
Linnaeus</article-title>
<source>Flora of China</source>
<year>1996</year>
<publisher-loc>Beijing: Science Press; St. Louis</publisher-loc>
<publisher-name>Missouri Botanical Garden Press</publisher-name>
<fpage>39</fpage>
<lpage>78</lpage>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schneeweiss</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Schonswetter</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kelso</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Niklfeld</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Complex biogeographic patterns in
<italic>Androsace</italic>
(Primulaceae) and related genera: evidence from phylogenetic analyses of nuclear internal transcribed spacer and plastid trnL-F sequences</article-title>
<source>Syst Biol</source>
<year>2004</year>
<volume>53</volume>
<issue>6</issue>
<fpage>856</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1080/10635150490522566</pub-id>
<pub-id pub-id-type="pmid">15764556</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cheo</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Al-Shenbaz</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dorofeev</surname>
<given-names>V</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Wu</surname>
<given-names>ZY</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>PH</given-names>
</name>
</person-group>
<article-title>Brassicaceae</article-title>
<source>Flora of China</source>
<year>2001</year>
<publisher-loc>Beijing, St. Louis</publisher-loc>
<publisher-name>Science Press, Missouri Botanical Garden Press</publisher-name>
<fpage>1</fpage>
<lpage>193</lpage>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yue</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>ZJ</given-names>
</name>
<name>
<surname>Al-Shehbaz</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Cytological studies on the Sino-Himalayan endemic
<italic>Solms-laubachia</italic>
(Brassicaceae) and two related genera</article-title>
<source>Bot J Linn Soc</source>
<year>2004</year>
<volume>145</volume>
<issue>1</issue>
<fpage>77</fpage>
<lpage>86</lpage>
<pub-id pub-id-type="doi">10.1111/j.1095-8339.2003.00268.x</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Bruns</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>J</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Innis</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Gelfand</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Shinsky</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>White</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics</article-title>
<source>PCR protocols: a guide to methods and applications</source>
<year>1990</year>
<publisher-loc>San Diego</publisher-loc>
<publisher-name>Academic Press</publisher-name>
<fpage>315</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fay</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Swensen</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Chase</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>Taxonomic affinities of
<italic>Medusagyne oppositifolia</italic>
(Medusagynaceae)</article-title>
<source>Kew Bull</source>
<year>1997</year>
<volume>52</volume>
<issue>1</issue>
<fpage>111</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.2307/4117844</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cuenoud</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Savolainen</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Chatrou</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grayer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Chase</surname>
<given-names>MW</given-names>
</name>
</person-group>
<article-title>Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences</article-title>
<source>Am J Bot</source>
<year>2002</year>
<volume>89</volume>
<issue>1</issue>
<fpage>132</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="doi">10.3732/ajb.89.1.132</pub-id>
<pub-id pub-id-type="pmid">21669721</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taberlet</surname>
<given-names>PGL</given-names>
</name>
<name>
<surname>Pautou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bouvet</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Universal primers for amplification of three noncoding regions of chloroplast DNA</article-title>
<source>Plant Mol Biol</source>
<year>1991</year>
<volume>17</volume>
<fpage>1105</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1007/BF00037152</pub-id>
<pub-id pub-id-type="pmid">1932684</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamilton</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation</article-title>
<source>Mol Ecol</source>
<year>1999</year>
<volume>8</volume>
<issue>3</issue>
<fpage>521</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">10199016</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4518642
   |texte=   Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26219287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024