Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard

Identifieur interne : 000001 ( Istex/Corpus ); précédent : 000000; suivant : 000002

Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard

Auteurs : L. Marini ; C. Principe ; G. Chiodini ; R. Cioni ; M. Fytikas ; G. Marinelli

Source :

RBID : ISTEX:885CAA988AFD75EDF26F62CA78978C115306CA63

English descriptors

Abstract

Abstract: The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.At present, gas geochemistry represents an effective tool to detect changes in the P,T conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.

Url:
DOI: 10.1016/0377-0273(93)90051-R

Links to Exploration step

ISTEX:885CAA988AFD75EDF26F62CA78978C115306CA63

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
<author>
<name sortKey="Marini, L" sort="Marini, L" uniqKey="Marini L" first="L." last="Marini">L. Marini</name>
<affiliation>
<mods:affiliation>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Principe, C" sort="Principe, C" uniqKey="Principe C" first="C." last="Principe">C. Principe</name>
<affiliation>
<mods:affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation>
<mods:affiliation>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cioni, R" sort="Cioni, R" uniqKey="Cioni R" first="R." last="Cioni">R. Cioni</name>
<affiliation>
<mods:affiliation>Correspondence to: R. Cioni.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fytikas, M" sort="Fytikas, M" uniqKey="Fytikas M" first="M." last="Fytikas">M. Fytikas</name>
<affiliation>
<mods:affiliation>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marinelli, G" sort="Marinelli, G" uniqKey="Marinelli G" first="G." last="Marinelli">G. Marinelli</name>
<affiliation>
<mods:affiliation>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:885CAA988AFD75EDF26F62CA78978C115306CA63</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1016/0377-0273(93)90051-R</idno>
<idno type="url">https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000001</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000001</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
<author>
<name sortKey="Marini, L" sort="Marini, L" uniqKey="Marini L" first="L." last="Marini">L. Marini</name>
<affiliation>
<mods:affiliation>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Principe, C" sort="Principe, C" uniqKey="Principe C" first="C." last="Principe">C. Principe</name>
<affiliation>
<mods:affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiodini, G" sort="Chiodini, G" uniqKey="Chiodini G" first="G." last="Chiodini">G. Chiodini</name>
<affiliation>
<mods:affiliation>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cioni, R" sort="Cioni, R" uniqKey="Cioni R" first="R." last="Cioni">R. Cioni</name>
<affiliation>
<mods:affiliation>Correspondence to: R. Cioni.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fytikas, M" sort="Fytikas, M" uniqKey="Fytikas M" first="M." last="Fytikas">M. Fytikas</name>
<affiliation>
<mods:affiliation>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marinelli, G" sort="Marinelli, G" uniqKey="Marinelli G" first="G." last="Marinelli">G. Marinelli</name>
<affiliation>
<mods:affiliation>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993">1993</date>
<biblScope unit="volume">56</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="71">71</biblScope>
<biblScope unit="page" to="94">94</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Achelous</term>
<term>Anhydrite</term>
<term>Anhydrite veins</term>
<term>Aquifer</term>
<term>Aquifer temperature values</term>
<term>Argillic</term>
<term>Argillic alteration</term>
<term>Atmospheric agents</term>
<term>Ballistic ejecta</term>
<term>Caldera</term>
<term>Caldera depression</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Composite volcano</term>
<term>Crater</term>
<term>Debris flow deposits</term>
<term>Debris flows</term>
<term>Deep aquifer</term>
<term>Deposit</term>
<term>Diatomaceous clays</term>
<term>Ejecta</term>
<term>Eruption</term>
<term>Eruptive</term>
<term>Explosive phenomenon</term>
<term>Field evidence</term>
<term>Fracture</term>
<term>Fracture system</term>
<term>Fumarolic</term>
<term>Fumarolic fluids</term>
<term>Fytikas</term>
<term>Geothermal</term>
<term>Geothermal exploration</term>
<term>Gorceix</term>
<term>Historical descriptions</term>
<term>Historical records</term>
<term>Hydrothermal</term>
<term>Hydrothermal craters</term>
<term>Hydrothermal eruption</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal explosion</term>
<term>Hydrothermal explosion craters</term>
<term>Hydrothermal explosions</term>
<term>Kaminakia</term>
<term>Keller</term>
<term>Lacustrine</term>
<term>Lakki</term>
<term>Lava</term>
<term>Lava blocks</term>
<term>Liquid phase</term>
<term>Liquid water</term>
<term>Lofos</term>
<term>Lofos area</term>
<term>Lofos dome</term>
<term>Major axis</term>
<term>Marinelli</term>
<term>Marini</term>
<term>Martelli</term>
<term>Matrix</term>
<term>Megalos</term>
<term>Morphological forms</term>
<term>Nisyros</term>
<term>Nisyros island</term>
<term>Phlegethon</term>
<term>Phlegethon crater</term>
<term>Polybotes</term>
<term>Polybotes crater</term>
<term>Polybotes megalos</term>
<term>Polybotes megalos crater</term>
<term>Polybotes megalos deposit</term>
<term>Polybotes megalos depression</term>
<term>Polybotes micros</term>
<term>Prominent ring</term>
<term>S6ances acad</term>
<term>Sandy matrix</term>
<term>Seismic</term>
<term>Seismic shocks</term>
<term>Shallow aquifer</term>
<term>Shallow system</term>
<term>Small gypsum crystals</term>
<term>Southern flank</term>
<term>Southern half</term>
<term>Stephanos</term>
<term>Stephanos crater</term>
<term>Stratigraphic sequence</term>
<term>Sudden uprise</term>
<term>Talus</term>
<term>Tectonic</term>
<term>Volcanol</term>
<term>Water content</term>
<term>Weight ratio</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Achelous</term>
<term>Anhydrite</term>
<term>Anhydrite veins</term>
<term>Aquifer</term>
<term>Aquifer temperature values</term>
<term>Argillic</term>
<term>Argillic alteration</term>
<term>Atmospheric agents</term>
<term>Ballistic ejecta</term>
<term>Caldera</term>
<term>Caldera depression</term>
<term>Chiodini</term>
<term>Cioni</term>
<term>Composite volcano</term>
<term>Crater</term>
<term>Debris flow deposits</term>
<term>Debris flows</term>
<term>Deep aquifer</term>
<term>Deposit</term>
<term>Diatomaceous clays</term>
<term>Ejecta</term>
<term>Eruption</term>
<term>Eruptive</term>
<term>Explosive phenomenon</term>
<term>Field evidence</term>
<term>Fracture</term>
<term>Fracture system</term>
<term>Fumarolic</term>
<term>Fumarolic fluids</term>
<term>Fytikas</term>
<term>Geothermal</term>
<term>Geothermal exploration</term>
<term>Gorceix</term>
<term>Historical descriptions</term>
<term>Historical records</term>
<term>Hydrothermal</term>
<term>Hydrothermal craters</term>
<term>Hydrothermal eruption</term>
<term>Hydrothermal eruptions</term>
<term>Hydrothermal explosion</term>
<term>Hydrothermal explosion craters</term>
<term>Hydrothermal explosions</term>
<term>Kaminakia</term>
<term>Keller</term>
<term>Lacustrine</term>
<term>Lakki</term>
<term>Lava</term>
<term>Lava blocks</term>
<term>Liquid phase</term>
<term>Liquid water</term>
<term>Lofos</term>
<term>Lofos area</term>
<term>Lofos dome</term>
<term>Major axis</term>
<term>Marinelli</term>
<term>Marini</term>
<term>Martelli</term>
<term>Matrix</term>
<term>Megalos</term>
<term>Morphological forms</term>
<term>Nisyros</term>
<term>Nisyros island</term>
<term>Phlegethon</term>
<term>Phlegethon crater</term>
<term>Polybotes</term>
<term>Polybotes crater</term>
<term>Polybotes megalos</term>
<term>Polybotes megalos crater</term>
<term>Polybotes megalos deposit</term>
<term>Polybotes megalos depression</term>
<term>Polybotes micros</term>
<term>Prominent ring</term>
<term>S6ances acad</term>
<term>Sandy matrix</term>
<term>Seismic</term>
<term>Seismic shocks</term>
<term>Shallow aquifer</term>
<term>Shallow system</term>
<term>Small gypsum crystals</term>
<term>Southern flank</term>
<term>Southern half</term>
<term>Stephanos</term>
<term>Stephanos crater</term>
<term>Stratigraphic sequence</term>
<term>Sudden uprise</term>
<term>Talus</term>
<term>Tectonic</term>
<term>Volcanol</term>
<term>Water content</term>
<term>Weight ratio</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.At present, gas geochemistry represents an effective tool to detect changes in the P,T conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>hydrothermal</json:string>
<json:string>polybotes</json:string>
<json:string>nisyros</json:string>
<json:string>aquifer</json:string>
<json:string>crater</json:string>
<json:string>megalos</json:string>
<json:string>lofos</json:string>
<json:string>eruption</json:string>
<json:string>hydrothermal eruptions</json:string>
<json:string>caldera</json:string>
<json:string>phlegethon</json:string>
<json:string>lofos dome</json:string>
<json:string>geothermal</json:string>
<json:string>stephanos</json:string>
<json:string>hydrothermal eruption</json:string>
<json:string>marinelli</json:string>
<json:string>lakki</json:string>
<json:string>gorceix</json:string>
<json:string>talus</json:string>
<json:string>marini</json:string>
<json:string>debris flows</json:string>
<json:string>chiodini</json:string>
<json:string>fumarolic</json:string>
<json:string>volcanol</json:string>
<json:string>martelli</json:string>
<json:string>fytikas</json:string>
<json:string>eruptive</json:string>
<json:string>lacustrine</json:string>
<json:string>shallow aquifer</json:string>
<json:string>lava</json:string>
<json:string>tectonic</json:string>
<json:string>stephanos crater</json:string>
<json:string>argillic</json:string>
<json:string>argillic alteration</json:string>
<json:string>keller</json:string>
<json:string>fracture</json:string>
<json:string>deep aquifer</json:string>
<json:string>cioni</json:string>
<json:string>nisyros island</json:string>
<json:string>anhydrite</json:string>
<json:string>ejecta</json:string>
<json:string>polybotes megalos depression</json:string>
<json:string>kaminakia</json:string>
<json:string>achelous</json:string>
<json:string>phlegethon crater</json:string>
<json:string>hydrothermal craters</json:string>
<json:string>morphological forms</json:string>
<json:string>polybotes crater</json:string>
<json:string>seismic shocks</json:string>
<json:string>water content</json:string>
<json:string>ballistic ejecta</json:string>
<json:string>debris flow deposits</json:string>
<json:string>polybotes megalos</json:string>
<json:string>lava blocks</json:string>
<json:string>matrix</json:string>
<json:string>southern flank</json:string>
<json:string>fracture system</json:string>
<json:string>caldera depression</json:string>
<json:string>s6ances acad</json:string>
<json:string>polybotes megalos crater</json:string>
<json:string>prominent ring</json:string>
<json:string>hydrothermal explosion</json:string>
<json:string>field evidence</json:string>
<json:string>geothermal exploration</json:string>
<json:string>liquid water</json:string>
<json:string>southern half</json:string>
<json:string>small gypsum crystals</json:string>
<json:string>seismic</json:string>
<json:string>deposit</json:string>
<json:string>diatomaceous clays</json:string>
<json:string>polybotes megalos deposit</json:string>
<json:string>lofos area</json:string>
<json:string>sandy matrix</json:string>
<json:string>atmospheric agents</json:string>
<json:string>anhydrite veins</json:string>
<json:string>major axis</json:string>
<json:string>composite volcano</json:string>
<json:string>fumarolic fluids</json:string>
<json:string>hydrothermal explosion craters</json:string>
<json:string>sudden uprise</json:string>
<json:string>stratigraphic sequence</json:string>
<json:string>polybotes micros</json:string>
<json:string>historical descriptions</json:string>
<json:string>weight ratio</json:string>
<json:string>aquifer temperature values</json:string>
<json:string>hydrothermal explosions</json:string>
<json:string>liquid phase</json:string>
<json:string>shallow system</json:string>
<json:string>explosive phenomenon</json:string>
<json:string>historical records</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>L. Marini</name>
<affiliations>
<json:string>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Principe</name>
<affiliations>
<json:string>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</json:string>
<json:string>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Chiodini</name>
<affiliations>
<json:string>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Cioni</name>
<affiliations>
<json:string>Correspondence to: R. Cioni.</json:string>
<json:string>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Fytikas</name>
<affiliations>
<json:string>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Marinelli</name>
<affiliations>
<json:string>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.At present, gas geochemistry represents an effective tool to detect changes in the P,T conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>540 x 756 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>2437</abstractCharCount>
<pdfWordCount>9537</pdfWordCount>
<pdfCharCount>57395</pdfCharCount>
<pdfPageCount>24</pdfPageCount>
<abstractWordCount>349</abstractWordCount>
</qualityIndicators>
<title>Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
<pii>
<json:string>0377-0273(93)90051-R</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Rep. No. 196</title>
<language>
<json:string>unknown</json:string>
</language>
<pages>
<first>25</first>
</pages>
</serie>
<host>
<title>Journal of Volcanology and Geothermal Research</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1993</publicationDate>
<issn>
<json:string>0377-0273</json:string>
</issn>
<pii>
<json:string>S0377-0273(00)X0125-4</json:string>
</pii>
<volume>56</volume>
<issue>1–2</issue>
<pages>
<first>71</first>
<last>94</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>sciences de la terre</json:string>
</inist>
</categories>
<publicationDate>1993</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1016/0377-0273(93)90051-R</json:string>
</doi>
<id>885CAA988AFD75EDF26F62CA78978C115306CA63</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1993</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Research paper</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
<author xml:id="author-0000">
<persName>
<forename type="first">L.</forename>
<surname>Marini</surname>
</persName>
<affiliation>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">C.</forename>
<surname>Principe</surname>
</persName>
<affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</affiliation>
<affiliation>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">G.</forename>
<surname>Chiodini</surname>
</persName>
<affiliation>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">R.</forename>
<surname>Cioni</surname>
</persName>
<affiliation>Correspondence to: R. Cioni.</affiliation>
<affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">M.</forename>
<surname>Fytikas</surname>
</persName>
<affiliation>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">G.</forename>
<surname>Marinelli</surname>
</persName>
<affiliation>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</affiliation>
</author>
<idno type="istex">885CAA988AFD75EDF26F62CA78978C115306CA63</idno>
<idno type="DOI">10.1016/0377-0273(93)90051-R</idno>
<idno type="PII">0377-0273(93)90051-R</idno>
</analytic>
<monogr>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="pISSN">0377-0273</idno>
<idno type="PII">S0377-0273(00)X0125-4</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993"></date>
<biblScope unit="volume">56</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="71">71</biblScope>
<biblScope unit="page" to="94">94</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.At present, gas geochemistry represents an effective tool to detect changes in the P,T conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1993">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>VOLGEO</jid>
<aid>9390051R</aid>
<ce:pii>0377-0273(93)90051-R</ce:pii>
<ce:doi>10.1016/0377-0273(93)90051-R</ce:doi>
<ce:copyright type="unknown" year="1993"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Research paper</ce:textfn>
</ce:dochead>
<ce:title>Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>L.</ce:given-name>
<ce:surname>Marini</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Principe</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Chiodini</ce:surname>
<ce:cross-ref refid="AFF4">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>R.</ce:given-name>
<ce:surname>Cioni</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Fytikas</ce:surname>
<ce:cross-ref refid="AFF5">
<ce:sup>e</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Marinelli</ce:surname>
<ce:cross-ref refid="AFF6">
<ce:sup>f</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF4">
<ce:label>d</ce:label>
<ce:textfn>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF5">
<ce:label>e</ce:label>
<ce:textfn>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF6">
<ce:label>f</ce:label>
<ce:textfn>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Correspondence to: R. Cioni.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="24" month="1" year="1992"></ce:date-received>
<ce:date-accepted day="30" month="11" year="1992"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.</ce:simple-para>
<ce:simple-para>Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.</ce:simple-para>
<ce:simple-para>Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.</ce:simple-para>
<ce:simple-para>Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.</ce:simple-para>
<ce:simple-para>At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.</ce:simple-para>
<ce:simple-para>Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.</ce:simple-para>
<ce:simple-para>At present, gas geochemistry represents an effective tool to detect changes in the
<ce:italic>P,T</ce:italic>
conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard</title>
</titleInfo>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="family">Marini</namePart>
<affiliation>Geotermica Italiana srl, Lungarno Mediceo 16, 56127 Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Principe</namePart>
<affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</affiliation>
<affiliation>Gruppo Nazionale per la Vulcanologia, CNR, Via Nizza 128, 00198 Roma, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Chiodini</namePart>
<affiliation>Dipartimento di Scienze della Terra, Università di Perugia, Piazza dell'Università, 06100 Perugia, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Cioni</namePart>
<affiliation>Correspondence to: R. Cioni.</affiliation>
<affiliation>Istituto di Geocronologia e Geochimica Isotopica, CNR, Via Cardinale Pietro Maffi 36, 56127 Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Fytikas</namePart>
<affiliation>School of Geology, Faculty of Science, Aristotle University, 540 06 Salonika, Greece</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Marinelli</namePart>
<affiliation>Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56127 Pisa, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1993</dateIssued>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The detailed analysis of the craters of hydrothermal eruptions and related products present on Nisyros Island demonstrates the ephemerality of these morphological forms. In other words, the mere recognizable existence of the craters and associated deposits implies recency of hydrothermal activity. The minimum temperature required to cause the explosive phenomenon and, possibly, the depth of the reservoir (which can be evaluated on the basis of the correlation between the diameter of the crater and the depth of explosion as proposed by Fytikas and Marinelli, 1976) are therefore closely representative of the current hydrothermal circulation.Both field evidence and historical records indicate that all the deposits of hydrothermal eruption recognized on Nisyros Island were emplaced as debris flows. Almost all the ballistic ejecta were entrained in these debris flows and either redeposited far from their landing sites or involved in later crater collapse and erosion. This emplacing mechanism implies that the original products were characterized by a water content higher than about 5% by weight.Steam-driven hydrothermal eruptions, one of which took place in 1871, originated deposits of limited dispersion, as no sign of these erodible products can be found in the field today.Surface geology and fluid geochemistry, together with subsurface information (e.g., primary and hydrothermal lithologies, distribution of temperature with depth, physical-chemical characteristics of deep water-bearing zones) indicate that two distinct hydrothermal aquifers are present underneath the southeastern part of the caldera floor. Both aquifers were probably involved in the most important historically documented hydrothermal eruptions, which occurred in 1873.At that time, violent earthquakes fractured the brittle aquiclude separating the two aquifers and caused a sudden transfer of fluids from the deep to the shallow aquifer, thus triggering the hydrothermal eruptions.Hydrothermal eruptions will probably occur in future, and this hazard must be taken into serious consideration. The southern half of Lakki plain, where all past eruptions took place and active fumaroles are concentrated is the zone at highest risk.At present, gas geochemistry represents an effective tool to detect changes in the P,T conditions of the shallow aquifer, and particularly the phenomena of pressure build-up that may lead to a hydrothermal eruption.</abstract>
<note type="content">Section title: Research paper</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Volcanology and Geothermal Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>VOLGEO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199305</dateIssued>
</originInfo>
<identifier type="ISSN">0377-0273</identifier>
<identifier type="PII">S0377-0273(00)X0125-4</identifier>
<part>
<date>199305</date>
<detail type="volume">
<number>56</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>174</end>
</extent>
<extent unit="pages">
<start>71</start>
<end>94</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">885CAA988AFD75EDF26F62CA78978C115306CA63</identifier>
<identifier type="ark">ark:/67375/6H6-R687HHR7-D</identifier>
<identifier type="DOI">10.1016/0377-0273(93)90051-R</identifier>
<identifier type="PII">0377-0273(93)90051-R</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/885CAA988AFD75EDF26F62CA78978C115306CA63/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000001 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000001 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:885CAA988AFD75EDF26F62CA78978C115306CA63
   |texte=   Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021