Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

Identifieur interne : 000894 ( PubMed/Corpus ); précédent : 000893; suivant : 000895

Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

Auteurs : N. Tu ; H. Chen ; U. Winnikes ; I. Reinert ; G. Marmann ; K M Pirke ; K U Lentes

Source :

RBID : pubmed:10027754

English descriptors

Abstract

Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.

PubMed: 10027754

Links to Exploration step

pubmed:10027754

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.</title>
<author>
<name sortKey="Tu, N" sort="Tu, N" uniqKey="Tu N" first="N" last="Tu">N. Tu</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Neurogenetics, Center for Psychobiological and Psychosomatic Research (FPP), University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, H" sort="Chen, H" uniqKey="Chen H" first="H" last="Chen">H. Chen</name>
</author>
<author>
<name sortKey="Winnikes, U" sort="Winnikes, U" uniqKey="Winnikes U" first="U" last="Winnikes">U. Winnikes</name>
</author>
<author>
<name sortKey="Reinert, I" sort="Reinert, I" uniqKey="Reinert I" first="I" last="Reinert">I. Reinert</name>
</author>
<author>
<name sortKey="Marmann, G" sort="Marmann, G" uniqKey="Marmann G" first="G" last="Marmann">G. Marmann</name>
</author>
<author>
<name sortKey="Pirke, K M" sort="Pirke, K M" uniqKey="Pirke K" first="K M" last="Pirke">K M Pirke</name>
</author>
<author>
<name sortKey="Lentes, K U" sort="Lentes, K U" uniqKey="Lentes K" first="K U" last="Lentes">K U Lentes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10027754</idno>
<idno type="pmid">10027754</idno>
<idno type="wicri:Area/PubMed/Corpus">000894</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000894</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.</title>
<author>
<name sortKey="Tu, N" sort="Tu, N" uniqKey="Tu N" first="N" last="Tu">N. Tu</name>
<affiliation>
<nlm:affiliation>Laboratory of Molecular Neurogenetics, Center for Psychobiological and Psychosomatic Research (FPP), University of Trier, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, H" sort="Chen, H" uniqKey="Chen H" first="H" last="Chen">H. Chen</name>
</author>
<author>
<name sortKey="Winnikes, U" sort="Winnikes, U" uniqKey="Winnikes U" first="U" last="Winnikes">U. Winnikes</name>
</author>
<author>
<name sortKey="Reinert, I" sort="Reinert, I" uniqKey="Reinert I" first="I" last="Reinert">I. Reinert</name>
</author>
<author>
<name sortKey="Marmann, G" sort="Marmann, G" uniqKey="Marmann G" first="G" last="Marmann">G. Marmann</name>
</author>
<author>
<name sortKey="Pirke, K M" sort="Pirke, K M" uniqKey="Pirke K" first="K M" last="Pirke">K M Pirke</name>
</author>
<author>
<name sortKey="Lentes, K U" sort="Lentes, K U" uniqKey="Lentes K" first="K U" last="Lentes">K U Lentes</name>
</author>
</analytic>
<series>
<title level="j">Life sciences</title>
<idno type="ISSN">0024-3205</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>3' Untranslated Regions (genetics)</term>
<term>Adolescent</term>
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Carrier Proteins (genetics)</term>
<term>Child</term>
<term>DNA Mutational Analysis</term>
<term>European Continental Ancestry Group (genetics)</term>
<term>Exons (genetics)</term>
<term>Gene Frequency</term>
<term>Genotype</term>
<term>Humans</term>
<term>Introns (genetics)</term>
<term>Ion Channels</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Obesity</term>
<term>Phenotype</term>
<term>Polymorphism, Genetic (genetics)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Terminator Regions, Genetic (genetics)</term>
<term>Uncoupling Protein 1</term>
<term>Uncoupling Protein 2</term>
<term>Uncoupling Protein 3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>3' Untranslated Regions</term>
<term>Carrier Proteins</term>
<term>Membrane Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>European Continental Ancestry Group</term>
<term>Exons</term>
<term>Introns</term>
<term>Polymorphism, Genetic</term>
<term>Terminator Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Child</term>
<term>DNA Mutational Analysis</term>
<term>Gene Frequency</term>
<term>Genotype</term>
<term>Humans</term>
<term>Ion Channels</term>
<term>Membrane Transport Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Obesity</term>
<term>Phenotype</term>
<term>Sequence Homology, Amino Acid</term>
<term>Uncoupling Protein 1</term>
<term>Uncoupling Protein 2</term>
<term>Uncoupling Protein 3</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10027754</PMID>
<DateCreated>
<Year>1999</Year>
<Month>03</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>1999</Year>
<Month>03</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0024-3205</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>64</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1999</Year>
</PubDate>
</JournalIssue>
<Title>Life sciences</Title>
<ISOAbbreviation>Life Sci.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.</ArticleTitle>
<Pagination>
<MedlinePgn>PL41-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a direct correlation of the observed genotype with (RMR) and Body Mass Index (BMI) was not evident. Expression studies of the wild type and mutant forms of UCP2 should clarify the functional consequences these polymorphisms may have on energy metabolism and body weight regulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tu</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Molecular Neurogenetics, Center for Psychobiological and Psychosomatic Research (FPP), University of Trier, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Winnikes</LastName>
<ForeName>U</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reinert</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marmann</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pirke</LastName>
<ForeName>K M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lentes</LastName>
<ForeName>K U</ForeName>
<Initials>KU</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF132536</AccessionNumber>
<AccessionNumber>AF132537</AccessionNumber>
<AccessionNumber>AF132538</AccessionNumber>
<AccessionNumber>AF132539</AccessionNumber>
<AccessionNumber>AF132540</AccessionNumber>
<AccessionNumber>AH007778</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Life Sci</MedlineTA>
<NlmUniqueID>0375521</NlmUniqueID>
<ISSNLinking>0024-3205</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020413">3' Untranslated Regions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000604389">UCP2 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000604392">UCP3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071256">Uncoupling Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071246">Uncoupling Protein 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071247">Uncoupling Protein 3</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020413" MajorTopicYN="N">3' Untranslated Regions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044465" MajorTopicYN="N">European Continental Ancestry Group</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="Y">Membrane Transport Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="Y">Mitochondrial Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009765" MajorTopicYN="N">Obesity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013728" MajorTopicYN="N">Terminator Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071256" MajorTopicYN="N">Uncoupling Protein 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071246" MajorTopicYN="N">Uncoupling Protein 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071247" MajorTopicYN="N">Uncoupling Protein 3</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>2</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10027754</ArticleId>
<ArticleId IdType="pii">S0024320598005554</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000894 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000894 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:10027754
   |texte=   Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:10027754" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a UnivTrevesV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024