Serveur d'exploration Paul Meyer

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta

Identifieur interne : 000461 ( Istex/Corpus ); précédent : 000460; suivant : 000462

What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta

Auteurs : J. R. Webster ; E. F. Benfield ; T. P. Ehrman ; M. A. Schaeffer ; J. L. Tank ; J. J. Hutchens ; D. J. D Ngelo

Source :

RBID : ISTEX:1FEF1AB2880F4DE42371EC61672D4925F29D2117

English descriptors

Abstract

1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (<_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.

Url:
DOI: 10.1046/j.1365-2427.1999.00409.x

Links to Exploration step

ISTEX:1FEF1AB2880F4DE42371EC61672D4925F29D2117

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<author>
<name sortKey="Webster, J R" sort="Webster, J R" uniqKey="Webster J" first="J. R." last="Webster">J. R. Webster</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benfield, E F" sort="Benfield, E F" uniqKey="Benfield E" first="E. F." last="Benfield">E. F. Benfield</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ehrman, T P" sort="Ehrman, T P" uniqKey="Ehrman T" first="T. P." last="Ehrman">T. P. Ehrman</name>
<affiliation>
<mods:affiliation>E-mail: jwebster@vt.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schaeffer, M A" sort="Schaeffer, M A" uniqKey="Schaeffer M" first="M. A." last="Schaeffer">M. A. Schaeffer</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tank, J L" sort="Tank, J L" uniqKey="Tank J" first="J. L." last="Tank">J. L. Tank</name>
<affiliation>
<mods:affiliation>E-mail: jwebster@vt.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hutchens, J J" sort="Hutchens, J J" uniqKey="Hutchens J" first="J. J." last="Hutchens">J. J. Hutchens</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Ngelo, D J" sort="D Ngelo, D J" uniqKey="D Ngelo D" first="D. J." last="D Ngelo">D. J. D Ngelo</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1FEF1AB2880F4DE42371EC61672D4925F29D2117</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1046/j.1365-2427.1999.00409.x</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000461</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000461</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<author>
<name sortKey="Webster, J R" sort="Webster, J R" uniqKey="Webster J" first="J. R." last="Webster">J. R. Webster</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benfield, E F" sort="Benfield, E F" uniqKey="Benfield E" first="E. F." last="Benfield">E. F. Benfield</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ehrman, T P" sort="Ehrman, T P" uniqKey="Ehrman T" first="T. P." last="Ehrman">T. P. Ehrman</name>
<affiliation>
<mods:affiliation>E-mail: jwebster@vt.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schaeffer, M A" sort="Schaeffer, M A" uniqKey="Schaeffer M" first="M. A." last="Schaeffer">M. A. Schaeffer</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tank, J L" sort="Tank, J L" uniqKey="Tank J" first="J. L." last="Tank">J. L. Tank</name>
<affiliation>
<mods:affiliation>E-mail: jwebster@vt.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hutchens, J J" sort="Hutchens, J J" uniqKey="Hutchens J" first="J. J." last="Hutchens">J. J. Hutchens</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Ngelo, D J" sort="D Ngelo, D J" uniqKey="D Ngelo D" first="D. J." last="D Ngelo">D. J. D Ngelo</name>
<affiliation>
<mods:affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Freshwater Biology</title>
<title level="j" type="alt">FRESHWATER BIOLOGY</title>
<idno type="ISSN">0046-5070</idno>
<idno type="eISSN">1365-2427</idno>
<imprint>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="687">687</biblScope>
<biblScope unit="page" to="705">705</biblScope>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-06">1999-06</date>
</imprint>
<idno type="ISSN">0046-5070</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0046-5070</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Entity" type="geog" xml:lang="en">
<term>Coweeta Creek</term>
<term>Cunningham Creek</term>
<term>Nantahala</term>
<term>Tennessee River</term>
</keywords>
<keywords scheme="Entity" type="org" xml:lang="en">
<term>Blackwell Science Ltd</term>
<term>Blackwell Science Ltd.</term>
<term>Department of Biology, Virginia Polytechnic Institute and State University</term>
<term>Department of Natural Resources and Environmental Sciences</term>
<term>Institute of Ecology, University of Georgia, Athens, GA</term>
<term>Sharon Woods Technical Center</term>
<term>University of Illinois</term>
</keywords>
<keywords scheme="Entity" type="place" xml:lang="en">
<term>Cincinnati</term>
<term>IL</term>
<term>OH</term>
<term>Urbana</term>
<term>VA</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Afdm</term>
<term>Allochthonous</term>
<term>Allochthonous input</term>
<term>Allochthonous material</term>
<term>American benthological society</term>
<term>Angewandte limnologie</term>
<term>Appalachian</term>
<term>Appalachian mountain stream</term>
<term>Average distance</term>
<term>Ball creek</term>
<term>Bead</term>
<term>Benfield</term>
<term>Benthic</term>
<term>Benthic organic matter</term>
<term>Benthological</term>
<term>Biological process</term>
<term>Biological turnover time</term>
<term>Blackwell</term>
<term>Blackwell science</term>
<term>Breakdown rate</term>
<term>Canadian journal</term>
<term>Catchment</term>
<term>Chung</term>
<term>Corn pollen</term>
<term>Coweeta</term>
<term>Coweeta creek</term>
<term>Coweeta hydrologic laboratory</term>
<term>Coweeta stream</term>
<term>Creek</term>
<term>Cuffney</term>
<term>Cummins</term>
<term>Cunningham creek</term>
<term>Cushing</term>
<term>Datum</term>
<term>Deposition flux</term>
<term>Deposition velocity</term>
<term>Detrital</term>
<term>Detritus</term>
<term>Distance travelled</term>
<term>Dowel</term>
<term>Ecological monograph</term>
<term>Ecology</term>
<term>Ecosystem</term>
<term>Ehrman</term>
<term>Fine particulate organic matter</term>
<term>Forest hydrology</term>
<term>Fpom</term>
<term>Fpom respiration rate</term>
<term>Freshwater</term>
<term>Freshwater biology</term>
<term>Glass bead</term>
<term>Golladay</term>
<term>Golladay webster</term>
<term>Grady branch</term>
<term>Headwater</term>
<term>Headwater stream</term>
<term>Hertzler</term>
<term>Hertzler branch</term>
<term>Hugh white creek</term>
<term>Hurricane branch</term>
<term>Hydrologic</term>
<term>Initial density</term>
<term>Internationale vereinigung theoretische</term>
<term>Invertebrate</term>
<term>June</term>
<term>Large wood</term>
<term>Larger particle</term>
<term>Larger stick</term>
<term>Leaf breakdown</term>
<term>Leaf material</term>
<term>Linear regression</term>
<term>Mccaughly creek</term>
<term>Meyer johnson</term>
<term>Microbial</term>
<term>Microbial activity</term>
<term>Microbial respiration</term>
<term>Miller georgian</term>
<term>Minshall</term>
<term>Mountain stream</term>
<term>Naiman</term>
<term>Naiman sedell</term>
<term>Natural fpom</term>
<term>Newbold</term>
<term>November</term>
<term>Organic carbon</term>
<term>Organic matter</term>
<term>Organic matter dynamic</term>
<term>Organic particle</term>
<term>Particle size</term>
<term>Particulate</term>
<term>Particulate material</term>
<term>Particulate organic material</term>
<term>Paul meyer</term>
<term>Petersen</term>
<term>Pine stick</term>
<term>Poplar</term>
<term>Poplar stick</term>
<term>Present address</term>
<term>Present study</term>
<term>Respiration</term>
<term>Respiration rate</term>
<term>Riparian vegetation</term>
<term>Satellite branch</term>
<term>Sedell</term>
<term>Small stick</term>
<term>Small stream</term>
<term>Small wood</term>
<term>Southern appalachian stream</term>
<term>State university</term>
<term>Stillhouse</term>
<term>Stillhouse branch</term>
<term>Stream bottom</term>
<term>Stream ecosystem</term>
<term>Swank</term>
<term>Swank bolstad</term>
<term>Transport</term>
<term>Transport distance</term>
<term>Transport rate</term>
<term>Tree branch</term>
<term>Turnover</term>
<term>Turnover length</term>
<term>Turnover time</term>
<term>Virginia polytechnic institute</term>
<term>Wallace</term>
<term>Ward cummins</term>
<term>Water column</term>
<term>Water column concentration</term>
<term>Watershed disturbance</term>
<term>Webster</term>
<term>Webster benfield</term>
<term>Webster meyer</term>
<term>Webster patten</term>
<term>Webster waide</term>
<term>While wallace</term>
<term>White pine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (<_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>fpom</json:string>
<json:string>coweeta</json:string>
<json:string>freshwater</json:string>
<json:string>benfield</json:string>
<json:string>transport distance</json:string>
<json:string>freshwater biology</json:string>
<json:string>allochthonous</json:string>
<json:string>satellite branch</json:string>
<json:string>blackwell science</json:string>
<json:string>hydrologic</json:string>
<json:string>detritus</json:string>
<json:string>golladay</json:string>
<json:string>benthic</json:string>
<json:string>hugh white creek</json:string>
<json:string>benthological</json:string>
<json:string>american benthological society</json:string>
<json:string>coweeta hydrologic laboratory</json:string>
<json:string>breakdown rate</json:string>
<json:string>cuffney</json:string>
<json:string>cunningham creek</json:string>
<json:string>allochthonous material</json:string>
<json:string>cummins</json:string>
<json:string>headwater</json:string>
<json:string>ecology</json:string>
<json:string>ecosystem</json:string>
<json:string>cushing</json:string>
<json:string>glass bead</json:string>
<json:string>catchment</json:string>
<json:string>hertzler</json:string>
<json:string>ehrman</json:string>
<json:string>corn pollen</json:string>
<json:string>webster benfield</json:string>
<json:string>june</json:string>
<json:string>invertebrate</json:string>
<json:string>poplar</json:string>
<json:string>natural fpom</json:string>
<json:string>sedell</json:string>
<json:string>water column</json:string>
<json:string>petersen</json:string>
<json:string>ball creek</json:string>
<json:string>hertzler branch</json:string>
<json:string>stillhouse</json:string>
<json:string>stillhouse branch</json:string>
<json:string>november</json:string>
<json:string>naiman</json:string>
<json:string>datum</json:string>
<json:string>transport rate</json:string>
<json:string>biological process</json:string>
<json:string>coweeta stream</json:string>
<json:string>grady branch</json:string>
<json:string>poplar stick</json:string>
<json:string>headwater stream</json:string>
<json:string>bead</json:string>
<json:string>turnover length</json:string>
<json:string>small stream</json:string>
<json:string>detrital</json:string>
<json:string>miller georgian</json:string>
<json:string>minshall</json:string>
<json:string>afdm</json:string>
<json:string>organic carbon</json:string>
<json:string>respiration</json:string>
<json:string>webster</json:string>
<json:string>turnover</json:string>
<json:string>microbial</json:string>
<json:string>fine particulate organic matter</json:string>
<json:string>organic particle</json:string>
<json:string>coweeta creek</json:string>
<json:string>tree branch</json:string>
<json:string>while wallace</json:string>
<json:string>golladay webster</json:string>
<json:string>organic matter</json:string>
<json:string>deposition velocity</json:string>
<json:string>swank</json:string>
<json:string>small wood</json:string>
<json:string>stream bottom</json:string>
<json:string>distance travelled</json:string>
<json:string>webster patten</json:string>
<json:string>stream ecosystem</json:string>
<json:string>hurricane branch</json:string>
<json:string>pine stick</json:string>
<json:string>respiration rate</json:string>
<json:string>particle size</json:string>
<json:string>ward cummins</json:string>
<json:string>naiman sedell</json:string>
<json:string>turnover time</json:string>
<json:string>deposition flux</json:string>
<json:string>ecological monograph</json:string>
<json:string>appalachian</json:string>
<json:string>virginia polytechnic institute</json:string>
<json:string>state university</json:string>
<json:string>leaf breakdown</json:string>
<json:string>larger particle</json:string>
<json:string>present address</json:string>
<json:string>allochthonous input</json:string>
<json:string>benthic organic matter</json:string>
<json:string>small stick</json:string>
<json:string>water column concentration</json:string>
<json:string>swank bolstad</json:string>
<json:string>present study</json:string>
<json:string>paul meyer</json:string>
<json:string>webster waide</json:string>
<json:string>biological turnover time</json:string>
<json:string>microbial activity</json:string>
<json:string>angewandte limnologie</json:string>
<json:string>particulate</json:string>
<json:string>chung</json:string>
<json:string>wallace</json:string>
<json:string>particulate organic material</json:string>
<json:string>large wood</json:string>
<json:string>leaf material</json:string>
<json:string>particulate material</json:string>
<json:string>average distance</json:string>
<json:string>white pine</json:string>
<json:string>riparian vegetation</json:string>
<json:string>webster meyer</json:string>
<json:string>initial density</json:string>
<json:string>linear regression</json:string>
<json:string>larger stick</json:string>
<json:string>meyer johnson</json:string>
<json:string>fpom respiration rate</json:string>
<json:string>mccaughly creek</json:string>
<json:string>organic matter dynamic</json:string>
<json:string>microbial respiration</json:string>
<json:string>southern appalachian stream</json:string>
<json:string>internationale vereinigung theoretische</json:string>
<json:string>appalachian mountain stream</json:string>
<json:string>watershed disturbance</json:string>
<json:string>mountain stream</json:string>
<json:string>canadian journal</json:string>
<json:string>forest hydrology</json:string>
<json:string>transport</json:string>
<json:string>newbold</json:string>
<json:string>dowel</json:string>
<json:string>creek</json:string>
<json:string>blackwell</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. R. Webster</name>
<affiliations>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>E. F. Benfield</name>
<affiliations>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>T. P. Ehrman</name>
<affiliations>
<json:string>E-mail: jwebster@vt.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. A. Schaeffer</name>
<affiliations>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. L. Tank</name>
<affiliations>
<json:string>E-mail: jwebster@vt.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. J. Hutchens</name>
<affiliations>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>D. J. D’Angelo</name>
<affiliations>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>breakdown</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Coweeta</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>detritus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>stream</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>transport</value>
</json:item>
</subject>
<articleId>
<json:string>FWB409</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-1LB7WJ5L-K</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (>_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>9877</pdfWordCount>
<pdfCharCount>62321</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>19</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<pdfWordsPerPage>520</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>false</refBibsNative>
<abstractWordCount>267</abstractWordCount>
<abstractCharCount>1764</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Freshwater Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2427</json:string>
</doi>
<issn>
<json:string>0046-5070</json:string>
</issn>
<eissn>
<json:string>1365-2427</json:string>
</eissn>
<publisherId>
<json:string>FWB</json:string>
</publisherId>
<volume>41</volume>
<issue>4</issue>
<pages>
<first>687</first>
<last>705</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2185</json:string>
<json:string>1930s</json:string>
<json:string>1999</json:string>
<json:string>1927</json:string>
</date>
<geogName>
<json:string>Cunningham Creek</json:string>
<json:string>Tennessee River</json:string>
<json:string>Coweeta Creek</json:string>
<json:string>Nantahala</json:string>
</geogName>
<orgName>
<json:string>Blackwell Science Ltd</json:string>
<json:string>Blackwell Science Ltd.</json:string>
<json:string>University of Illinois</json:string>
<json:string>Sharon Woods Technical Center</json:string>
<json:string>Department of Natural Resources and Environmental Sciences</json:string>
<json:string>Department of Biology, Virginia Polytechnic Institute and State University</json:string>
<json:string>Institute of Ecology, University of Georgia, Athens, GA</json:string>
</orgName>
<placeName>
<json:string>IL</json:string>
<json:string>VA</json:string>
<json:string>Cincinnati</json:string>
<json:string>Urbana</json:string>
<json:string>OH</json:string>
</placeName>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-1LB7WJ5L-K</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - marine & freshwater biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - marine biology & hydrobiology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1046/j.1365-2427.1999.00409.x</json:string>
</doi>
<id>1FEF1AB2880F4DE42371EC61672D4925F29D2117</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<title level="a" type="short">Fate of allochthonous material in streams</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-06"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<title level="a" type="short">Fate of allochthonous material in streams</title>
<author xml:id="author-0000">
<persName>
<forename type="first">J. R.</forename>
<surname>Webster</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">E. F.</forename>
<surname>Benfield</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">T. P.</forename>
<surname>Ehrman</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">M. A.</forename>
<surname>Schaeffer</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004" role="corresp">
<persName>
<forename type="first">J. L.</forename>
<surname>Tank</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">J. J.</forename>
<surname>Hutchens</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">D. J.</forename>
<surname>D’Angelo</surname>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biology</orgName>
<orgName type="institution">Virginia Polytechnic Institute and State University</orgName>
<address>
<addrLine>Blacksburg</addrLine>
<addrLine>Virginia, U.S.A.</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<idno type="istex">1FEF1AB2880F4DE42371EC61672D4925F29D2117</idno>
<idno type="ark">ark:/67375/WNG-1LB7WJ5L-K</idno>
<idno type="DOI">10.1046/j.1365-2427.1999.00409.x</idno>
<idno type="unit">FWB409</idno>
<idno type="toTypesetVersion">file:FWB.FWB409.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Freshwater Biology</title>
<title level="j" type="alt">FRESHWATER BIOLOGY</title>
<idno type="pISSN">0046-5070</idno>
<idno type="eISSN">1365-2427</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2427</idno>
<idno type="book-part-DOI">10.1111/fwb.1999.41.issue-4</idno>
<idno type="product">FWB</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="687">687</biblScope>
<biblScope unit="page" to="705">705</biblScope>
<publisher>Blackwell Science, Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1999-06"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport.</p>
<p>2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM).</p>
<p>3. ,Over 8_years, logs showed no breakdown or movement.</p>
<p>4. ,The breakdown rate of sticks (≤
<hi rend="subscript">3</hi>
_cm diameter) ranged from 0.00017 to 0.00103_day
<hi rend="superscript">−1</hi>
, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day
<hi rend="superscript">−1</hi>
.</p>
<p>5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day
<hi rend="superscript">−1</hi>
. The leaf transport rate depended on stream size and discharge.</p>
<p>6. ,The average respiration rate of FPOM was 1.4_mg_O
<hi rend="subscript">2</hi>
_g_AFDM
<hi rend="superscript">−1</hi>
_day
<hi rend="superscript">−1</hi>
over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day
<hi rend="superscript">−1</hi>
. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (<_10_m) except during high discharge.</p>
<p>7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">breakdown</term>
<term xml:id="k2">Coweeta</term>
<term xml:id="k3">detritus</term>
<term xml:id="k4">stream</term>
<term xml:id="k5">transport</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Science, Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2427</doi>
<issn type="print">0046-5070</issn>
<issn type="electronic">1365-2427</issn>
<idGroup>
<id type="product" value="FWB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="FRESHWATER BIOLOGY">Freshwater Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="06004">
<doi origin="wiley">10.1111/fwb.1999.41.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="41">41</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="1999-06">June 1999</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0068700" status="forIssue">
<doi origin="wiley">10.1046/j.1365-2427.1999.00409.x</doi>
<idGroup>
<id type="unit" value="FWB409"></id>
</idGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2001-12-25"></event>
<event type="publishedOnlineFinalForm" date="2001-12-25"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:Header result:Header" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="687">687</numbering>
<numbering type="pageLast" number="705">705</numbering>
</numberingGroup>
<correspondenceTo> J. R. Webster, Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. E‐mail:
<email>jwebster@vt.edu</email>
*
<i>Present address:</i>
Moreau Seminary, Notre Dame, IN 46556, U.S.A.
<sup></sup>
<i>Present address:</i>
Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, U.S.A.,
<sup></sup>
<i>Present address:</i>
Institute of Ecology, University of Georgia, Athens, GA 30602, U.S.A.,
<sup>§</sup>
<i>Present address:</i>
Proctor and Gamble, Sharon Woods Technical Center, 11530 Reed Hartman Highway, Cincinnati, OH 45241, U.S.A. </correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:FWB.FWB409.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="82"></count>
<count type="wordTotal" number="6927"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
<title type="shortAuthors">J. R. Webster et_al.</title>
<title type="short">Fate of allochthonous material in streams</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>J. R.</givenNames>
<familyName>Webster</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>E. F.</givenNames>
<familyName>Benfield</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" corresponding="yes">
<personName>
<givenNames>T. P.</givenNames>
<familyName>Ehrman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>M. A.</givenNames>
<familyName>Schaeffer</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" corresponding="yes">
<personName>
<givenNames>J. L.</givenNames>
<familyName>Tank</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>J. J.</givenNames>
<familyName>Hutchens</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a1">
<personName>
<givenNames>D. J.</givenNames>
<familyName>D’Angelo</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">breakdown</keyword>
<keyword xml:id="k2">Coweeta</keyword>
<keyword xml:id="k3">detritus</keyword>
<keyword xml:id="k4">stream</keyword>
<keyword xml:id="k5">transport</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport.</p>
<p>2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM).</p>
<p>3. ,Over 8_years, logs showed no breakdown or movement.</p>
<p>4. ,The breakdown rate of sticks (≤
<sub>3</sub>
_cm diameter) ranged from 0.00017 to 0.00103_day
<sup>−1</sup>
, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day
<sup>−1</sup>
.</p>
<p>5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day
<sup>−1</sup>
. The leaf transport rate depended on stream size and discharge.</p>
<p>6. ,The average respiration rate of FPOM was 1.4_mg_O
<sub>2</sub>
_g_AFDM
<sup>−1</sup>
_day
<sup>−1</sup>
over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day
<sup>−1</sup>
. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (<_10_m) except during high discharge.</p>
<p>7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Fate of allochthonous material in streams</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta</title>
</titleInfo>
<name type="personal">
<namePart type="given">J. R.</namePart>
<namePart type="family">Webster</namePart>
<affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">E. F.</namePart>
<namePart type="family">Benfield</namePart>
<affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T. P.</namePart>
<namePart type="family">Ehrman</namePart>
<affiliation>E-mail: jwebster@vt.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M. A.</namePart>
<namePart type="family">Schaeffer</namePart>
<affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. L.</namePart>
<namePart type="family">Tank</namePart>
<affiliation>E-mail: jwebster@vt.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. J.</namePart>
<namePart type="family">Hutchens</namePart>
<affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">D. J.</namePart>
<namePart type="family">D’Angelo</namePart>
<affiliation>Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Science, Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1999-06</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">0</extent>
<extent unit="formulas">0</extent>
<extent unit="references">82</extent>
<extent unit="linksCrossRef">0</extent>
<extent unit="words">6927</extent>
</physicalDescription>
<abstract lang="en">1. ,One of two things can happen to allochthonous material once it enters a stream: it can be broken down or it can be transported downstream. The efficiency with which allochthonous material is used is the result of these two opposing factors: breakdown and transport. 2. ,The present synthesis of new and published studies at Coweeta Hydrologic Laboratory compares biological use versus transport for four categories of particulate organic material: (1) large wood (logs); (2) small wood (sticks); (3) leaves; and (4) fine particulate organic matter (FPOM). 3. ,Over 8_years, logs showed no breakdown or movement. 4. ,The breakdown rate of sticks (≤3_cm diameter) ranged from 0.00017 to 0.00103_day−1, while their rate of transport, although varying considerably with discharge, ranged from 0 to 0.1_m_day−1. 5. ,Based on 40 published measurements, the average rate of leaf breakdown was 0.0098_day−1. The leaf transport rate depended on stream size and discharge. 6. ,The average respiration rate of FPOM was 1.4_mg_O2_g_AFDM−1_day−1 over a temperature range of 6–22_°C, which implies a decomposition rate of 0.00104_day−1. Transport distances of both corn pollen and glass beads, surrogates of natural FPOM, were short (<_10_m) except during high discharge. 7. , Estimates of transport rate were substantially larger than the breakdown rates for sticks, leaves and FPOM. Thus, an organic particle on the stream bottom is more likely to be transported than broken down by biological processes, although estimates of turnover length suggest that sticks and leaves do not travel far. However, once these larger particles are converted to refractory FPOM, either by physical or biological processes, they may be transported long distances before being metabolized.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>breakdown</topic>
<topic>Coweeta</topic>
<topic>detritus</topic>
<topic>stream</topic>
<topic>transport</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Freshwater Biology</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0046-5070</identifier>
<identifier type="eISSN">1365-2427</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2427</identifier>
<identifier type="PublisherID">FWB</identifier>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>687</start>
<end>705</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">1FEF1AB2880F4DE42371EC61672D4925F29D2117</identifier>
<identifier type="ark">ark:/67375/WNG-1LB7WJ5L-K</identifier>
<identifier type="DOI">10.1046/j.1365-2427.1999.00409.x</identifier>
<identifier type="ArticleID">FWB409</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© Wiley. All rights reserved.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-14</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-1LB7WJ5L-K/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/ChansonRoland/explor/PaulMeyerV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000461 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000461 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    ChansonRoland
   |area=    PaulMeyerV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1FEF1AB2880F4DE42371EC61672D4925F29D2117
   |texte=   What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta
}}

Wicri

This area was generated with Dilib version V0.6.39.
Data generation: Wed Nov 24 15:28:42 2021. Site generation: Wed Nov 24 15:32:21 2021