Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A metapopulation model for chikungunya including populations mobility on a large-scale network.

Identifieur interne : 000169 ( PubMed/Curation ); précédent : 000168; suivant : 000170

A metapopulation model for chikungunya including populations mobility on a large-scale network.

Auteurs : Djamila Moulay [France] ; Yoann Pigné

Source :

RBID : pubmed:23154189

English descriptors

Abstract

In this paper we study the influence of populations mobility on the spread of a vector-borne disease. We focus on the chikungunya epidemic event that occurred in 2005-2006 on the Réunion Island, Indian Ocean, France, and validate our models with real epidemic data from the event. We propose a metapopulation model to represent both a high-resolution patch model of the island with realistic population densities and also mobility models for humans (based on real-motion data) and mosquitoes. In this metapopulation network, two models are coupled: one for the dynamics of the mosquito population and one for the transmission of the disease. A high-resolution numerical model is created from real geographical, demographical and mobility data. The Island is modeled with an 18,000-nodes metapopulation network. Numerical results show the impact of the geographical environment and populations' mobility on the spread of the disease. The model is finally validated against real epidemic data from the Réunion event.

DOI: 10.1016/j.jtbi.2012.11.008
PubMed: 23154189

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23154189

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A metapopulation model for chikungunya including populations mobility on a large-scale network.</title>
<author>
<name sortKey="Moulay, Djamila" sort="Moulay, Djamila" uniqKey="Moulay D" first="Djamila" last="Moulay">Djamila Moulay</name>
<affiliation wicri:level="1">
<nlm:affiliation>LMAH, Normandy University, Le Havre, France. djamila.moulay@univ-lehavre.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>LMAH, Normandy University, Le Havre</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pigne, Yoann" sort="Pigne, Yoann" uniqKey="Pigne Y" first="Yoann" last="Pigné">Yoann Pigné</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23154189</idno>
<idno type="pmid">23154189</idno>
<idno type="doi">10.1016/j.jtbi.2012.11.008</idno>
<idno type="wicri:Area/PubMed/Corpus">000169</idno>
<idno type="wicri:Area/PubMed/Curation">000169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A metapopulation model for chikungunya including populations mobility on a large-scale network.</title>
<author>
<name sortKey="Moulay, Djamila" sort="Moulay, Djamila" uniqKey="Moulay D" first="Djamila" last="Moulay">Djamila Moulay</name>
<affiliation wicri:level="1">
<nlm:affiliation>LMAH, Normandy University, Le Havre, France. djamila.moulay@univ-lehavre.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>LMAH, Normandy University, Le Havre</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pigne, Yoann" sort="Pigne, Yoann" uniqKey="Pigne Y" first="Yoann" last="Pigné">Yoann Pigné</name>
</author>
</analytic>
<series>
<title level="j">Journal of theoretical biology</title>
<idno type="eISSN">1095-8541</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aedes (growth & development)</term>
<term>Aedes (physiology)</term>
<term>Aedes (virology)</term>
<term>Alphavirus Infections (epidemiology)</term>
<term>Alphavirus Infections (transmission)</term>
<term>Animals</term>
<term>Chikungunya Fever</term>
<term>Chikungunya virus</term>
<term>Ecosystem</term>
<term>Epidemics</term>
<term>Humans</term>
<term>Insect Vectors (growth & development)</term>
<term>Insect Vectors (physiology)</term>
<term>Insect Vectors (virology)</term>
<term>Models, Biological</term>
<term>Population Density</term>
<term>Population Dynamics</term>
<term>Reunion (epidemiology)</term>
<term>Seroepidemiologic Studies</term>
<term>Travel</term>
</keywords>
<keywords scheme="MESH" type="geographic" qualifier="epidemiology" xml:lang="en">
<term>Reunion</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Alphavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Aedes</term>
<term>Insect Vectors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aedes</term>
<term>Insect Vectors</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Alphavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Aedes</term>
<term>Insect Vectors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chikungunya Fever</term>
<term>Chikungunya virus</term>
<term>Ecosystem</term>
<term>Epidemics</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Population Density</term>
<term>Population Dynamics</term>
<term>Seroepidemiologic Studies</term>
<term>Travel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper we study the influence of populations mobility on the spread of a vector-borne disease. We focus on the chikungunya epidemic event that occurred in 2005-2006 on the Réunion Island, Indian Ocean, France, and validate our models with real epidemic data from the event. We propose a metapopulation model to represent both a high-resolution patch model of the island with realistic population densities and also mobility models for humans (based on real-motion data) and mosquitoes. In this metapopulation network, two models are coupled: one for the dynamics of the mosquito population and one for the transmission of the disease. A high-resolution numerical model is created from real geographical, demographical and mobility data. The Island is modeled with an 18,000-nodes metapopulation network. Numerical results show the impact of the geographical environment and populations' mobility on the spread of the disease. The model is finally validated against real epidemic data from the Réunion event.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23154189</PMID>
<DateCreated>
<Year>2013</Year>
<Month>1</Month>
<Day>7</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8541</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>318</Volume>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Journal of theoretical biology</Title>
<ISOAbbreviation>J. Theor. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A metapopulation model for chikungunya including populations mobility on a large-scale network.</ArticleTitle>
<Pagination>
<MedlinePgn>129-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtbi.2012.11.008</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0022-5193(12)00583-8</ELocationID>
<Abstract>
<AbstractText>In this paper we study the influence of populations mobility on the spread of a vector-borne disease. We focus on the chikungunya epidemic event that occurred in 2005-2006 on the Réunion Island, Indian Ocean, France, and validate our models with real epidemic data from the event. We propose a metapopulation model to represent both a high-resolution patch model of the island with realistic population densities and also mobility models for humans (based on real-motion data) and mosquitoes. In this metapopulation network, two models are coupled: one for the dynamics of the mosquito population and one for the transmission of the disease. A high-resolution numerical model is created from real geographical, demographical and mobility data. The Island is modeled with an 18,000-nodes metapopulation network. Numerical results show the impact of the geographical environment and populations' mobility on the spread of the disease. The model is finally validated against real epidemic data from the Réunion event.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moulay</LastName>
<ForeName>Djamila</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>LMAH, Normandy University, Le Havre, France. djamila.moulay@univ-lehavre.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pigné</LastName>
<ForeName>Yoann</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D023361">Validation Studies</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>Nov</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Theor Biol</MedlineTA>
<NlmUniqueID>0376342</NlmUniqueID>
<ISSNLinking>0022-5193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000330" MajorTopicYN="N">Aedes</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018354" MajorTopicYN="N">Alphavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065632" MajorTopicYN="N">Chikungunya Fever</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002646" MajorTopicYN="N">Chikungunya virus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058872" MajorTopicYN="Y">Epidemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007303" MajorTopicYN="N">Insect Vectors</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011156" MajorTopicYN="N">Population Density</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017508" MajorTopicYN="N" Type="Geographic">Reunion</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016036" MajorTopicYN="N">Seroepidemiologic Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014195" MajorTopicYN="N">Travel</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>2</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>3</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23154189</ArticleId>
<ArticleId IdType="pii">S0022-5193(12)00583-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtbi.2012.11.008</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000169 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000169 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23154189
   |texte=   A metapopulation model for chikungunya including populations mobility on a large-scale network.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23154189" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a LeHavreV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024