Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.

Identifieur interne : 000267 ( PubMed/Corpus ); précédent : 000266; suivant : 000268

Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.

Auteurs : Kevin Prévost ; Pierre Magal ; Jocelyne Protais ; Catherine Beaumont

Source :

RBID : pubmed:18258173

English descriptors

Abstract

Salmonella is one of the major sources of toxi-infections in humans. The association between egg consumption and Salmonella outbreaks is a serious economic and public health problem. To control the incidence of Salmonella in poultry flocks, many prophylactic means have been developed but none allows a total reduction of the risk. In a previous study, we derived mathematical models for Salmonella transmission and used them to appreciate the most important factors of variation of egg contamination rate and thus of risk of human contamination. Thanks to recent data of a selection experiment for increased or decreased rate of carrier-state (also called divergent selection), we showed that mixing, in an equal proportion, animals issued from a line selected for a lower (denoted Sal-) or higher propensity to carry Salmonella (denoted Sal+) results in a reduction by half of the maximal percentage of contaminated animals but does not accelerate the extinction of the disease. Vaccination and selection should be synergic, since a former contamination reduces the maximal prevalence by 45 and 71%, respectively, in Sal+ or Sal- flocks respectively. These results show the interest in the introduction, even at a rather moderate percentage, of animals selected for a reduced rate of Salmonella carrier-state within commercial flocks. This could be achieved by using one or more selected lines in commercial crosses. These results must be confirmed experimentally while the mathematical model could be extended with minor modifications to other animal species or pathogenic species.

DOI: 10.1051/vetres:2007058
PubMed: 18258173

Links to Exploration step

pubmed:18258173

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.</title>
<author>
<name sortKey="Prevost, Kevin" sort="Prevost, Kevin" uniqKey="Prevost K" first="Kevin" last="Prévost">Kevin Prévost</name>
<affiliation>
<nlm:affiliation>Faculté des Sciences et Techniques, Université du Havre, 76085 Le Havre, France. kevin.prevost849@univ-lehavre.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Magal, Pierre" sort="Magal, Pierre" uniqKey="Magal P" first="Pierre" last="Magal">Pierre Magal</name>
</author>
<author>
<name sortKey="Protais, Jocelyne" sort="Protais, Jocelyne" uniqKey="Protais J" first="Jocelyne" last="Protais">Jocelyne Protais</name>
</author>
<author>
<name sortKey="Beaumont, Catherine" sort="Beaumont, Catherine" uniqKey="Beaumont C" first="Catherine" last="Beaumont">Catherine Beaumont</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2008 Mar-Apr</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:18258173</idno>
<idno type="pmid">18258173</idno>
<idno type="doi">10.1051/vetres:2007058</idno>
<idno type="wicri:Area/PubMed/Corpus">000267</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.</title>
<author>
<name sortKey="Prevost, Kevin" sort="Prevost, Kevin" uniqKey="Prevost K" first="Kevin" last="Prévost">Kevin Prévost</name>
<affiliation>
<nlm:affiliation>Faculté des Sciences et Techniques, Université du Havre, 76085 Le Havre, France. kevin.prevost849@univ-lehavre.fr</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Magal, Pierre" sort="Magal, Pierre" uniqKey="Magal P" first="Pierre" last="Magal">Pierre Magal</name>
</author>
<author>
<name sortKey="Protais, Jocelyne" sort="Protais, Jocelyne" uniqKey="Protais J" first="Jocelyne" last="Protais">Jocelyne Protais</name>
</author>
<author>
<name sortKey="Beaumont, Catherine" sort="Beaumont, Catherine" uniqKey="Beaumont C" first="Catherine" last="Beaumont">Catherine Beaumont</name>
</author>
</analytic>
<series>
<title level="j">Veterinary research</title>
<idno type="ISSN">0928-4249</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Carrier State (immunology)</term>
<term>Carrier State (veterinary)</term>
<term>Chickens</term>
<term>Female</term>
<term>Food Microbiology</term>
<term>Genetic Predisposition to Disease (genetics)</term>
<term>Immunity, Innate (genetics)</term>
<term>Incidence</term>
<term>Models, Biological</term>
<term>Ovum (microbiology)</term>
<term>Poultry Diseases (genetics)</term>
<term>Poultry Diseases (immunology)</term>
<term>Poultry Diseases (microbiology)</term>
<term>Salmonella Infections, Animal (genetics)</term>
<term>Salmonella Infections, Animal (immunology)</term>
<term>Salmonella Infections, Animal (microbiology)</term>
<term>Vaccination (veterinary)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Predisposition to Disease</term>
<term>Immunity, Innate</term>
<term>Poultry Diseases</term>
<term>Salmonella Infections, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Carrier State</term>
<term>Poultry Diseases</term>
<term>Salmonella Infections, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Ovum</term>
<term>Poultry Diseases</term>
<term>Salmonella Infections, Animal</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Carrier State</term>
<term>Vaccination</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chickens</term>
<term>Female</term>
<term>Food Microbiology</term>
<term>Incidence</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Salmonella is one of the major sources of toxi-infections in humans. The association between egg consumption and Salmonella outbreaks is a serious economic and public health problem. To control the incidence of Salmonella in poultry flocks, many prophylactic means have been developed but none allows a total reduction of the risk. In a previous study, we derived mathematical models for Salmonella transmission and used them to appreciate the most important factors of variation of egg contamination rate and thus of risk of human contamination. Thanks to recent data of a selection experiment for increased or decreased rate of carrier-state (also called divergent selection), we showed that mixing, in an equal proportion, animals issued from a line selected for a lower (denoted Sal-) or higher propensity to carry Salmonella (denoted Sal+) results in a reduction by half of the maximal percentage of contaminated animals but does not accelerate the extinction of the disease. Vaccination and selection should be synergic, since a former contamination reduces the maximal prevalence by 45 and 71%, respectively, in Sal+ or Sal- flocks respectively. These results show the interest in the introduction, even at a rather moderate percentage, of animals selected for a reduced rate of Salmonella carrier-state within commercial flocks. This could be achieved by using one or more selected lines in commercial crosses. These results must be confirmed experimentally while the mathematical model could be extended with minor modifications to other animal species or pathogenic species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18258173</PMID>
<DateCreated>
<Year>2008</Year>
<Month>2</Month>
<Day>8</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0928-4249</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>39</Volume>
<Issue>2</Issue>
<PubDate>
<MedlineDate>2008 Mar-Apr</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Veterinary research</Title>
<ISOAbbreviation>Vet. Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.</ArticleTitle>
<Pagination>
<MedlinePgn>20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1051/vetres:2007058</ELocationID>
<Abstract>
<AbstractText>Salmonella is one of the major sources of toxi-infections in humans. The association between egg consumption and Salmonella outbreaks is a serious economic and public health problem. To control the incidence of Salmonella in poultry flocks, many prophylactic means have been developed but none allows a total reduction of the risk. In a previous study, we derived mathematical models for Salmonella transmission and used them to appreciate the most important factors of variation of egg contamination rate and thus of risk of human contamination. Thanks to recent data of a selection experiment for increased or decreased rate of carrier-state (also called divergent selection), we showed that mixing, in an equal proportion, animals issued from a line selected for a lower (denoted Sal-) or higher propensity to carry Salmonella (denoted Sal+) results in a reduction by half of the maximal percentage of contaminated animals but does not accelerate the extinction of the disease. Vaccination and selection should be synergic, since a former contamination reduces the maximal prevalence by 45 and 71%, respectively, in Sal+ or Sal- flocks respectively. These results show the interest in the introduction, even at a rather moderate percentage, of animals selected for a reduced rate of Salmonella carrier-state within commercial flocks. This could be achieved by using one or more selected lines in commercial crosses. These results must be confirmed experimentally while the mathematical model could be extended with minor modifications to other animal species or pathogenic species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prévost</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Faculté des Sciences et Techniques, Université du Havre, 76085 Le Havre, France. kevin.prevost849@univ-lehavre.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Magal</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Protais</LastName>
<ForeName>Jocelyne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beaumont</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>Jan</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Vet Res</MedlineTA>
<NlmUniqueID>9309551</NlmUniqueID>
<ISSNLinking>0928-4249</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002353" MajorTopicYN="N">Carrier State</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="Y">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005516" MajorTopicYN="N">Food Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020022" MajorTopicYN="N">Genetic Predisposition to Disease</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015994" MajorTopicYN="N">Incidence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010063" MajorTopicYN="N">Ovum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011201" MajorTopicYN="N">Poultry Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012481" MajorTopicYN="N">Salmonella Infections, Animal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014611" MajorTopicYN="N">Vaccination</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>2</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>9</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18258173</ArticleId>
<ArticleId IdType="doi">10.1051/vetres:2007058</ArticleId>
<ArticleId IdType="pii">v07176</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000267 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000267 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18258173
   |texte=   Effect of genetic resistance of the hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18258173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LeHavreV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024