Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.

Identifieur interne : 000041 ( PubMed/Corpus ); précédent : 000040; suivant : 000042

An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.

Auteurs : Kevin M. Hickson ; Jean-Christophe Loison ; François Lique ; Jacek Kłos

Source :

RBID : pubmed:27046417

Abstract

The gas-phase quenching reaction C((1)D) + N2 → C((3)P) + N2 has been investigated experimentally over the temperature range 50-296 K using a supersonic flow reactor. C((1)D) atoms were produced in situ by the pulsed multiphoton dissociation of CBr4 precursor molecules. Rate constants for this process were measured using a chemical tracer method whereby the C((1)D) + H2 → CH + H reaction was employed to follow C((1)D) decays by monitoring vacuum ultraviolet laser-induced fluorescence of the atomic hydrogen product at 121.567 nm. The deactivation rates are seen to increase at lower temperature, indicating the likely influence of the CNN intermediate complex lifetime on intersystem crossing for this system. We also performed electronic structure calculations of relevant C((3)P)-N2 and C((1)D)-N2 potential energy curves as well as triplet-singlet spin-orbit coupling terms using the explicitly correlated internally contracted multireference configuration interaction method (ic-MRCI-F12). The calculations were performed for the collinear and perpendicular approach of the C atom toward the N2 molecule, which allowed us to construct the approximate spherical (isotropic) potential model of C-N2(j = 0). The computed reduced dimensional potentials were used in quantum close coupling scattering calculations of the electronic quenching cross sections and rate constants. While the calculated potential energy curves form the basis for a good qualitative description of the reaction, the calculated rate constants are significantly smaller than the measured ones, and fail to reproduce the temperature dependence of the experimental results. Several possible reasons are provided to explain the origin of these differences.

DOI: 10.1021/acs.jpca.6b00480
PubMed: 27046417

Links to Exploration step

pubmed:27046417

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.</title>
<author>
<name sortKey="Hickson, Kevin M" sort="Hickson, Kevin M" uniqKey="Hickson K" first="Kevin M" last="Hickson">Kevin M. Hickson</name>
<affiliation>
<nlm:affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loison, Jean Christophe" sort="Loison, Jean Christophe" uniqKey="Loison J" first="Jean-Christophe" last="Loison">Jean-Christophe Loison</name>
<affiliation>
<nlm:affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lique, Francois" sort="Lique, Francois" uniqKey="Lique F" first="François" last="Lique">François Lique</name>
<affiliation>
<nlm:affiliation>LOMC - UMR 6294, CNRS-Université du Havre , 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klos, Jacek" sort="Klos, Jacek" uniqKey="Klos J" first="Jacek" last="Kłos">Jacek Kłos</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742-2021, United States.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27046417</idno>
<idno type="pmid">27046417</idno>
<idno type="doi">10.1021/acs.jpca.6b00480</idno>
<idno type="wicri:Area/PubMed/Corpus">000041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.</title>
<author>
<name sortKey="Hickson, Kevin M" sort="Hickson, Kevin M" uniqKey="Hickson K" first="Kevin M" last="Hickson">Kevin M. Hickson</name>
<affiliation>
<nlm:affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Loison, Jean Christophe" sort="Loison, Jean Christophe" uniqKey="Loison J" first="Jean-Christophe" last="Loison">Jean-Christophe Loison</name>
<affiliation>
<nlm:affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lique, Francois" sort="Lique, Francois" uniqKey="Lique F" first="François" last="Lique">François Lique</name>
<affiliation>
<nlm:affiliation>LOMC - UMR 6294, CNRS-Université du Havre , 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Klos, Jacek" sort="Klos, Jacek" uniqKey="Klos J" first="Jacek" last="Kłos">Jacek Kłos</name>
<affiliation>
<nlm:affiliation>Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742-2021, United States.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. A</title>
<idno type="eISSN">1520-5215</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The gas-phase quenching reaction C((1)D) + N2 → C((3)P) + N2 has been investigated experimentally over the temperature range 50-296 K using a supersonic flow reactor. C((1)D) atoms were produced in situ by the pulsed multiphoton dissociation of CBr4 precursor molecules. Rate constants for this process were measured using a chemical tracer method whereby the C((1)D) + H2 → CH + H reaction was employed to follow C((1)D) decays by monitoring vacuum ultraviolet laser-induced fluorescence of the atomic hydrogen product at 121.567 nm. The deactivation rates are seen to increase at lower temperature, indicating the likely influence of the CNN intermediate complex lifetime on intersystem crossing for this system. We also performed electronic structure calculations of relevant C((3)P)-N2 and C((1)D)-N2 potential energy curves as well as triplet-singlet spin-orbit coupling terms using the explicitly correlated internally contracted multireference configuration interaction method (ic-MRCI-F12). The calculations were performed for the collinear and perpendicular approach of the C atom toward the N2 molecule, which allowed us to construct the approximate spherical (isotropic) potential model of C-N2(j = 0). The computed reduced dimensional potentials were used in quantum close coupling scattering calculations of the electronic quenching cross sections and rate constants. While the calculated potential energy curves form the basis for a good qualitative description of the reaction, the calculated rate constants are significantly smaller than the measured ones, and fail to reproduce the temperature dependence of the experimental results. Several possible reasons are provided to explain the origin of these differences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">27046417</PMID>
<DateCreated>
<Year>2016</Year>
<Month>4</Month>
<Day>28</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>4</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5215</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>120</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. A</Title>
<ISOAbbreviation>J Phys Chem A</ISOAbbreviation>
</Journal>
<ArticleTitle>An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.</ArticleTitle>
<Pagination>
<MedlinePgn>2504-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jpca.6b00480</ELocationID>
<Abstract>
<AbstractText>The gas-phase quenching reaction C((1)D) + N2 → C((3)P) + N2 has been investigated experimentally over the temperature range 50-296 K using a supersonic flow reactor. C((1)D) atoms were produced in situ by the pulsed multiphoton dissociation of CBr4 precursor molecules. Rate constants for this process were measured using a chemical tracer method whereby the C((1)D) + H2 → CH + H reaction was employed to follow C((1)D) decays by monitoring vacuum ultraviolet laser-induced fluorescence of the atomic hydrogen product at 121.567 nm. The deactivation rates are seen to increase at lower temperature, indicating the likely influence of the CNN intermediate complex lifetime on intersystem crossing for this system. We also performed electronic structure calculations of relevant C((3)P)-N2 and C((1)D)-N2 potential energy curves as well as triplet-singlet spin-orbit coupling terms using the explicitly correlated internally contracted multireference configuration interaction method (ic-MRCI-F12). The calculations were performed for the collinear and perpendicular approach of the C atom toward the N2 molecule, which allowed us to construct the approximate spherical (isotropic) potential model of C-N2(j = 0). The computed reduced dimensional potentials were used in quantum close coupling scattering calculations of the electronic quenching cross sections and rate constants. While the calculated potential energy curves form the basis for a good qualitative description of the reaction, the calculated rate constants are significantly smaller than the measured ones, and fail to reproduce the temperature dependence of the experimental results. Several possible reasons are provided to explain the origin of these differences.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hickson</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CNRS, Institut des Sciences Moléculaires, UMR 5255 , F-33400 Talence, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Loison</LastName>
<ForeName>Jean-Christophe</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Institut des Sciences Moléculaires, UMR 5255, Université de Bordeaux , F-33400 Talence, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CNRS, Institut des Sciences Moléculaires, UMR 5255 , F-33400 Talence, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lique</LastName>
<ForeName>François</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>LOMC - UMR 6294, CNRS-Université du Havre , 25 rue Philippe Lebon, BP 1123, 76063 Le Havre, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kłos</LastName>
<ForeName>Jacek</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742-2021, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>ENG</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>Apr</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem A</MedlineTA>
<NlmUniqueID>9890903</NlmUniqueID>
<ISSNLinking>1089-5639</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27046417</ArticleId>
<ArticleId IdType="doi">10.1021/acs.jpca.6b00480</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000041 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000041 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27046417
   |texte=   An Experimental and Theoretical Investigation of the C((1)D) + N2 → C((3)P) + N2 Quenching Reaction at Low Temperature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27046417" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a LeHavreV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024