Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes

Identifieur interne : 000311 ( PascalFrancis/Curation ); précédent : 000310; suivant : 000312

The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes

Auteurs : Damien Rioult [France] ; Jennifer Pasquier [France] ; Céline Boulange-Lecomte [France] ; Agnès Poret [France] ; Imane Abbas [Liban] ; Matthieu Marin [France] ; Christophe Minier [France] ; Frank Le Foll [France]

Source :

RBID : Pascal:14-0185695

Descripteurs français

English descriptors

Abstract

In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.
pA  
A01 01  1    @0 0166-445X
A02 01      @0 AQTODG
A03   1    @0 Aquat. toxicol.
A05       @2 153
A08 01  1  ENG  @1 The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes
A09 01  1  ENG  @1 Proceedings from the 17th International Symposium on Pollutant Responses in Marine Organisms (PRIMO17)
A11 01  1    @1 RIOULT (Damien)
A11 02  1    @1 PASQUIER (Jennifer)
A11 03  1    @1 BOULANGE-LECOMTE (Céline)
A11 04  1    @1 PORET (Agnès)
A11 05  1    @1 ABBAS (Imane)
A11 06  1    @1 MARIN (Matthieu)
A11 07  1    @1 MINIER (Christophe)
A11 08  1    @1 LE FOLL (Frank)
A12 01  1    @1 BEBIANNO (Maria João) @9 ed.
A14 01      @1 Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre @2 76058 Le Havre @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 7 aut. @Z 8 aut.
A14 02      @1 Research and Development Department, Lebanese Atomic Energy Commission - CNRS @2 Beirut @3 LBN @Z 5 aut.
A14 03      @1 Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille @2 59655 Villeneuve d'Ascq @3 FRA @Z 6 aut.
A15 01      @1 Department of Earth, Sea and Environment, Faculty of Science and Technology, University of Algarve, Campus de Gambelas @2 8000-139 Faro @3 PRT @Z 1 aut.
A20       @1 98-109
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 18841 @5 354000502794710090
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 14-0185695
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Aquatic toxicology
A66 01      @0 NLD
C01 01    ENG  @0 In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.
C02 01  X    @0 002A14D05G
C02 02  X    @0 002A12F
C03 01  X  FRE  @0 Xénobiotique @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Xenobiotic @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Xenobiótico @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Mécanisme défense @5 02
C03 02  X  ENG  @0 Defense mechanism @5 02
C03 02  X  SPA  @0 Mecanismo defensa @5 02
C03 03  X  FRE  @0 Hémocyte @5 03
C03 03  X  ENG  @0 Hemocyte @5 03
C03 03  X  SPA  @0 Hemocito @5 03
C03 04  X  FRE  @0 Mytilus edulis @2 NS @5 04
C03 04  X  ENG  @0 Mytilus edulis @2 NS @5 04
C03 04  X  SPA  @0 Mytilus edulis @2 NS @5 04
C03 05  X  FRE  @0 Transporteur ABC @5 05
C03 05  X  ENG  @0 ABC transporter @5 05
C03 05  X  SPA  @0 Transportador ABC @5 05
C03 06  X  FRE  @0 Granulocyte @5 06
C03 06  X  ENG  @0 Granulocyte @5 06
C03 06  X  SPA  @0 Granulocito @5 06
C03 07  X  FRE  @0 Moule (comestible) @5 07
C03 07  X  ENG  @0 Mussel @5 07
C03 07  X  SPA  @0 Mejillón @5 07
C03 08  X  FRE  @0 France @2 NG @5 09
C03 08  X  ENG  @0 France @2 NG @5 09
C03 08  X  SPA  @0 Francia @2 NG @5 09
C03 09  X  FRE  @0 Immunité naturelle @5 10
C03 09  X  ENG  @0 Natural immunity @5 10
C03 09  X  SPA  @0 Inmunidad natural @5 10
C03 10  X  FRE  @0 Cytométrie flux @5 11
C03 10  X  ENG  @0 Flow cytometry @5 11
C03 10  X  SPA  @0 Citometría flujo @5 11
C03 11  X  FRE  @0 Migration @5 12
C03 11  X  ENG  @0 Migration @5 12
C03 11  X  SPA  @0 Migración @5 12
C03 12  X  FRE  @0 Milieu marin @5 13
C03 12  X  ENG  @0 Marine environment @5 13
C03 12  X  SPA  @0 Medio marino @5 13
C03 13  X  FRE  @0 Détoxication @5 14
C03 13  X  ENG  @0 Detoxification @5 14
C03 13  X  SPA  @0 Detoxicación @5 14
C03 14  X  FRE  @0 Relation dose réponse @5 15
C03 14  X  ENG  @0 Dose activity relation @5 15
C03 14  X  SPA  @0 Relación dosis respuesta @5 15
C03 15  X  FRE  @0 Polluant @5 16
C03 15  X  ENG  @0 Pollutant @5 16
C03 15  X  SPA  @0 Contaminante @5 16
C03 16  X  FRE  @0 Protéine transport @5 32
C03 16  X  ENG  @0 Carrier protein @5 32
C03 16  X  SPA  @0 Proteína transportador @5 32
C03 17  X  FRE  @0 Leucocyte @5 33
C03 17  X  ENG  @0 Leukocyte @5 33
C03 17  X  SPA  @0 Leucocito @5 33
C03 18  X  FRE  @0 Mollusque comestible @5 34
C03 18  X  ENG  @0 Edible mollusc @5 34
C03 18  X  SPA  @0 Molusco comestible @5 34
C07 01  X  FRE  @0 Bivalvia @2 NS
C07 01  X  ENG  @0 Bivalvia @2 NS
C07 01  X  SPA  @0 Bivalvia @2 NS
C07 02  X  FRE  @0 Mollusca @2 NS
C07 02  X  ENG  @0 Mollusca @2 NS
C07 02  X  SPA  @0 Mollusca @2 NS
C07 03  X  FRE  @0 Invertebrata @2 NS
C07 03  X  ENG  @0 Invertebrata @2 NS
C07 03  X  SPA  @0 Invertebrata @2 NS
C07 04  X  FRE  @0 Europe @2 NG
C07 04  X  ENG  @0 Europe @2 NG
C07 04  X  SPA  @0 Europa @2 NG
N21       @1 230
pR  
A30 01  1  ENG  @1 PRIMO17 International Symposium on Pollutant Responses in Marine Organisms @2 17 @3 Faro PRT @4 2013-04-05

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0185695

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes</title>
<author>
<name sortKey="Rioult, Damien" sort="Rioult, Damien" uniqKey="Rioult D" first="Damien" last="Rioult">Damien Rioult</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Pasquier, Jennifer" sort="Pasquier, Jennifer" uniqKey="Pasquier J" first="Jennifer" last="Pasquier">Jennifer Pasquier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Boulange Lecomte, Celine" sort="Boulange Lecomte, Celine" uniqKey="Boulange Lecomte C" first="Céline" last="Boulange-Lecomte">Céline Boulange-Lecomte</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Poret, Agnes" sort="Poret, Agnes" uniqKey="Poret A" first="Agnès" last="Poret">Agnès Poret</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Abbas, Imane" sort="Abbas, Imane" uniqKey="Abbas I" first="Imane" last="Abbas">Imane Abbas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research and Development Department, Lebanese Atomic Energy Commission - CNRS</s1>
<s2>Beirut</s2>
<s3>LBN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Liban</country>
</affiliation>
</author>
<author>
<name sortKey="Marin, Matthieu" sort="Marin, Matthieu" uniqKey="Marin M" first="Matthieu" last="Marin">Matthieu Marin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Minier, Christophe" sort="Minier, Christophe" uniqKey="Minier C" first="Christophe" last="Minier">Christophe Minier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Le Foll, Frank" sort="Le Foll, Frank" uniqKey="Le Foll F" first="Frank" last="Le Foll">Frank Le Foll</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0185695</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0185695 INIST</idno>
<idno type="RBID">Pascal:14-0185695</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000008</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000311</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes</title>
<author>
<name sortKey="Rioult, Damien" sort="Rioult, Damien" uniqKey="Rioult D" first="Damien" last="Rioult">Damien Rioult</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Pasquier, Jennifer" sort="Pasquier, Jennifer" uniqKey="Pasquier J" first="Jennifer" last="Pasquier">Jennifer Pasquier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Boulange Lecomte, Celine" sort="Boulange Lecomte, Celine" uniqKey="Boulange Lecomte C" first="Céline" last="Boulange-Lecomte">Céline Boulange-Lecomte</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Poret, Agnes" sort="Poret, Agnes" uniqKey="Poret A" first="Agnès" last="Poret">Agnès Poret</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Abbas, Imane" sort="Abbas, Imane" uniqKey="Abbas I" first="Imane" last="Abbas">Imane Abbas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research and Development Department, Lebanese Atomic Energy Commission - CNRS</s1>
<s2>Beirut</s2>
<s3>LBN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Liban</country>
</affiliation>
</author>
<author>
<name sortKey="Marin, Matthieu" sort="Marin, Matthieu" uniqKey="Marin M" first="Matthieu" last="Marin">Matthieu Marin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Minier, Christophe" sort="Minier, Christophe" uniqKey="Minier C" first="Christophe" last="Minier">Christophe Minier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Le Foll, Frank" sort="Le Foll, Frank" uniqKey="Le Foll F" first="Frank" last="Le Foll">Frank Le Foll</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>ABC transporter</term>
<term>Carrier protein</term>
<term>Defense mechanism</term>
<term>Detoxification</term>
<term>Dose activity relation</term>
<term>Edible mollusc</term>
<term>Flow cytometry</term>
<term>France</term>
<term>Granulocyte</term>
<term>Hemocyte</term>
<term>Leukocyte</term>
<term>Marine environment</term>
<term>Migration</term>
<term>Mussel</term>
<term>Mytilus edulis</term>
<term>Natural immunity</term>
<term>Pollutant</term>
<term>Xenobiotic</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Xénobiotique</term>
<term>Mécanisme défense</term>
<term>Hémocyte</term>
<term>Mytilus edulis</term>
<term>Transporteur ABC</term>
<term>Granulocyte</term>
<term>Moule (comestible)</term>
<term>France</term>
<term>Immunité naturelle</term>
<term>Cytométrie flux</term>
<term>Migration</term>
<term>Milieu marin</term>
<term>Détoxication</term>
<term>Relation dose réponse</term>
<term>Polluant</term>
<term>Protéine transport</term>
<term>Leucocyte</term>
<term>Mollusque comestible</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>France</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Migration</term>
<term>Milieu marin</term>
<term>Polluant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-445X</s0>
</fA01>
<fA02 i1="01">
<s0>AQTODG</s0>
</fA02>
<fA03 i2="1">
<s0>Aquat. toxicol.</s0>
</fA03>
<fA05>
<s2>153</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings from the 17th International Symposium on Pollutant Responses in Marine Organisms (PRIMO17)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RIOULT (Damien)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PASQUIER (Jennifer)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOULANGE-LECOMTE (Céline)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PORET (Agnès)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ABBAS (Imane)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MARIN (Matthieu)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MINIER (Christophe)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LE FOLL (Frank)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BEBIANNO (Maria João)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratory of Ecotoxicology, UPRES EA 3222, IFRMP23, University of Le Havre</s1>
<s2>76058 Le Havre</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research and Development Department, Lebanese Atomic Energy Commission - CNRS</s1>
<s2>Beirut</s2>
<s3>LBN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Régulation des Signaux de Division, EA 4020, IFR 147, Bât. SN3, Université des Sciences et Technologies de Lille</s1>
<s2>59655 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Earth, Sea and Environment, Faculty of Science and Technology, University of Algarve, Campus de Gambelas</s1>
<s2>8000-139 Faro</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>98-109</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18841</s2>
<s5>354000502794710090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0185695</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aquatic toxicology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14D05G</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A12F</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Xénobiotique</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Xenobiotic</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Xenobiótico</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mécanisme défense</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Defense mechanism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Mecanismo defensa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hémocyte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hemocyte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hemocito</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mytilus edulis</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Mytilus edulis</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mytilus edulis</s0>
<s2>NS</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transporteur ABC</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>ABC transporter</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transportador ABC</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Granulocyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Granulocyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Granulocito</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Moule (comestible)</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mussel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mejillón</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>France</s0>
<s2>NG</s2>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>France</s0>
<s2>NG</s2>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Francia</s0>
<s2>NG</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Immunité naturelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Natural immunity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Inmunidad natural</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cytométrie flux</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Flow cytometry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Citometría flujo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Migration</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Migration</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Migración</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Milieu marin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Marine environment</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Medio marino</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Détoxication</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Detoxification</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Detoxicación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Relation dose réponse</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Dose activity relation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Relación dosis respuesta</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Polluant</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Pollutant</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Contaminante</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Protéine transport</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Carrier protein</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Proteína transportador</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Leucocyte</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Leukocyte</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Leucocito</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Mollusque comestible</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Edible mollusc</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Molusco comestible</s0>
<s5>34</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Bivalvia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Bivalvia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Bivalvia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Mollusca</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Mollusca</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Mollusca</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Invertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Invertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Invertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Europa</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>230</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>PRIMO17 International Symposium on Pollutant Responses in Marine Organisms</s1>
<s2>17</s2>
<s3>Faro PRT</s3>
<s4>2013-04-05</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000311 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000311 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0185695
   |texte=   The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024