Serveur d'exploration sur la visibilité du Havre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery

Identifieur interne : 000224 ( PascalFrancis/Corpus ); précédent : 000223; suivant : 000225

Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery

Auteurs : S. Alvain ; C. Moulin ; Y. Dandonneau ; F. M. Breon

Source :

RBID : Pascal:05-0466139

Descripteurs français

English descriptors

Abstract

Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0967-0637
A03   1    @0 Deep-sea res., Part 1, Oceanogr. res. pap.
A05       @2 52
A06       @2 11
A08 01  1  ENG  @1 Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery
A11 01  1    @1 ALVAIN (S.)
A11 02  1    @1 MOULIN (C.)
A11 03  1    @1 DANDONNEAU (Y.)
A11 04  1    @1 BREON (F. M.)
A14 01      @1 IPSL/LSCE, CEA Saclay @2 Gif-sur-Yvette 91191 @3 FRA @Z 1 aut. @Z 2 aut. @Z 4 aut.
A14 02      @1 IRD-IPSL/LOCEAN, 4 place Jussieu @2 Paris 75252 @3 FRA @Z 3 aut.
A20       @1 1989-2004
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 7679A1 @5 354000132757230010
A44       @0 0000 @1 © 2005 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 05-0466139
A60       @1 P
A61       @0 A
A64 01  1    @0 Deep-sea research. Part 1. Oceanographic research papers
A66 01      @0 GBR
C01 01    ENG  @0 Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.
C02 01  X    @0 002A14B04E
C02 02  X    @0 002A14A03
C03 01  X  FRE  @0 Télédétection @5 01
C03 01  X  ENG  @0 Remote sensing @5 01
C03 01  X  SPA  @0 Teledetección @5 01
C03 02  X  FRE  @0 Phytoplancton @5 02
C03 02  X  ENG  @0 Phytoplankton @5 02
C03 02  X  SPA  @0 Fitoplancton @5 02
C03 03  X  FRE  @0 Couleur @5 03
C03 03  X  ENG  @0 Color @5 03
C03 03  X  SPA  @0 Color @5 03
C03 04  X  FRE  @0 In situ @5 04
C03 04  X  ENG  @0 In situ @5 04
C03 04  X  SPA  @0 In situ @5 04
C03 05  X  FRE  @0 Propriété optique @5 05
C03 05  X  ENG  @0 Optical properties @5 05
C03 05  X  SPA  @0 Propiedad óptica @5 05
C03 06  X  FRE  @0 Océan Atlantique Nord @2 NG @5 06
C03 06  X  ENG  @0 North Atlantic @2 NG @5 06
C03 06  X  SPA  @0 Océano Atlántico Norte @2 NG @5 06
C03 07  X  FRE  @0 Océan Pacifique équatorial @2 NG @5 07
C03 07  X  ENG  @0 Equatorial Pacific @2 NG @5 07
C03 07  X  SPA  @0 Océano Pacífico ecuatorial @2 NG @5 07
C03 08  X  FRE  @0 Milieu marin @5 08
C03 08  X  ENG  @0 Marine environment @5 08
C03 08  X  SPA  @0 Medio marino @5 08
C03 09  X  FRE  @0 Eau profonde @5 09
C03 09  X  ENG  @0 Deep water @5 09
C03 09  X  SPA  @0 Agua profunda @5 09
C03 10  X  FRE  @0 Océan Pacifique Equatorial @4 CD @5 96
C03 10  X  ENG  @0 Equatorial Pacific @4 CD @5 96
C07 01  X  FRE  @0 Océan Atlantique @2 NG
C07 01  X  ENG  @0 Atlantic Ocean @2 NG
C07 01  X  SPA  @0 Océano Atlántico @2 NG
C07 02  X  FRE  @0 Océan Pacifique @2 NG
C07 02  X  ENG  @0 Pacific Ocean @2 NG
C07 02  X  SPA  @0 Océano Pacífico @2 NG
C07 03  X  FRE  @0 Plancton @5 17
C07 03  X  ENG  @0 Plankton @5 17
C07 03  X  SPA  @0 Plancton @5 17
N21       @1 325

Format Inist (serveur)

NO : PASCAL 05-0466139 INIST
ET : Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery
AU : ALVAIN (S.); MOULIN (C.); DANDONNEAU (Y.); BREON (F. M.)
AF : IPSL/LSCE, CEA Saclay/Gif-sur-Yvette 91191/France (1 aut., 2 aut., 4 aut.); IRD-IPSL/LOCEAN, 4 place Jussieu/Paris 75252/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : Deep-sea research. Part 1. Oceanographic research papers; ISSN 0967-0637; Royaume-Uni; Da. 2005; Vol. 52; No. 11; Pp. 1989-2004; Bibl. 1 p.1/4
LA : Anglais
EA : Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.
CC : 002A14B04E; 002A14A03
FD : Télédétection; Phytoplancton; Couleur; In situ; Propriété optique; Océan Atlantique Nord; Océan Pacifique équatorial; Milieu marin; Eau profonde; Océan Pacifique Equatorial
FG : Océan Atlantique; Océan Pacifique; Plancton
ED : Remote sensing; Phytoplankton; Color; In situ; Optical properties; North Atlantic; Equatorial Pacific; Marine environment; Deep water; Equatorial Pacific
EG : Atlantic Ocean; Pacific Ocean; Plankton
SD : Teledetección; Fitoplancton; Color; In situ; Propiedad óptica; Océano Atlántico Norte; Océano Pacífico ecuatorial; Medio marino; Agua profunda
LO : INIST-7679A1.354000132757230010
ID : 05-0466139

Links to Exploration step

Pascal:05-0466139

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery</title>
<author>
<name sortKey="Alvain, S" sort="Alvain, S" uniqKey="Alvain S" first="S." last="Alvain">S. Alvain</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moulin, C" sort="Moulin, C" uniqKey="Moulin C" first="C." last="Moulin">C. Moulin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dandonneau, Y" sort="Dandonneau, Y" uniqKey="Dandonneau Y" first="Y." last="Dandonneau">Y. Dandonneau</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IRD-IPSL/LOCEAN, 4 place Jussieu</s1>
<s2>Paris 75252</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Breon, F M" sort="Breon, F M" uniqKey="Breon F" first="F. M." last="Breon">F. M. Breon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0466139</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 05-0466139 INIST</idno>
<idno type="RBID">Pascal:05-0466139</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery</title>
<author>
<name sortKey="Alvain, S" sort="Alvain, S" uniqKey="Alvain S" first="S." last="Alvain">S. Alvain</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Moulin, C" sort="Moulin, C" uniqKey="Moulin C" first="C." last="Moulin">C. Moulin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dandonneau, Y" sort="Dandonneau, Y" uniqKey="Dandonneau Y" first="Y." last="Dandonneau">Y. Dandonneau</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IRD-IPSL/LOCEAN, 4 place Jussieu</s1>
<s2>Paris 75252</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Breon, F M" sort="Breon, F M" uniqKey="Breon F" first="F. M." last="Breon">F. M. Breon</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Deep-sea research. Part 1. Oceanographic research papers</title>
<title level="j" type="abbreviated">Deep-sea res., Part 1, Oceanogr. res. pap.</title>
<idno type="ISSN">0967-0637</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Deep-sea research. Part 1. Oceanographic research papers</title>
<title level="j" type="abbreviated">Deep-sea res., Part 1, Oceanogr. res. pap.</title>
<idno type="ISSN">0967-0637</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Color</term>
<term>Deep water</term>
<term>Equatorial Pacific</term>
<term>In situ</term>
<term>Marine environment</term>
<term>North Atlantic</term>
<term>Optical properties</term>
<term>Phytoplankton</term>
<term>Remote sensing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Télédétection</term>
<term>Phytoplancton</term>
<term>Couleur</term>
<term>In situ</term>
<term>Propriété optique</term>
<term>Océan Atlantique Nord</term>
<term>Océan Pacifique équatorial</term>
<term>Milieu marin</term>
<term>Eau profonde</term>
<term>Océan Pacifique Equatorial</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0967-0637</s0>
</fA01>
<fA03 i2="1">
<s0>Deep-sea res., Part 1, Oceanogr. res. pap.</s0>
</fA03>
<fA05>
<s2>52</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ALVAIN (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOULIN (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DANDONNEAU (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BREON (F. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>IPSL/LSCE, CEA Saclay</s1>
<s2>Gif-sur-Yvette 91191</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IRD-IPSL/LOCEAN, 4 place Jussieu</s1>
<s2>Paris 75252</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1989-2004</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>7679A1</s2>
<s5>354000132757230010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0466139</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Deep-sea research. Part 1. Oceanographic research papers</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14B04E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A14A03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Télédétection</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Remote sensing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Teledetección</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Phytoplancton</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Phytoplankton</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fitoplancton</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couleur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Color</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Color</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>In situ</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>In situ</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>In situ</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Océan Atlantique Nord</s0>
<s2>NG</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>North Atlantic</s0>
<s2>NG</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Océano Atlántico Norte</s0>
<s2>NG</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Océan Pacifique équatorial</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Equatorial Pacific</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Océano Pacífico ecuatorial</s0>
<s2>NG</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Milieu marin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Marine environment</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medio marino</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Eau profonde</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Deep water</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Agua profunda</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Océan Pacifique Equatorial</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Equatorial Pacific</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Océan Atlantique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Atlantic Ocean</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Océano Atlántico</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Océan Pacifique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Pacific Ocean</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Océano Pacífico</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Plancton</s0>
<s5>17</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Plankton</s0>
<s5>17</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Plancton</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>325</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 05-0466139 INIST</NO>
<ET>Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery</ET>
<AU>ALVAIN (S.); MOULIN (C.); DANDONNEAU (Y.); BREON (F. M.)</AU>
<AF>IPSL/LSCE, CEA Saclay/Gif-sur-Yvette 91191/France (1 aut., 2 aut., 4 aut.); IRD-IPSL/LOCEAN, 4 place Jussieu/Paris 75252/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Deep-sea research. Part 1. Oceanographic research papers; ISSN 0967-0637; Royaume-Uni; Da. 2005; Vol. 52; No. 11; Pp. 1989-2004; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 mn are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.</EA>
<CC>002A14B04E; 002A14A03</CC>
<FD>Télédétection; Phytoplancton; Couleur; In situ; Propriété optique; Océan Atlantique Nord; Océan Pacifique équatorial; Milieu marin; Eau profonde; Océan Pacifique Equatorial</FD>
<FG>Océan Atlantique; Océan Pacifique; Plancton</FG>
<ED>Remote sensing; Phytoplankton; Color; In situ; Optical properties; North Atlantic; Equatorial Pacific; Marine environment; Deep water; Equatorial Pacific</ED>
<EG>Atlantic Ocean; Pacific Ocean; Plankton</EG>
<SD>Teledetección; Fitoplancton; Color; In situ; Propiedad óptica; Océano Atlántico Norte; Océano Pacífico ecuatorial; Medio marino; Agua profunda</SD>
<LO>INIST-7679A1.354000132757230010</LO>
<ID>05-0466139</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/France/explor/LeHavreV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/France
   |area=    LeHavreV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:05-0466139
   |texte=   Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Sat Dec 3 14:37:02 2016. Site generation: Tue Mar 5 08:25:07 2024